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A General Formula for Channel Capacity
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Abstract—A formula for the capacity of arbitrary single-user
channels without feedback (not necessarily information stable,
stationary, etc.) is proved. Capacity is shown to equal the
supremum, over all input processes, of the input—output inf-
information rate defined as the liminf in probability of the
normalized information density. The key to this result is a new
converse approach based on a simple new lower bound on the
error probability of m-ary hypothesis tests among equiprobable
hypotheses. A necessary and sufficient condition for the validity
of the strong converse is given, as well as general expressions for
€-capacity.

Index Terms—Shannon theory, channel capacity, channel cod-
ing theorem, channels with memory, strong converse.

I. INTRODUCTION
HANNON’S formula {1] for channel capacity (the
supremum of all rates R for which there exist se-
quences of codes with vanishing error probability and
whose size grows with the block length n as exp (nR)),

C= m)?XI(X;Y), a.n

holds for memoryless channels. If the channel has mem-
ory, then (1.1) generalizes to the familiar limiting expres-
sion

1
C = lim sup —{(X";Y").

n—o® yn

1.2)

However, the capacity formula (1.2) does not hold in full
generality; its validity was proved by Dobrushin [2] for the
class of information stable channels. Those channels can
be roughly described as having the property that the input
that maximizes mutual information and its corresponding
output behave ergodically. That ergodic behavior is the
key to generalize the use of the law of large numbers in
the proof of the direct part of the memoryless channel
coding theorem. Information stability is not a superfluous
sufficient condition for the validity of (1.2).! Consider a
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In fact, it was shown by Hu [3] that information stability is essentially
equivalent to the validity of formula (1.2).

binary channel where the output codeword is equal to the
transmitted codeword with probability 1/2 and indepen-
dent of the transmitted codeword with probability 1/2.
The capacity of this channel is equal to 0 because arbi-
trarily small error probability is unattainable. However
the right-hand side of (1.2) is equal to 1/2 bit/channel
use.

The immediate question is whether there exists a com-
pletely general formula for channel capacity, which does
not require any assumption such as memorylessness, in-
formation stability, stationarity, causality, etc. Such a for-
mula is found in this paper.

Finding expressions for channel capacity in terms of the
probabilistic description of the channel is the purpose of
channel coding theorems. The literature on coding theo-
rems for single-user channels is vast (cf.,, e.g., [4D. Since
Dobrushin’s information stability condition is not always
easy to check for specific channels, a large number of
works have been devoted to showing the validity of (1.2)
for classes of channels characterized by their memory
structure, such as finite-memory and asymptotically mem-
oryless conditions. The first example of a channel for
which formula (1.2) fails to hold was given in 1957 by
Nedoma [5]. In order to go beyond (1.2) and obtain
capacity formulas for information unstable channels, re-
searchers typically considered averages of stationary er-
godic channels, i.c., channels which, conditioned on the
initial choice of a parameter, are information stable. A
formula for averaged discrete memoryless channels was
obtained by Ahlswede [6] where he realized that the Fano
inequality fell short of providing a tight converse for those
channels. Another class of chanels that are not necessarily
information stable was studied by Winkelbauer [7]: sta-
tionary discrete regular decomposable channels with finite
input memory. Using the ergodic decomposition theorem,
Winkelbauer arrived at a formula for e-capacity that holds
for all but a countable number of values of €. Nedoma [8]
had shown that some stationary nonergodic channels can-
not be represented as a mixture of ergodic channels;
however, the use of the ergodic decomposition theorem
was circumvented by Kieffer [9] who showed that
Winkelbauer’s capacity formula applies to all discrete
stationary nonanticipatory channels. This was achieved by
a converse whose proof involves Fano’s and Chebyshev’s
inequalities plus a generalized Shannon—McMillan Theo-
rem for periodic measures. The stationarity of the channel
is a crucial assumption in that argument.

