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The goal of this document is to provide a easier introduction to olympiad
inequalities than the standard exposition Olympiad Inequalities, by Thomas
Mildorf. I was motivated to write it by feeling guilty for getting free 7’s on
problems by simply regurgitating a few tricks I happened to know, while
other students were unable to solve the problem.

Warning: These are notes, not a full handout. Lots of the exposition is
very minimal, and many things are left to the reader.

In a problem with n variables, these respectively mean to cycle through the n variables,
and to go through all n! permutations. To provide an example, in a three-variable
problem we might write

Za22a2+b2+02

cyc

Z a’b = a’b + bc + 2a

cyc

Y ad=a’+a®+ 0+ 7+

sym

Z a’b = a®b + a’c + b’c + b%a + *a + 2b.

sym

§1 Polynomial Inequalities

§1.1 AM-GM and Muirhead

Consider the following theorem.

4 R

Theorem 1.1 (AM-GM)

For nonnegative reals a1, ao, ..., a, we have

ap+ag+---+ap
> Yaj...any.
n
Equality holds if and only if a; = as = - - = ay.
4

For example, this implies
a’® + b > 2ab, a® + b + & > 3abe.

Adding such inequalities can give us some basic propositions.
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Example 1.2
Prove that a? + b2 + ¢ > ab + be + ca a* + b* + ¢* > a2be + b%ca + 2ab.

Proof. By AM-GM,

2 b? ) 4 b4 4
@+ > ab and % > a’be.

Similarly,

b2 2 2b4 4 4
—;C > be and # > b2ca.

2 2 24 4 b4
€ —;—a > ca and%zgab.

Summing the above statements gives

a®> +b>+ % > ab+ be+ ca and a* + b* + ¢* > a®be + b%ca + Cab. O
Exercise 1.3. Prove that a3 + 0% + ¢3 > a2b + b2c + 2a.
Exercise 1.4. Prove that a® + b° 4 ¢® > a3bc + b3ca + c3ab > abc(ab + be + ca).

The fundamental intuition is being able to decide which symmetric polynomials of a
given degree are bigger. For example, for degree 3, the polynomial a3 4 b3 4 ¢3 is biggest
and abc is the smallest. Roughly, the more “mixed” polynomials are the smaller. From
this, for example, one can immediately see that the inequality

(a4+b+c)3 > a®+ b3+ + 24abe

must be true, since upon expanding the LHS and cancelling a® + b + ¢3, we find that the
RHS contains only the piddling term 24abc. That means a straight AM-GM will suffice.

A useful formalization of this is Muirhead’s Inequality. Suppose we have two sequences
T1 2T 2> > ap and Y > yo > -+ > yp such that

rx1+rot -+ =y1+y2+ -+ Yn,
and for k=1,2,...,n—1
Ty + T2+t 2 Y1 H Y2+ Yy

Then we say that (z,,) majorizes (yy), written (z,,) > (yn).
Using the above, we have the following theorem.

~
Theorem 1.5 (Muirhead's Inequality)
Ifay, as, . .., a, are positive reals, and (z,,) majorizes (y,) then we have the inequality.
Zafla;@ coeapn > z:afl“ag2 Soaln
sym sym
. J
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Example 1.6
Since (5,0,0) = (3,1,1) > (2,2,1),

A +a®+ 0+ +P+ P> adbe+ adbe + biea + b3ca + ab + ab

> a?b%c + a’b’c + b*cPa + b2Pa + Aa’b + Pa’b.

From this we derive a® 4 b° 4 ¢® > a3bc + b3ca + c2ab > abe(ab + be + ca).

Notice that Muirhead is symmetric, not cyclic. For example, even though (3,0,0) >
(2,1,0), Muirhead’s inequality only gives that

2(a® + b3 + ) > a®b+ a’c + Ve + b2a+ Pa + b
and in particular this does not imply that a® +b% + ¢ > a?b + b%c + c2a. These situations
must still be resolved by AM-GM.

§1.2 Non-homogeneous inequalities

Consider the following example.

Example 1.7
Prove that if abc = 1 then a2 + 02 +c2 > a+b+c.

Proof. AM-GM alone is hopeless here, because whenever we apply AM-GM, the left
and right hand sides of the inequality all have the same degree. So we want to use the
condition abc = 1 to force the problem to have the same degree. The trick is to notice
that the given inequality can be rewritten as

a2 102 42> a B3 B (a1 b+t ).

