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The goal of this document is to provide a easier introduction to olympiad
inequalities than the standard exposition Olympiad Inequalities, by Thomas
Mildorf. I was motivated to write it by feeling guilty for getting free 7’s on
problems by simply regurgitating a few tricks I happened to know, while
other students were unable to solve the problem.

Warning: These are notes, not a full handout. Lots of the exposition is
very minimal, and many things are left to the reader.

In a problem with n variables, these respectively mean to cycle through the n variables,
and to go through all n! permutations. To provide an example, in a three-variable
problem we might write∑

cyc

a2 = a2 + b2 + c2∑
cyc

a2b = a2b+ b2c+ c2a∑
sym

a2 = a2 + a2 + b2 + b2 + c2 + c2∑
sym

a2b = a2b+ a2c+ b2c+ b2a+ c2a+ c2b.

§1 Polynomial Inequalities

§1.1 AM-GM and Muirhead

Consider the following theorem.

Theorem 1.1 (AM-GM)

For nonnegative reals a1, a2, . . . , an we have

a1 + a2 + · · ·+ an
n

≥ n
√
a1 . . . an.

Equality holds if and only if a1 = a2 = · · · = an.

For example, this implies

a2 + b2 ≥ 2ab, a3 + b3 + c3 ≥ 3abc.

Adding such inequalities can give us some basic propositions.
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Evan Chen 1 Polynomial Inequalities

Example 1.2

Prove that a2 + b2 + c2 ≥ ab+ bc+ ca a4 + b4 + c4 ≥ a2bc+ b2ca+ c2ab.

Proof. By AM-GM,

a2 + b2

2
≥ ab and

2a4 + b4 + c4

4
≥ a2bc.

Similarly,
b2 + c2

2
≥ bc and

2b4 + c4 + a4

4
≥ b2ca.

c2 + a2

2
≥ ca and

2c4 + a4 + b4

4
≥ c2ab.

Summing the above statements gives

a2 + b2 + c2 ≥ ab+ bc+ ca and a4 + b4 + c4 ≥ a2bc+ b2ca+ c2ab.

Exercise 1.3. Prove that a3 + b3 + c3 ≥ a2b+ b2c+ c2a.

Exercise 1.4. Prove that a5 + b5 + c5 ≥ a3bc+ b3ca+ c3ab ≥ abc(ab+ bc+ ca).

The fundamental intuition is being able to decide which symmetric polynomials of a
given degree are bigger. For example, for degree 3, the polynomial a3 + b3 + c3 is biggest
and abc is the smallest. Roughly, the more “mixed” polynomials are the smaller. From
this, for example, one can immediately see that the inequality

(a+ b+ c)3 ≥ a3 + b3 + c3 + 24abc

must be true, since upon expanding the LHS and cancelling a3 + b3 + c3, we find that the
RHS contains only the piddling term 24abc. That means a straight AM-GM will suffice.

A useful formalization of this is Muirhead’s Inequality. Suppose we have two sequences
x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn such that

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn,

and for k = 1, 2, . . . , n− 1

x1 + x2 + · · ·+ xk ≥ y1 + y2 + · · ·+ yk,

Then we say that (xn) majorizes (yn), written (xn) � (yn).
Using the above, we have the following theorem.

Theorem 1.5 (Muirhead’s Inequality)

Ifa1, a2, . . . , an are positive reals, and (xn) majorizes (yn) then we have the inequality.∑
sym

ax11 a
x2
2 . . . axnn ≥

∑
sym

ay11 a
y2
2 . . . aynn .
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Example 1.6

Since (5, 0, 0) � (3, 1, 1) � (2, 2, 1),

a5 + a5 + b5 + b5 + c5 + c5 ≥ a3bc+ a3bc+ b3ca+ b3ca+ c3ab+ c3ab

≥ a2b2c+ a2b2c+ b2c2a+ b2c2a+ c2a2b+ c2a2b.

From this we derive a5 + b5 + c5 ≥ a3bc+ b3ca+ c3ab ≥ abc(ab+ bc+ ca).

Notice that Muirhead is symmetric, not cyclic. For example, even though (3, 0, 0) �
(2, 1, 0), Muirhead’s inequality only gives that

2(a3 + b3 + c3) ≥ a2b+ a2c+ b2c+ b2a+ c2a+ c2b

and in particular this does not imply that a3 + b3 + c3 ≥ a2b+ b2c+ c2a. These situations
must still be resolved by AM-GM.