Using the Fano inequality, it can be easily shown (cf.
Section IID) that the capacity of every channel (defined in
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the conventional way, cf. Section IT) satisfies

1
C < liminf sup —I(X";Y"). (1.3)

n—®  yn N
To establish equality in (1.3), the direct part of the coding
theorem needs to assume information stability of the
channel. Thus, the main existing results that constitute
our starting point are a converse theorem (i.e., an upper
bound on capacity) which holds in full generality and a
direct theorem which- holds for information stable chan-
nels. At first glance, this may lead one to conclude that
the key to a general capacity formula is a new direct
theorem which holds without assumptions. However, the
foregoing example shows that the converse (1.3) is not
tight in that case. Thus, what is needed is a new converse
which is tight for every channel. Such a converse is the
main result of this paper. It is obtained without recourse
to the Fano inequality which, as we will see, cannot lead
to the desired result. The proof that the new converse is
tight (i.e., a general direct theorem) follows from the
conventional argument once the right definition is made.
The capacity formula proved in this paper is

C = supl(X;Y). (1.4)
X
In (1.4), X denotes an input process in the form of a
sequence of finite-dimensional distributions X = {X" =
(XM, XU . We denote by Y = {Y”" =
(Y, Y, i), the corresponding output sequence of
finite-dimensional distributions induced by X via the
channel W= {W" = Pynxn: A" — B"}?_,, which is an
arbitrary sequence of n-dimensional conditional output
distributions from A" to B”, where 4 and B are the
input and output alphabets, respectively.> The symbol
I(X;Y) appearing in (1.4) is the inf-information rate be-
tween X and Y, which is defined in [10] as the liminf in
probability® of the sequence of normalized information
densities (1/n)i yny(X"; Y™), where :

Pyann(bn|an)

(o™ (1.5)

i)'(nW,.(a”; b") = log

For ease of notation and to highlight the simplicity of
the proofs, we have assumed in (1.5) and throughout the
paper that the input and output alphabets are finite.
However, it will be apparent from our proofs that the
results of this paper do not depend on that assumption.
They can be shown for channels with abstract alphabets
by working with a general information density defined in
the conventional way [11] as the log derivative of the

*The methods of this paper allow the study, with routine modifica-
tions, of even more abstract channels defined by arbitrary sequences of
conditional output distributions, which need not map Cartesian products
of the input /output alphabets. The only requirement is that the index of
the sequence be the parameter that divides the amount of information in
the definition of rate.

I A, is a sequence of random variables, its liminf in probability is the
supremum of all the reals « for which P[4, < a] > 0 as n — =,
Similatly, its limsup in probability is the infimum of all the reals 8 for
which P[A, = B] » 0 as n — .
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conditional output measure with respect to the uncondi-
tional output measure.

The notion of inf/sup-information /entropy rates and
the recognition of their key role in dealing with noner-
godic /nonstationary sources are due to [10]. In particular,
that paper shows that the minimum achievable source
coding rate for any finite-alphabet source X = {X"};_, is
equal to its sup-entropy rate H(X), defined as the limsup
in probability of (1/n)log1/Py-(X"). In contrast to the
general capacity formula presented in this paper, the
general source coding result can be shown by generalizing
existing proofs.

The definition of channel as a sequence of finite-
dimensional conditional distributions can be found in
well-known contributions to the Shannon-theoretic litera-
ture (e.g., Dobrushin [2], Wolfowitz [12, ch. 7], and Csiszar
and Korner [13, p. 100]), although, as we saw, previous
coding theorems imposed restrictions on the allowable
class of conditional distributions. Essentially the same
general channel model was analyzed in [26] arriving at a
capacity formula which is not quite correct. A different
approach has been followed in the ergodic-theoretic liter-
ature, which defines a channel as a conditional distribu-
tion between spaces of doubly infinite sequences.® In that
setting (and within the domain of block coding [14]),
codewords are preceded by a prehistory (a left-sided infi-
nite sequence) and followed by a posthistory (a right-sided
infinite sequence); the error probability may be defined in
a worst case sense over all possible input pre- and posthis-
tories. The channel definition adopted in this paper,
namely, a sequence of finite-dimensional distributions,
captures the physical situation to be modeled where block
codewords are transmitted through the channel. It is
possible to encompass physical models that incorporate
anticipation, unlimited memory, nonstationarity, etc., be-
cause we avoid placing restrictions on the sequence of
conditional distributions. Instead of taking the worst case
error probability over all possible pre- and posthistories,
whatever statistical knowledge is available about those
sequences can be incorporated by averaging the condi-
tional transition probabilities .(and, thus, averaging the
error probability) over all possible pre- and posthistories.
For example, consider a simple channel with memory:

Vi=Xx, +x,_{ +n,.

where {n;} is an i.i.d. sequence with distribution P,. The
posthistory to any rn-block codeword is irrelevant since
this channel is causal. The conditional output distribution
takes the form

wr(y"|x") = PY11X1(Y1|X1) [1Py(y; —x, — X;_1)
i=2

where the statistical information about the prehistory
(summarized by the distribution of the initial state) only
affects Py

Py x(1lx1) = 2 Py(yy = x; = %) Py (xy).