Now the inequality is homogeneous. Observe that if we multiply a, b, ¢ by any real
number k > 0, all that happens is that both sides of the inequality are multiplied by k2,
which doesn’t change anything. That means the condition abc = 1 can be ignored now.
Since (2,0,0) > (%, %, %), applying Muirhead’s Inequality solves the problem. O

The importance of this problem is that it shows us how to eliminate a given condition
by homogenizing the inequality; this is very important. (In fact, we will soon see that
we can use this in reverse — we can impose an arbitrary condition on a homogeneous

inequality.)

§1.3 Practice Problems
1. a” + 0" + ¢ > a*b® + b4 + ¢*ad.

(a34+b34c3)
abc :

2. Ifa+b+c=1,theni+}+1<342.

3.0 40 L sathte

4. 1L 4142 =1 then (a+1)(b+1)(c+1) > 64.

5. (USA 2011) If a® + b? 4+ c® 4+ (a + b+ ¢)? < 4, then
ab+1 n bec+1 n ca+1 >3
(@a+b)?2 (b+¢)? (c+a)?

6. If abed = 1, then a*b+bic+ctd+d*a>a+b+c+d.
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§2 Inequalities in Arbitrary Functions

Let f : (u,v) — R be a function and let aj,as,...,a, € (u,v). Suppose that we fix
artaatton — g (if the inequality is homogeneous, we will often insert such a condition)

and we want to prove that

flar) + flaz) + -+ flan)

is at least (or at most) nf(a). In this section we will provide three methods for doing so.
We say that function f is convez if f”(x) > 0 for all z; we say it is concave if f”(z) <0
for all . Note that f is convex if and only if — f is concave.

§2.1 Jensen / Karamata

Theorem 2.1 (Jensen's Inequality)

If f is convex, then

Ho oot o), (s oben)

n

The reverse inequality holds when f is concave.
. J

Theorem 2.2 (Karamata's Inequality)

If f is convex, and (z,) majorizes (y,) then

fl@) 4+ fl@n) 2 fy1) + -+ Fyn).

The reverse inequality holds when f is concave.
. J

Example 2.3 (Shortlist 2009)
Given a+b+c= % + % + %, prove that

1 1 1
(2a+b+c¢)? + (a+2b+c)? * (@ +b+2c)?

3
< —.
— 16

Proof. First, we want to eliminate the condition. The original problem is equivalent to

1 1 1 3 l_|_%_|_l
- + <2 albTe
(2a+b+¢)? (a+2b+¢)? (a+b+2¢)2 ~ 16 a+b+c

Now the inequality is homogeneous, so we can assume that a + b+ ¢ = 3. Now our
original problem can be rewritten as

1 o
16a  (a+3)2 = 7
cyc
Set f(x) = 16% - ﬁ We can check that f over (0, 3) is convex so Jensen completes
the problem. O
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Example 2.4
Prove that

1 1 1 1 1 1 9
—+-4+=>2 + + > :
a a+b b+c cHa at+b+c

Proof. The problem is equivalent to

1 1 1 1 1 1 1 1 1
E + 5 + E Z a+b + b+c + cta — atb+c + at+b+c + at+b+c’
2 2 2 3 3 3

Assume WLOG that a > b > c. Let f(z) = 1/z. Since

a+b at+c b+c a+b+c a+b+c a+b+c
(a,b,C)} 9 9 9 )
2 2 2 3 3 3

the conclusion follows by Karamata. O

Example 2.5 (APMO 1996)

If a, b, ¢ are the three sides of a triangle, prove that

Va+tb—c+Vb+rcec—a+Vetra—b<+a+Vb+ /e

Proof. Again assume WLOG that a > b > ¢ and notice that (a,b,¢) = (b+c—a,c+a—
b,a+b—c). Apply Karamata on f(z) = /z. O

§2.2 Tangent Line Trick

% If f is not convex, we can sometimes still prove the inequality

f(@) = fa)+ f'(a) (z = a).

If this inequality manages to hold for all x, then simply summing the inequality will give
us the desired conclusion. This method is called the tangent line trick.

Again fix a =

Example 2.6 (David Stoner)
If a+ b+ c =3, prove that

182(3_6)1(4_6)4-2(@4—136—1—0(1) > 15.

cyc

Proof. We can rewrite the given inequality as
18 2)
S (B ) s
<<3—c><4—c>
Using the tangent line trick lets us obtain the magical inequality

18 2o c+3

B_od—c = 2

— clc—1)}(2c-9) <0

and the conclusion follows by summing. O
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Example 2.7 (Japan)

(b+c—a)? 3
Prove 3 oye amr5ror = 5-

Proof. Since the inequality is homogeneous, we may assume WLOG that a + b+ ¢ = 3.
So the inequality we wish to prove is

With some computation, the tangent line trick gives away the magical inequality:

1 18 18 2a+1
- —(a— 1)2L >0 0]
5 25 25

2a2 —6a+9 —

(3 —2a)?
(3—a)?+a?

