
I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

1

Review

• Layers

- physical (hardware stuff, we won’t go into)

- data link (neighbor to neighbor...for now)

1 delimit packets in stream of bits

2 checksum to detect bit errors

3 message numbers and acks and timeouts to
notice lost messages and retransmit

4 some examples: Bisync, ARPANET

5 comparison with reliable layer 4

- network (routing, addressing)

- Transport

- Session (irrelevant)

- Presentation (not a protocol, won’t cover)

- Application (file transfer, telnet, ...)

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

2

New Topic: Routing
Algorithms

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

3

Types of Routing

• Fully connected topologies

• Fixed topologies (LANs)

• Trust someone else (VANs)

• Static Routing

• Local information -- flooding, hot potato

• Centralized routing

• Source routing

• Distributed adaptive routing

- distance vector (also called Bellman/Ford)

- link state (also called SPF for Shortest Path
First)

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

4

Distance Vector Routing

• You know the following:

- your own ID

- how many cables hanging off your box

- the cost of going through that cable to
whatever’s at the other end

• Purpose of routing algorithm: come up with
forwarding database, telling you which
neighbor to send to for each possible
destination

• Do this by exchangingdistance vectors, which
tells transmitters distance to each destination

#j

#k

#m

#n

cost 3

cost 2

cost 2

cost 7

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

5

You are destination #4

dest # 1 2 3 4 5 6 7 8 9 10 11
distance vector received from cable j
3 12 3 15 3 12 5 6 18 0 7 15

distance vector received from cable k
2 5 8 3 2 10 7 4 20 5 0 15

distance vector received from cable m
2 0 5 3 2 19 9 5 22 2 4 7

distance vector received from cable n
7 6 2 0 7 8 5 8 12 11 3 2
your own calculated distance vector

2 6 5 0 12 8 6 19 3 2 9
your forwarding table

m j m 0 k j k n j k n

#j

#k

#m

#n

cost 3

cost 2

cost 2

cost 7

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

6

Looping Problem

A B C

V X K J S W B Z

H

slow link

D

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

7

Split Horizon

• Don’t tell neighbor N you can reach D if you’d
forward to D through N

A B C

A B

C

D

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

8

Link State Routing

• Meet your neighbors

• Construct Link State Packet (LSP)

- who you are

- list of (neighbor, cost) pairs

• Broadcast the LSP to all routers

• Store latest LSP from every other node

• Compute routes

- Edsgar Dijkstra’s algorithm

1 Put (SELF,0) on tree as Root

2 Look at LSP of node just placed on tree. If
for any node N the cost c is best path of
any found so far, add (N,c) to tree under
N with dotted line

3 Make shortest dotted line solid. Go to 2.

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

9

Example Dijkstra
Calculation

A B C D E F G
B/6 A/6 B/2 A/2 B/1 C/2 C/5
D/2 C/2 F/2 E/2 D/2 E/4 F/1

E/1 G/5 F/4 G/1

A B C

D E F

G

6 2
5

1
2

4

12
2

C(0)

B(2) F(2)
G(5)

C(0)

B(2) F(2)
G(5)

C(0)

B(2) F(2)
G(5) E(4)G(3)

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

10

C(0)

B(2) F(2)

E(4)G(3)

C(0)

B(2) F(2)

E(4)G(3)A(8) E(3)

C(0)

B(2) F(2)

G(3)A(8) E(3)

D(5)

C(0)

B(2) F(2)

G(3)A(8) E(3)

D(5)

C(0)

B(2) F(2)

G(3)A(8) E(3)

D(5)

C(0)

B(2) F(2)

G(3)A(8) E(3)

D(5)
C(0)

B(2) F(2)

G(3)A(8) E(3)

D(5)

A(7)

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

11

Broadcasting LSP

• Can’t depend on routing database giving any
useful information

• Basic idea is flooding — send to every
neighbor except one from which LSP received

• But flooding is exponential. We can do better
than that since we store the LSPs. Only flood
an LSP if it’s new

• How do you tell if it’s new?

- different from what’s in database?

- globally synchronized clocks?

- local battery-backup clocks

- sequence numbers — need age field too

1 finite sized field

2 restarts

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

12

ARPANET Flooding
Algorithm

• Two fields: sequence number, and age

• Suppose you have LSP from Alice in database,
with sequence numberx. You receive an LSP
(via neighbor N) with source Alice, with
sequence numbery.

• As you’d expect, flood if y > x, else ignore

• But sequence number wraps around.
Arithmetic in circular space is as follows:

0

x

n

>x

<x

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

13

ARPANET Flooding, cont’d

• Source sets age field to MAX-AGE (64
seconds, 3 bit field, units of 8 seconds)

• Decrement age in stored LSP after holding it
for 8 seconds

• If age=0, then “too old” — don’t propagate

• Generate new LSP within MAX-INT (60
seconds)

• When starting, wait RESTART-TIME (90
seconds)

• ARPANET incident — symptom: net didn’t
work

xy

z

xy
zx

yz
xy

z

xyzxyzxyzxy

yzxyzxyzxy

zxyzxyzxy

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

14

What now?

• Networks don’t have on-off switches

• First crash and reload BBN router

• Still broken — examine core dump

• Realize the problem

• Created patched version of the code

• Load BBN router with patched version

• Tell it to tell neighbors to crash

• Eventually they get around to crashing, reload
them with patched version

• After every router reloaded, reload one by one
with “correct” code

• Hope it doesn’t happen again by accident

• Hope it doesn’t ever happen on purpose

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

15

New Improved LSP
Flooding

• Require LSPs to age every time a router
touches it

• Make sequence number large and linear

• Careful synchronization between neighbors of
LSP database

src nbr 1 nbr 2 nbr 3 nbr 4 nbr 5

A ok ack ok Xmit ack

B ok ok ok ok ok

C ack Xmit Xmit Xmit Xmit

D ok Xmit ok ok ok

E Xmit ok ack ok ok

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

16

LSP sychronization rules

• round robin when link available

• if flag says “ack”, send ack, and change flag to
“ok”

• if flag says “Xmit”, send LSP

• if receive new LSP from neighbor N, set “ack”
for N, and “Xmit” for each other neighbor for
that LSP, and transmit that LSP as soon as
possible (don’t wait first time for retransmit
interval)

• if receive duplicate LSP from neighbor N, set
flag to “ack”

• if receive ack from neighbor N for LSP in
database, change flag to “ok”

• Still have age field. When it gets to be 0, and
all neighbors have ack’d, then delete LSP

I n t e r c o n n e c t i o n P r o t o c o l s

Copyright © 2001 Radia Perlman

17

Distance Vector vs Link
State

• Memory: distance vector wins, by a little

• CPU: debatable, probably distance vector
wins, by a little

• Simplicity of coding: simple distance vector
wins. Not sure about newfangled ones.

• Convergence speed: link state wins easily
when comparing with RIP, but some claim
distance vector can avoid looping. If so, link
state would still win, by a little.

• Functionality: link state wins

- fancy custom routes

- troubleshooting

- mapping the network

- sabotage-proof routing