Lo

4 . L. . .
Or occasionally semi-infinite sequences, as in [9].
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In this case, the choice of Py(x,) does not affect the
value of the capacity. In general, if a worst case approach
is desired, an alternative to the aforementioned approach
is to adopt a compound channel model [12] defined as a
family of sequences of finite-dimensional distributions
parametrized by the unknown initial state which belongs
to an uncertainty set. That model, or the more general
arbitrarily varying channel, incorporates nonprobabilistic
modeling of uncertainty, and is thus outside the scope of
this paper.

In Section II, we show the direct part of the capacity
formula C > supy I(X;Y). This result follows in a
straightforward fashion from Feinstein’s lemma [15] and
the definition of inf-information rate. Section III is de-
voted to the proof of the converse C < supy I(X;Y). It
presents a new approach to the converse of the coding
theorem based on a simple lower bound on error proba-
bility that can be seen as a natural counterpart to the
upper bound provided by Feinstein’s lemma. That new
lower bound, along with the upper bound in Feinstein’s
lemma, are shown to lead to tight results on the e-capacity
of arbitrary channels in Section IV. Another application
of the new lower bound is given in Section V: a necessary
and sufficient condition for the validity of the strong
converse. Section VI shows that many of the familiar
properties of mutual information are satisfied by the
inf-information rate, thereby facilitating the evaluation of
the general formula (1.4). Examples of said evaluation for
channels that are not encompassed by previous formulas
can be found in Section VIL

I1. DirecT CODING THEOREM: C > supy I(X;Y)

The conventional definition of channel capacity is (e.g.,
[13]) the following.

Definition 1: An (n, M, €) code has block length n, M
codewords, and error probability > not larger than €. R > 0
is an e-achievable rate if, for every 8 > 0, there exist, for
all sufficiently large n,(n, M, €) codes with rate

log M

n

>R — 6.

The maximum e-achievable rate is called the e-capacity
C.. The channel capacity C is defined as the maximal rate
that is e-achievable for all 0 < € < 1. It follows immedi-
ately from the definition that C = lim_ | ,C..

The basis to prove the desired lower and upper bounds
on capacity are respective upper and lower bounds on the
error probability of a code as a function of its size. The
following classical result (Feinstein’s lemma) [15] shows
the existence of a code with a guaranteed error probabil-
ity as a function of its size.

Theorem 1: Fix a positive integer # and 0 < € < 1. For
every v > 0 and input distribution Py. on A", there exists
an (n, M, €) code for the transition probability W"

*We work throughout with average error probability. It is well known
that the capacity of a single-user channel with known statistical descrip-
tion remains the same under the maximal error probability criterion.
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Pyn xn that satisfies

1 1

€ <Pl =iy (X"Y") < —logM + v | + exp(—1yn).
n n

2.

Note that Theorem 1 applies to arbitrary fixed block
length and, moreover, to general random transformations
from input to output, not necessarily only to transforma-
tions between nth Cartesian products of sets. However,
we have chosen to state Theorem 1 in that setting for the
sake of concreteness.

Armed with Theorem 1 and the definitions of capacity
and inf-information rate, it is now straightforward to
prove the direct part of the coding theorem.

Theorem 2: °

C = sup I(X;Y). 2.2)
X
Proof: Fix arbitrary 0 < € < 1 and X. We shall show
that I(X;Y) is an e-achievable rate by demonstrating
that, for every 8 > 0 and all sufficiently large n, there
exist (n, M,exp(—nd/4) + €/2) codes with rate

log M

5
I(X;Y) - 8< <I(X;Y) — 5 (2.3)
If, in Theorem 1, we choose y = 8/4, then the probability

in (2.1) becomes

1 1
P[—anWn(X";Y”) < —logM + 5/4]
n n

1
< P[;anWn(X”;Y”) <10X;Y) 8/4] <5 Q4

where the second inequality holds for all sufficiently large
n because of the definition of I(X;Y). In view of (2.4),
Theorem 1 guarantees the existence of the desired codes.

d

II1. ConvERSE CODING THEOREM: C < supy I(X;Y)

This section is devoted to our main result: a tight
converse that holds in full generality. To that end, we
need to obtain for any arbitrary code a lower bound on its
error probability as a function of its size or, equivalently,
an upper bound on its size as a function of its error
probability. One such bound is the standard one resulting
from the Fano inequality.