§1.2 Non-homogeneous inequalities

Consider the following example.

Example 1.7

Prove that if abc = 1 then a2 + b2 + c2 ≥ a+ b+ c.

Proof. AM-GM alone is hopeless here, because whenever we apply AM-GM, the left
and right hand sides of the inequality all have the same degree. So we want to use the
condition abc = 1 to force the problem to have the same degree. The trick is to notice
that the given inequality can be rewritten as

a2 + b2 + c2 ≥ a1/3b1/3c1/3 (a+ b+ c) .

Now the inequality is homogeneous. Observe that if we multiply a, b, c by any real
number k > 0, all that happens is that both sides of the inequality are multiplied by k2,
which doesn’t change anything. That means the condition abc = 1 can be ignored now.
Since (2, 0, 0) � (43 ,

1
3 ,

1
3), applying Muirhead’s Inequality solves the problem.

The importance of this problem is that it shows us how to eliminate a given condition
by homogenizing the inequality; this is very important. (In fact, we will soon see that
we can use this in reverse – we can impose an arbitrary condition on a homogeneous
inequality.)

§1.3 Practice Problems

1. a7 + b7 + c7 ≥ a4b3 + b4c3 + c4a3.

2. If a+ b+ c = 1, then 1
a + 1

b + 1
c ≤ 3 + 2 · (a

3+b3+c3)
abc .

3. a3

bc + b3

ca + c3

ab ≥ a+ b+ c.

4. If 1
a + 1

b + 1
c = 1, then (a+ 1)(b+ 1)(c+ 1) ≥ 64.

5. (USA 2011) If a2 + b2 + c2 + (a+ b+ c)2 ≤ 4, then

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3.

6. If abcd = 1, then a4b+ b4c+ c4d+ d4a ≥ a+ b+ c+ d.
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§2 Inequalities in Arbitrary Functions

Let f : (u, v) → R be a function and let a1, a2, . . . , an ∈ (u, v). Suppose that we fix
a1+a2+···+an

n = a (if the inequality is homogeneous, we will often insert such a condition)
and we want to prove that

f(a1) + f(a2) + · · ·+ f(an)

is at least (or at most) nf(a). In this section we will provide three methods for doing so.
We say that function f is convex if f ′′(x) ≥ 0 for all x; we say it is concave if f ′′(x) ≤ 0

for all x. Note that f is convex if and only if −f is concave.

§2.1 Jensen / Karamata

Theorem 2.1 (Jensen’s Inequality)

If f is convex, then

f(a1) + · · ·+ f(an)

n
≥ f

(
a1 + · · ·+ an

n

)
.

The reverse inequality holds when f is concave.

Theorem 2.2 (Karamata’s Inequality)

If f is convex, and (xn) majorizes (yn) then

f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn).

The reverse inequality holds when f is concave.

Example 2.3 (Shortlist 2009)

Given a+ b+ c = 1
a + 1

b + 1
c , prove that

1

(2a+ b+ c)2
+

1

(a+ 2b+ c)2
+

1

(a+ b+ 2c)2
≤ 3

16
.

Proof. First, we want to eliminate the condition. The original problem is equivalent to

1

(2a+ b+ c)2
+

1

(a+ 2b+ c)2
+

1

(a+ b+ 2c)2
≤ 3

16
·

1
a + 1

b + 1
c

a+ b+ c
.

Now the inequality is homogeneous, so we can assume that a + b + c = 3. Now our
original problem can be rewritten as∑

cyc

1

16a
− 1

(a+ 3)2
≥ 0.

Set f(x) = 1
16x −

1
(x+3)2

. We can check that f over (0, 3) is convex so Jensen completes

the problem.
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Example 2.4

Prove that

1

a
+

1

b
+

1

c
≥ 2

(
1

a+ b
+

1

b+ c
+

1

c+ a

)
≥ 9

a+ b+ c
.

Proof. The problem is equivalent to

1

a
+

1

b
+

1

c
≥ 1

a+b
2

+
1
b+c
2

+
1
c+a
2

≥ 1
a+b+c

3

+
1

a+b+c
3

+
1

a+b+c
3

.