§2.3 n—1 EV

The last such technique is n —1 EV. This is a brute force method involving much calculus,
but it is nonetheless a useful weapon.

4 N
Theorem 2.8 (n — 1 EV)

Let a1, as, ..., a, be real numbers, and suppose a; + a2 + --- + a, is fixed. Let
f iR — R be a function with exactly one inflection point. If

flar) + flaz) + -+ flan)

achieves a maximal or minimal value, then n — 1 of the a; are equal to each other.
. J

Proof. See page 15 of Olympiad Inequalities, by Thomas Mildorf. The main idea is to
use Karamata to “push” the a; together. O

Example 2.9 (IMO 2001 / APMOC 2014)
Let a, b, ¢ be positive reals. Prove 1 < chc \/a?iW < 2.

Proof. Set e* = 2—‘5, eV =13, " = %3- We have the condition 4+ y 4+ z = 0 and want to
prove
1< flz)+ fly) + f(z) <2

where f(x) = \/JW' You can compute

_ 4e® (4e” — 1)

f (iU) (86’3 4 1)3

so by n —1 EV, we only need to consider the case z = y. Let t = €*; that means we want

to show that
2 1

1< + <2
T VI8t /148t

Since this a function of one variable, we can just use standard Calculus BC methods. [
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Example 2.10 (Vietnam 1998)
1

Let z1, x2, ..., z, be positive reals satisfying > ;" ; 199870, — 1998 Prove
- K3

YA oo iy 19”” > 1998,

n —

Proof. Let y; = 105228 Since y1 + Y2 + - - + yn = 1, the problem becomes

1998+z;
fT(2-1) =00

=1

Set f(z) =1In (1 —1), so the inequality becomes f(y1)+ -+ f(yn) > nf (). We can
prove that

1—-2y
'y =—o—x1s
(y* —y)?
So f has one inflection point, we can assume WLOG that y; = y2 = ...yp—1. Let this

common value be t; we only need to prove
(n—1)In(2-1)+1 ! 1) > nin(n — 1)
n—1)In{-— nf————— nln(n —1).
t 1—(n—1)t -
Again, since this is a one-variable inequality, calculus methods suffice. O

§2.4 Practice Problems
1. Use Jensen to prove AM-GM.

2 2 2 1 1 1 1
2. If a® 40" 4 ¢” = 1 then 2+2 + b2 + 242 < 6ab+c? + 6bcta? + 6ca+b? "

3. If a+b+c¢=3 then
a 3
S i<y
202 +a+1 " 4
cyc

4. (MOP 2012) If a+b+c+d =4, then %5 + g5 + & + 35 > a? + b + ¢ + d%

§3 Eliminating Radicals and Fractions

§3.1 Weighted Power Mean
AM-GM has the following natural generalization.

-
Theorem 3.1 (Weighted Power Mean)

Let a1,a9,...,a, and wy, ws, ..., w, be positive reals with wy + wy + - -+ + w, = 1.
For any real number r, we define

(w1a] + waah + - - - + wnat) V" #£0

P(r) =
a;as?...a¥n r=0.
If r > s, then P(r) > P(s) equality occurs if and only if a1 = ag = - -+ = ay.
- J




Evan Chen 3 Eliminating Radicals and Fractions

In particular, if wy =we = -+ = w, = %, the above P(r) is just
T T r\ 1/
<a1+a2+ +an) "0
P(r) = n
Yaiag ... ay r=20.
By setting r = 2,1,0, —1 we derive
24 ... 2
a1+ —|—CLnZCLl+ +an2"a1a2...an2 - n -
n n Y et

which is QM-AM-GM-HM. Moreover, AM-GM lets us “add” roots, like
b
Va+Vb+/e < 34 %

Example 3.2 (Taiwan TST Quiz)
Prove 3(a + b+ ¢) > 8¢/abe + {4

Proof. By Power Mean with r =1, s = %, wy = %, wo = %, we find that

3
1 3 3 3 1 3 3 3
(93/a +l;) T +ggabc) Sg(a LBt >+8(abc).