Theorem 3: BEvery (n, M, €) code satisfies

1
log M < 1 [I(X™";Y") + h(e)] 3.1

—€
where h is the binary entropy function, X" is the input
distribution that places probability mass 1/M on each of
the input codewords, and Y" is its corresponding output
distribution.

SWhenever we omit the set over which the supremum is taken, it is
understood that it is equal to the set of all sequences of finite-dimen-
sional distributions on input strings. '
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Using Theorem 3, it is evident that if R>0 is e
achievable, then for every 6 > 0.

1 hie)
—sup (X" Y") + ——| (3.2)
n X" n

R—-06<
1—¢€

which, in turn, implies

R <

1
liminf — sup 7{(X";Y").

n— o

3.3)

— € nooxn
Thus, the general converse in (1.3) follows by letting
€ — 0. But, as we illustrated in Section I, (1.3) is not
always tight. The standard bound in Theorem 3 falls short
of leading to the desired tight converse because it de-
pends on the channel through the input—output mutual
information {expectation of information density) achieved
by the code. Instead, we need a finer bound that depends
on the distribution of the information density achieved by
the code, rather than on just its expectation. The follow-
ing basic result provides such a bound in a form which is
pleasingly dual to the Feinstein bound. As for the
Feinstein bound, Theorem 4 holds not only for arbitrary
fixed block length, but for an arbitrary random transfor-
mation.
Theorem 4: BEvery (n, M, €) code satisfies

1 1 '
ex=P ;anWn(X”;Y") < —logM—vy| —exp(—yn)
n
(3.4

for every ¥ > 0, where X" places probability mass 1/M
on each codeword.

Proof: Denote B = exp(—vyn). Note first that the
event whose probability appears in (3.4) is equal to the set
of “atypical” input—output pairs

L = {(a",b") € A" X B":Pynya(a"[b") < B}. (3.5)
This is because the information density can be written as

Pynys(arlb™)

P (3.6)

ixaya(a”; b") = log

and Py.(c;) = 1/M for each of the M codewords ¢; € A".
We need to show that

Pyyad L] < €+ B. (3.7)

Now, denoting the decoding set corresponding to ¢; by D,
and

B, = {b" € B":Pyuy.(c,|b") < B} (3.8)
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we can write

M=

Pyny[L] = ) Pynyal(c;, B))]
i=1
M
= Y. Pynyl(c;, B, N Df)]
i=1
M
+ Y Pyuyal(c;, B; N D,)]
i=1
M 1 M
< Z —M—W”(Dflcl) + ZPX"Y"[(Ci’Bi N Dl)] -
i=1 i=1
M q M
< X =W(Dfle) + BPyn[ U D,]
1M i=1
<e+p (3.9
where the second inequality is due to (3.8) and the dis-
jointness of the decoding sets. O

Theorems 3 and 4 hold for arbitrary random transfor-
mations, in which general setting they are nothing but
lower bounds on the minimum error probability of M-ary
equiprobable hypothesis testing. If, in that general setting,
we denote the observations by Y and the true hypothesis
by X (equiprobable on {1,---, M}), the M hypothesized
distributions are the conditional distributions {Pyy_;, i =
1,---, M}. The bound in Theorem 3 yields

I(X;Y) + log2
- log M

A slightly weaker result is known in statistical inference as
Fano’s lemma [16]. The bound in Theorem 4 can easily be
seen to be equivalent to the more general version

€2 P[Py (XIY) < a] -

€ >

for arbitrary 0 < « < 1. A stronger bound which holds
without the assumption of equiprobable hypothesis has
been found recently in [17].