Assume WLOG that a ≥ b ≥ c. Let f(x) = 1/x. Since

(a, b, c) �
(
a+ b

2
,
a+ c

2
,
b+ c

2

)
�
(
a+ b+ c

3
,
a+ b+ c

3
,
a+ b+ c

3

)
the conclusion follows by Karamata.

Example 2.5 (APMO 1996)

If a, b, c are the three sides of a triangle, prove that

√
a+ b− c+

√
b+ c− a+

√
c+ a− b ≤

√
a+
√
b+
√
c.

Proof. Again assume WLOG that a ≥ b ≥ c and notice that (a, b, c) � (b+ c− a, c+ a−
b, a+ b− c). Apply Karamata on f(x) =

√
x.

§2.2 Tangent Line Trick

Again fix a = a1+···+an
n . If f is not convex, we can sometimes still prove the inequality

f(x) ≥ f(a) + f ′(a) (x− a) .

If this inequality manages to hold for all x, then simply summing the inequality will give
us the desired conclusion. This method is called the tangent line trick.

Example 2.6 (David Stoner)

If a+ b+ c = 3, prove that

18
∑
cyc

1

(3− c)(4− c)
+ 2(ab+ bc+ ca) ≥ 15.

Proof. We can rewrite the given inequality as∑
cyc

(
18

(3− c)(4− c)
− c2

)
≥ 6.

Using the tangent line trick lets us obtain the magical inequality

18

(3− c)(4− c)
− c2 ≥ c+ 3

2
⇐⇒ c(c− 1)2(2c− 9) ≤ 0

and the conclusion follows by summing.
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Example 2.7 (Japan)

Prove
∑

cyc
(b+c−a)2
a2+(b+c)2

≥ 3
5 .

Proof. Since the inequality is homogeneous, we may assume WLOG that a+ b+ c = 3.
So the inequality we wish to prove is∑

cyc

(3− 2a)2

a2 + (3− a)2
≥ 3

5
.

With some computation, the tangent line trick gives away the magical inequality:

(3− 2a)2

(3− a)2 + a2
≥ 1

5
− 18

25
(a− 1) ⇐⇒ 18

25
(a− 1)2

2a+ 1

2a2 − 6a+ 9
≥ 0.

§2.3 n− 1 EV

The last such technique is n−1 EV. This is a brute force method involving much calculus,
but it is nonetheless a useful weapon.

Theorem 2.8 (n− 1 EV)

Let a1, a2, . . . , an be real numbers, and suppose a1 + a2 + · · · + an is fixed. Let
f : R→ R be a function with exactly one inflection point. If

f(a1) + f(a2) + · · ·+ f(an)

achieves a maximal or minimal value, then n− 1 of the ai are equal to each other.

Proof. See page 15 of Olympiad Inequalities, by Thomas Mildorf. The main idea is to
use Karamata to “push” the ai together.

Example 2.9 (IMO 2001 / APMOC 2014)

Let a, b, c be positive reals. Prove 1 ≤
∑

cyc
a√

a2+8bc
< 2.

Proof. Set ex = bc
a2

, ey = ca
b2

, ez = ab
c2

. We have the condition x+ y + z = 0 and want to
prove

1 ≤ f(x) + f(y) + f(z) < 2

where f(x) = 1√
1+8ex

. You can compute

f ′′(x) =
4ex (4ex − 1)

(8ex + 1)
5
2

so by n− 1 EV, we only need to consider the case x = y. Let t = ex; that means we want
to show that

1 ≤ 2√
1 + 8t

+
1√

1 + 8/t
< 2.

Since this a function of one variable, we can just use standard Calculus BC methods.
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Example 2.10 (Vietnam 1998)

Let x1, x2, . . . , xn be positive reals satisfying
∑n

i=1
1

1998+xi
= 1

1998 . Prove

n
√
x1x2 . . . xn
n− 1

≥ 1998.

Proof. Let yi = 1998
1998+xi

. Since y1 + y2 + · · ·+ yn = 1, the problem becomes

n∏
i=1

(
1

yi
− 1

)
≥ (n− 1)n .

Set f(x) = ln
(
1
x − 1

)
, so the inequality becomes f(y1) + · · ·+ f(yn) ≥ nf

(
1
n

)
. We can

prove that

f ′′(y) =
1− 2y

(y2 − y)2
.