9
so we want to prove a® + b3 + ¢3 + 24abe < (a + b + ¢)?, which is clear. O

§3.2 Cauchy and Hoélder

~N
Theorem 3.3 (Holder's Inequality)
Let Ay, Ap, ..., A, be positive reals with A\, + Xy + -+ A, = 1. Let a1,a9,...,a,,
bi,b2,...,by, ..., 21,292,...,2, be positive reals. Then
n
(@144 an) (br 4+ b)Yz 2) 2D a2
i=1
Equality holdsifay :ag:---:ap, =by:bg:-- by =---=21:290: - zp.
4
Proof. WLOG a1+ -+ ap, =0b;+---+b, =---=1 (note that the degree of the a; on
either side is \,;). In that case, the LHS of the inequality is 1, and we just note
n n
Zal’-\“bf"’...z{\z§Z()\aai+)\bbi+...):1. a
i=1 =1

If we set Ay = \p = %, we derive what is called the Cauchy-Schwarz inequality.

2
(a1 +ag+---+an) (b1 +b2+---+by) > (\/a1b1+ azb2+---+\/anbn) :



Evan Chen

3 Eliminating Radicals and Fractions
Cauchy can be rewritten as
2 2 2 o 2
LT T (@1 + 224 - +@0)”
Y1 Y2 Yn

Y1+ +Yn
This form it is often called Titu’s Lemma in the United States
Cauchy and Holder have at least two uses

1. eliminating radicals

. eliminating fractions.

Let us look at some examples

Example 3.4 (IMO 2001)
Prove

Cyzc \/&2 + 8bc

Proof. By Holder

(CC a+8bc> (Cz;\/m> > (a+b+c)

So it suffices to prove (a + b+ c)

Wl

3> > eye ala® +8bc) = a” + b2 + ¢ + 24abe. Does this
look familiar? O
In this problem, we used Hélder to clear the square roots in the denominator
Example 3.5 (Balkan)
1 27
Prove (b+c) + b(cta) + c(a+b) = 2(a+b+c)? "

Proof. Again by Holder

(=) () (Zovs)

>1+1+1=3.
> v a) 2 +14+1=3

Example 3.6 (JMO 2012)

a3 3
Prove ... 3;'_?2 >3 (a?+ 0%+ ).

Proof. We use Cauchy (Titu) to obtain

a3 (a2)2
D s
cy

(a2 + b2 +02)2
< 3a+b yc3a2+ab_

> ey 302 +ab

We can easily prove this is at least i(a2+b2+02) (recall a2+bz+c 1s the “biggest” sum, so
we knew in advance this method would work)). Similarly

Cy63a+b 2(a?+b*+¢%). O



Evan Chen 4 Problems

Example 3.7 (USA TST 2010)

— 1 1 1 1
If abe = 1, prove a®(b+2c)? + b°(c+2a)? + c®(a+20)? = 3"

Proof. We can use Holder to eliminate the square roots in the denominator:

2 3
(Z ab + 2ac> (Z M) > <Z i) > 3(ab + be + ca)?. O

cyc cyc cyc
§3.3 Practice Problems
1. Ifa+b+c=1, thenv/ab + ¢ + Vbc + a + Vea + b > 1+ Vab + vVbe + y/ca.
2. Ifa?+b2+c? =12, thena- V02 +c2+b- V2 +a2+c¢- Va2 + b2 < 12.

3. (ISL 2004) If ab + bc + ca = 1, prove f’/%—i—Gb—i— \3/%—1—66—&- {’/%+6a< L

— abc”

4. (MOP 2011) Va2 — ab + b2 ++/b2 — bc + 2 +/c2 — ca + a? +9vabc < 4(a+b+c).
5. (Evan Chen) If a® + b® + ¢3 + abc = 4, prove

(5a? + be)? (502 + ca)? (5¢% + ab)? - (10 — abe)?
(a+b)(a+c) (b+e)(b+a) (c+a)c+b) ~ a+b+c

When does equality hold?

8§84 Problems

1. (MOP 2013) If a + b+ ¢ = 3, then

Va2 +ab+ b2+ V2 +be+ 2+ VA +ca+a? > V3.

2. (IMO 1995) If abe = 1, then o + wra) + S 2 -

3. (USA 2003) Prove Y, s2tbecl < g

4. (Romania) Let x1, xo, ..., z, be positive reals with z1zs ...z, = 1. Prove that
n 1
Zizl n—l—&-xi S 1

5. (USA 2004) Let a, b, ¢ be positive reals. Prove that

(a® — a® +3) (b° — b* + 3) (05—02+3)Z(a+b+c)3.

6. (Evan Chen) Let a, b, ¢ be positive reals satisfying a + b+ ¢ = a + v/b + /c.
Prove a®bbec > 1.

10
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