Theorem 4 gives a family (parametrized by vy) of lower
bounds on the error probability. To obtain the best bound,
we simply maximize the right-hand side of (3.4) over 7.
However, a judicious, if not optimum, choice of vy is
sufficient for the purposes of proving the general con-
verse.

Theorem 5:

C < sup I(X:Y). (3.10)
X

Proof: The intuition behind the use of Theorem 4 to
prove the converse is very simple. As a shorthand, let us
refer to a sequence of codes with vanishingly small error
probability (i.e., a sequence of (n, M, €,) codes such that
€, — 0) as a reliable code sequence. Also, we will say that
the information spectrum of a code (a term coined in [10])
is the distribution of the normalized information density
evaluated with the input distribution X7 that places equal
probability mass on each of the codewords of the code.
Theorem 4 implies that if a reliable code sequence has
rate R, then the mass of its information spectrum lying
strictly to the left of R must be asymptotically negligible.



VERDU AND HAN: GENERAL FORMULA FOR CHANNEL CAPACITY

In other words, R < I(X;Y) where X corresponds to the
sequence of input distributions generated by the sequence
of codebooks.

To formalize this reasoning, let us argue by contradic-
tion and assume that for some p > 0,

C =sup I(X;Y) + 3p. (3.11)
X

By definition of capacity, there exists a reliable code
sequence with rate

log M

>C — p. 3.12)
Now, letting X" be the distribution that places probabil-
ity mass 1/M on the codewords of that code, Theorem 4
(choosing y = p), (3.11) and (3.12) imply that the error
probability must be lower bounded by

1
€ >P ;anWn(X”;Y”) < supIl(X;Y) +p
X

—exp(—np). (3.13)

But, by definition of I(X;Y), the probability on the right-
hand side of (3.13) cannot vanish asymptotically, thereby
contradicting the fact that €, — 0. O

Besides the behavior of the information spectrum of a
reliable code sequence revealed in the proof of Theorem
5, it is worth pointing out that the information spectrum
of any code places no probability mass above its rate. To
see this, simply note that (3.6) implies

1 1
P|=ixnyn(X"Y") < —log M| = 1. (3.14)

Thus, we can conclude that the normalized information
density of a reliable code sequence converges in probabil-
ity to its rate. For finite-input channels, this implies [10,
Lemma 1] the same behavior for the sequence of normal-
ized mutual informations, thereby yielding the classical
bound (1.3). However, that bound is not tight for informa-
tion unstable channels because, in that case, the mutual
information is maximized by input distributions whose
information spectrum does not converge to a single point
mass (unlike the behavior of the information spectrum of
a reliable code sequence).

Upon reflecting on the proofs of the general direct and
converse theorems presented in Sections II and III, we
can see that those results follow from asymptotically tight
upper and lower bounds on error probability, and are
decoupled from ergodic results such as the law of large
numbers or the asymptotic equipartition property. Those
ergodic results enter in the picture only as a way to
particularize the general capacity formula to special classes
of channels (such as memoryless or information stable
channels) so that capacity can be written in terms of the
mutual information rate.

Unlike the conventional approach to the converse cod-
ing theorem (Theorem 3), Theorem 4 can be used to
provide a formula for e-capacity as we show in Section IV.
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Another problem where Theorem 4 proves to be the key
result is that of combined source /channel coding [18]. Tt
turns out that when dealing with arbitrary sources and
channels, the separation theorem may not hold because,
in general, it could happen that a source is transmissible
over a channel even if the minimum achievable source
coding rate (sup-entropy rate) exceeds the channel capac-
ity. Necessary and sufficient conditions for the transmissi-
bitity of a source over a channel are obtained in [18].
Definition 1 is the conventional definition of channel

_capacity (cf. [15] and [13]) where codes are required to be

reliable for all sufficiently large block length. An alterna-
tive, more optimistic, definition of capacity can be consid-
ered where codes are required to be reliable only in-
finitely often. This definition is less appealing in many
practical situations because of the additional uncertainty
in the favorable block lengths. Both definitions turn out to
lead to the same capacity formula for specific channel
classes such as discrete memoryless channels [13]. How-
ever, in general, both quantities need not be equal, and
the optimistic definition does not appear to admit a sim-
ple general formula such as the one in (1.4) for the
conventional definition. In particular, the optimistic ca-
pacity need not be equal to the supremum of sup-infor-
mation rates. See [18] for further characterization of this
quantity.