So f has one inflection point, we can assume WLOG that y1 = y2 = . . . yn−1. Let this
common value be t; we only need to prove

(n− 1) ln

(
1

t
− 1

)
+ ln

(
1

1− (n− 1)t
− 1

)
≥ n ln(n− 1).

Again, since this is a one-variable inequality, calculus methods suffice.

§2.4 Practice Problems

1. Use Jensen to prove AM-GM.

2. If a2 + b2 + c2 = 1 then 1
a2+2

+ 1
b2+2

+ 1
c2+2

≤ 1
6ab+c2

+ 1
6bc+a2

+ 1
6ca+b2

.

3. If a+ b+ c = 3 then ∑
cyc

a

2a2 + a+ 1
≤ 3

4
.

4. (MOP 2012) If a+ b+ c+ d = 4, then 1
a2

+ 1
b2

+ 1
c2

+ 1
d2
≥ a2 + b2 + c2 + d2.

§3 Eliminating Radicals and Fractions

§3.1 Weighted Power Mean

AM-GM has the following natural generalization.

Theorem 3.1 (Weighted Power Mean)

Let a1, a2, . . . , an and w1, w2, . . . , wn be positive reals with w1 +w2 + · · ·+wn = 1.
For any real number r, we define

P(r) =

(w1a
r
1 + w2a

r
2 + · · ·+ wna

r
n)1/r r 6= 0

aw1
1 aw2

2 . . . awn
n r = 0.

If r > s, then P(r) ≥ P(s) equality occurs if and only if a1 = a2 = · · · = an.
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Evan Chen 3 Eliminating Radicals and Fractions

In particular, if w1 = w2 = · · · = wn = 1
n , the above P(r) is just

P(r) =


(
ar1 + ar2 + · · ·+ arn

n

)1/r

r 6= 0

n
√
a1a2 . . . an r = 0.

By setting r = 2, 1, 0,−1 we derive√
a21 + · · ·+ a2n

n
≥ a1 + · · ·+ an

n
≥ n
√
a1a2 . . . an ≥

n
1
a1

+ · · ·+ 1
an

which is QM-AM-GM-HM. Moreover, AM-GM lets us “add” roots, like

√
a+
√
b+
√
c ≤ 3

√
a+ b+ c

3
.

Example 3.2 (Taiwan TST Quiz)

Prove 3(a+ b+ c) ≥ 8 3
√
abc+ 3

√
a3+b3+c3

3 .

Proof. By Power Mean with r = 1, s = 1
3 , w1 = 1

9 , w2 = 8
9 , we find that(

1

9

3

√
a3 + b3 + c3

3
+

8

9
3
√
abc

)3

≤ 1

9

(
a3 + b3 + c3

3

)
+

8

9
(abc) .

so we want to prove a3 + b3 + c3 + 24abc ≤ (a+ b+ c)3, which is clear.

§3.2 Cauchy and Hölder

Theorem 3.3 (Hölder’s Inequality)

Let λa, λb, . . . , λz be positive reals with λa + λb + · · ·+ λz = 1. Let a1, a2, . . . , an,
b1, b2, . . . , bn, . . . , z1, z2, . . . , zn be positive reals. Then

(a1 + · · ·+ an)λa (b1 + · · ·+ bn)λb . . . (z1 + · · ·+ zn)λz ≥
n∑
i=1

aλai b
λb
i . . . zλzi .

Equality holds if a1 : a2 : · · · : an ≡ b1 : b2 : · · · : bn ≡ · · · ≡ z1 : z2 : · · · : zn.

Proof. WLOG a1 + · · ·+ an = b1 + · · ·+ bn = · · · = 1 (note that the degree of the ai on
either side is λa). In that case, the LHS of the inequality is 1, and we just note

n∑
i=1

aλai b
λb
i . . . zλzi ≤

n∑
i=1

(λaai + λbbi + . . . ) = 1.

If we set λa = λb = 1
2 , we derive what is called the Cauchy-Schwarz inequality.

(a1 + a2 + · · ·+ an) (b1 + b2 + · · ·+ bn) ≥
(√

a1b1 +
√
a2b2 + · · ·+

√
anbn

)2
.
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Evan Chen 3 Eliminating Radicals and Fractions

Cauchy can be rewritten as

x21
y1

+
x22
y2

+ · · ·+ x2n
yn
≥ (x1 + x2 + · · ·+ xn)2

y1 + · · ·+ yn
.