The conventional definition of capacity may be faulted
for being too conservative in those rare situations where
the maximum amount of reliably transmissible informa-
tion does not grow linearly with block length, but, rather,
as O(b(n)). For example, consider the case b(n) = n +
nsin (an). This can be casily taken into account by “sea-
sonal adjusting:” substitution of n by b(n) in the defini-
tion of rate and in all previous results.

IV. e-CaracITY

The fundamental tools (Theorems 1 and 4) we used in
Section IIT to prove the general capacity formula are used
in this section to find upper and lower bounds on C,, the
e-capacity of the channel, for 0 < € < 1. These bounds
coincide at the points where the e-capacity is a continuous
function of e.

Theorem 6: For 0 < e < 1, the e-capacity C, satisfies

CE < sup sup{R: Fy(R) < €} (4.1)
X

C > 4.2)

. > sup sup{R: Fy(R) < €}
X

where Fy(R) denotes the limit of cumulative distribution
functions

1
Fy(R) = limsup P ;anWn(X”,Y”) <R|. (4.3)

n—>0

The bounds (4.1) and (4.2) hold with equality, except
possibly at the points of discontinuity of C,, of which
there are, at most, countably many.
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Proof: To show (4.1), select an e-achievable rate R
and fix an arbitrary 6 > 0. We can find a sequence of
(n, M, €) codes such that for all sufficiently large n,

1
—logM >R — 4. 4.4)
n

If we apply Theorem 4 to those codes, and we let X"
distribute its probability mass evenly on the nth code-
book, we obtain

1 1
n

1
> P[—anWn(X”,Y”) <R - 25} —exp(—8n). (4.5
n

Since (4.5) holds for all sufficiently large n and every
8 > 0, we must have :

Fy(R—-28)<e, forall >0 (4.6)

but R satisfies (4.6) if and only if R < sup{R: Fy(R) < €}.
Concluding, any e-achievable rate is upper bounded by
the right-hand side of (4.1), as we wanted to show.

In order to prove the direct part (4.2), we will show that
for every X, any R belonging to the set in the following
right-hand side is e-achievable:

{R: Fy(R - 8) < e, for all § > 0}

1
c {R: forall & > 0, P[—anWn(X",Y") <R-6
n

§e—exp(——8n)1'fn>n0}. 4.7

Theorem 1 ensures the existence (for any & > 0) of a
sequence of codes with rate

1
R—-3585<—logM<R-126
n
and error probability not exceeding

1 1
exp(—dn) + P ;anW,.(X”,Y") <—logM+ 56
n

<exp(—6n) + P

1
;iX,.Wn(X”,Y”) <R- 5]
<€

for all sufficiently large n. Thus; R is e-achievable.

It is easy to see that the bounds are tight except at the
points of discontinuity of C.. Let u(e) and I(e) denote
the right-hand sides of (4.1) and (4.2), respectively. Since
- u(e) is monotone nondecreasing, the set D € (0,1) of ¢
at which it is discontinuous is, at most, countable. Select
any € €(0,1) — D and a strictly increasing sequence
(€, €5, ++) in (0, 1) converging to €. Since Fyx(R) is non-
decreasing, we have

sup{R: Fy(R) < €} = sup sup {R: Fy(R) < €}
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from which it follows that-

I(e) = sup supsup {R: Fy(R) < ¢}
X i

= sup supsup{R: Fy(R) < ¢}
i X

= sqpu(ei) = u(e)

where the last equality holds because u(:) is continuous
nondecreasing at e. O

In the special case of stationary discrete channels, the
functional in (4.1) boils down to the quantile introduced
in [7] to determine e-capacity, except for a countable
number of values of €. The e-capacity formula in [7] was
actually proved for a class of discrete stationary channels
(so-called regular decomposable channels) that includes
ergodic channels and a narrow class of nonergodic chan-
nels. The formula for the capacity of discrete stationary
nonanticipatory channels given in [9] is the limit as € — 0
of the right-hand side of (4.2) specialized to that particu-
lar case.

The inability to obtain an expression for e-capacity at
its points of discontinuity is a consequence of the defini-
tion itself rather than of our methods of analysis. In fact,
it is easily checked by slightly modifying the proof of
Theorem 6 that (4.1) would hold with equality for all
0 < e < 1 had e-achievable rates been defined in a slightly
different (and more regular) way, by requiring sequences
of codes with both rate and error probability arbitrarily
close to R and e, respectively. More precisely, consider an
alternative definition of R as an e-achievable rate (0 < €
< 1) when there exists a sequence of (n, M, €,) codes
with '

liminf >R
n—o o
and
limsup €, < €.
n— o
With this definition, the resulting C, would be the right-
continuous version of the conventional e-capacity, (4.1)
would hold with equality for all 0 < € < 1, and the chan-
nel capacity could be written as

Cy = lim C, = sup I(X;Y) = supsup {R: Fx(R) = 0}.
el0 X X

A separate definition would then be needed for zero-error
capacity—not a bad idea since it is a completely different
problem.

V. STRONG CONVERSE CONDITION

Definition 2: A channel with capacity C is said to satisfy
the strong converse if for every 6 > 0 and every sequence
of (n, M, A,) codes with rate

log M

n

>C+ 6

it holds that A, —» 1 as n — .
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This concept was championed by Wolfowitz [19], [20],
and it has received considerable attention in information
theory. In this section, we prove that it is intimately
related to the form taken by the capacity formula estab-
lished in this paper.

Consider the sup-information rate I(X;Y), whose defi-
nition is dual to that of the inf-information rate I(X;Y),
that is, I(X; Y) is the limsup in probability (cf. footnote 3)
of the normalized information density due to the input X.
Then, Theorem 4 plays a key role in the proof of the
following result.

Theorem 7: For any channel, the following two condi-
tions are equivalent:

1) The channel satisfies the strong converse.

2) supy I(X;Y) = supy I(X; Y).

Proof- Tt is shown in the proof of [10, Theorem 8]
that the capacity is lower bounded by C = sup X Y) if
the channel. satisfies the strong converse. Together with
the capacity formula (1.4) and the obvious inequality
I(X;Y) < I(X;Y), we conclude that condition 1) implies
condition 2).

To show the reverse implication, fix & > 0, and select
any sequence of (n, M, A,) codes that satisfy

log M

>C+ 6
n

for all sufficiently large n. Once we apply Theorem 4 to
this sequence of codes, we get (with y = §/2)

[ 1 1
A, =P L;anWn(X",Y") < —log M - 5/2}
—exp(—6n/2)
[ 1
> Pl =iymys(X7,Y") < C 4 5/2] — exp(—5n/2)
L

5.1

for all sufficiently large n. But since condition 2) implies
C = sup,I(X;Y), the probability on the right-hand side
of (5.1) must go to 1 as n — = by definition of I(X;Y).
Thus A, — 1, as we wanted to show. m|

Due to its full generality, Theorem 7 provides a power-
ful tool for studying the strong converse property.

The problem of approximation theory of channel out-
put statistics introduced in [10] led to the introduction of
the concept of channel resolvability. It was shown in [10]
that the resolvability S of any finite-input channel is given
by the dual to (1.4)

S = sup I(X;Y). (5.2)
X

It was shown in [10] that if a finite-input channel satisfies
the strong converse, then its resolvability and capacity
coincide (and the conventional capacity formula (1.2)
holds). We will next show as an immediate corollary to
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Theorem 7 that for any finite-input channel, the validity
of the strong converse is not only sufficient, but also
necessary for the equality S = C to hold.

Corollary: If the input alphabet is finite, then the fol-

lowing two conditions are equivalent.
1) The channel satisfies the strong converse.

2)C =S =lim,_ ., supy.(1/m)I(X";Y").

Proof: Because of (1.4) and (5.2), all we need is to
show the second equality in condition 2) when
sup, I(X;Y) = supy I(X; Y). This has been shown in the
proof of [10, Theorem 7]. O

Wolfowitz [20] defined capacity only for channels that
satisfy the strong converse, and referred to the conven-
tional capacity of Definition 1 (which is always defined) as
weak capacity. The corollary shows that the strong capacity
of finite-input channels is given by formula (1.2). It should
be cautioned that the validity of the capacity formula in
(1.2) is not sufficient for the strong converse to hold. In
view of Theorem 7, this means that there exist channels
for which

C =sup I(X;Y)
X

1
= lim sup —I(X";Y")

n->© yn n

A

sup I(X; Y).