This form it is often called Titu’s Lemma in the United States.
Cauchy and Hölder have at least two uses:

1. eliminating radicals,

2. eliminating fractions.

Let us look at some examples.

Example 3.4 (IMO 2001)

Prove ∑
cyc

a√
a2 + 8bc

≥ 1.

Proof. By Holder(∑
cyc

a(a2 + 8bc)

) 1
3
(∑

cyc

a√
a2 + 8bc

) 2
3

≥ (a+ b+ c)

So it suffices to prove (a+ b+ c)3 ≥
∑

cyc a(a2 + 8bc) = a3 + b3 + c3 + 24abc. Does this
look familiar?

In this problem, we used Hölder to clear the square roots in the denominator.

Example 3.5 (Balkan)

Prove 1
a(b+c) + 1

b(c+a) + 1
c(a+b) ≥

27
2(a+b+c)2

.

Proof. Again by Holder,(∑
cyc

a

) 1
3
(∑

cyc

b+ c

) 1
3
(∑

cyc

1

a(b+ c)

) 1
3

≥ 1 + 1 + 1 = 3.

Example 3.6 (JMO 2012)

Prove
∑

cyc
a3+5b3

3a+b ≥
3
2

(
a2 + b2 + c2

)
.

Proof. We use Cauchy (Titu) to obtain∑
cyc

a3

3a+ b
=
∑
cyc

(a2)2

3a2 + ab
≥ (a2 + b2 + c2)2∑

cyc 3a2 + ab
.

We can easily prove this is at least 1
4(a2+b2+c2) (recall a2+b2+c2 is the “biggest” sum, so

we knew in advance this method would work)). Similarly
∑

cyc
5b3

3a+b ≥
5
4(a2+b2+c2).
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Example 3.7 (USA TST 2010)

If abc = 1, prove 1
a5(b+2c)2

+ 1
b5(c+2a)2

+ 1
c5(a+2b)2

≥ 1
3 .

Proof. We can use Hölder to eliminate the square roots in the denominator:(∑
cyc

ab+ 2ac

)2(∑
cyc

1

a5(b+ 2c)2

)
≥

(∑
cyc

1

a

)3

≥ 3(ab+ bc+ ca)2.

§3.3 Practice Problems

1. If a+ b+ c = 1, then
√
ab+ c+

√
bc+ a+

√
ca+ b ≥ 1 +

√
ab+

√
bc+

√
ca.

2. If a2 + b2 + c2 = 12, then a · 3
√
b2 + c2 + b · 3

√
c2 + a2 + c · 3

√
a2 + b2 ≤ 12.

3. (ISL 2004) If ab+ bc+ ca = 1, prove 3

√
1
a + 6b+ 3

√
1
b + 6c+ 3

√
1
c + 6a ≤ 1

abc .

4. (MOP 2011)
√
a2 − ab+ b2 +

√
b2 − bc+ c2 +

√
c2 − ca+ a2 + 9 3

√
abc ≤ 4(a+ b+ c).

5. (Evan Chen) If a3 + b3 + c3 + abc = 4, prove

(5a2 + bc)2

(a+ b)(a+ c)
+

(5b2 + ca)2

(b+ c)(b+ a)
+

(5c2 + ab)2

(c+ a)(c+ b)
≥ (10− abc)2

a+ b+ c
.

When does equality hold?

§4 Problems

1. (MOP 2013) If a+ b+ c = 3, then√
a2 + ab+ b2 +

√
b2 + bc+ c2 +

√
c2 + ca+ a2 ≥

√
3.

2. (IMO 1995) If abc = 1, then 1
a3(b+c)

+ 1
b3(c+a)

+ 1
c3(a+b)

≥ 3
2 .

3. (USA 2003) Prove
∑

cyc
(2a+b+c)2

2a2+(b+c)2
≤ 8.

4. (Romania) Let x1, x2, . . . , xn be positive reals with x1x2 . . . xn = 1. Prove that∑n
i=1

1
n−1+xi ≤ 1.

5. (USA 2004) Let a, b, c be positive reals. Prove that(
a5 − a2 + 3

) (
b5 − b2 + 3

) (
c5 − c2 + 3

)
≥ (a+ b+ c)3 .

6. (Evan Chen) Let a, b, c be positive reals satisfying a + b + c = 7
√
a + 7
√
b + 7
√
c.

Prove aabbcc ≥ 1.
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