X
For example, consider a channel with alphabets 4 = B =
{0,1, o, B} and transition probability

1 if (x;,++, x,) €D,

w (xl,...’ = 0.01 if(xl,"',xn) $Dn

X, %00 x,)

W™(a, -, alxy, -, x,) = 0.99
where D, = {0,1}" U (a,... ). Then

if (xy,-,x,) €D,.

1
C=I(X;;Y,)) = lim —I(X];Y") = 1bit

-0 N
and

supI(X;Y) = I(X,;Y,) = 2 bits
X

where X, is iid. equally likely on {0,1} and X, is iid.
equally likely on {0,1, «, B}.

VI. PROPERTIES OF INF-INFORMATION RATE

Many of the familiar properties satisfied by mutual
information turn out to be inherited by the inf-informa-
tion rate. Those properties are particularly useful in the
computation of supy I(X;Y) for specific channels. Here,
we will show a sample of the most important properties.
As is well known, the nonnegativity of divergence (itself a
consequence of Jensen’s inequality) is the key to the proof
of many of the mutual information properties. In the
present context, the property that plays a major role is
unrelated to convex inequalities. That property is the
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nonnegativity of the inf-divergence rate D(U||V) defined
for two arbitrary processes U and ¥V as the liminf in
probability of the sequence of log-likelihood ratios

L P

n 8 P,.Un)
The sup-entropy rate H(Y) and inf-entropy rate H(Y) intro-
duced in [10] are defined as the limsup and liminf, respec-
tively, in probability of the normalized entropy density

1 l 1

n E P
Analogously, the conditional sup-entropy rate H(Y|X) is
the limsup in probability (according to {Pyny.}) of

1 | 1
n 8 Py (YIX)
Theorem 8: An arbitrary sequence of joint distributions
(X, Y) satisfies
a) D(X|Y) = 0
b) I(X;Y) = I(Y; X)
o) I(X;Y)
d) I(X;Y) <
I(X;Y)
I(X;Y) > H(Y) — H(
e) 0 < H(Y) < log|B|
D I(X,Y;2) > I(X;Z)
g) If I(X;Y) = I(X;Y) and the input alphabet is finite,
then I(X;Y) = lim, ., (1/m)I(X";Y"™)
h) I(X;Y) < liminf, ,, (1/m)I(X";Y"™).
Proof: Property a) holds because, for every 8 > 0.

RE Py (X™) 5
J— —_——— < —
n 8P (xm) <

= >

x": Pyn(x™) < Py(x")exp (- 8n)

Py(x™) < exp (—6n).

(6.1

Property b) is an immediate consequence of the defini-
tion. Property c) holds because the inf-information rate is
equal to the inf-divergence rate between the processes
(X,Y) and (X,Y), where X and Y are independent and
have the same individual statistics as X and ¥, respec-
tively.

The inequalities in d) follow from

(6.2)

iynpa( X", Y") = log Py og
Y’l

Wn(yn| Xn)
and the fact that the liminf in probability of a sequence of
random variables U, + V, is upper (resp. lower) bounded
by the liminf in probability of U, plus the limsup (resp.
liminf) in probability of V.

Property €) follows from the fact that H(Y) is the
minimum achievable fixed-length source coding rate for ¥
[10].
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To show f), note first that Kolmogorov’s identity holds
for information densities (not just their expectations):

1 Pouyyn(Z71X",Y™)
noe P,(Z")
1 PuyZ0X7)
o P,.(Z")

L Prpey (21X Y
— 10
n O Pru (27X

Property f) then follows because of the nonnegativity of
the liminf in probability of the second normalized infor-
mation density on the right-hand side of (6.3).

Property g) is [10, Lemma 1].

To show h), let us assume that I(X;Y) is finite; other-
wise, the result follows immediately. Choose an arbitrarily
small y > 0 and write the mutual information as

(6.3)

1 1
—I(X";Y") = E[—anWn(X",Y”)}
n n

1
= E| (X", Y ) U iy (X7, V") < 0}}

1
+E lX,.Wn(X Y")

1
-1{0 < —iyoy(X,Y") SI(XY) — y}}

1
+ F ;anwn(Xn, Y”)

1 |
-1{_I(X;Y) —y< ;anWn(X”,Y”)}].

The first term is lower bounded by —(log e)/(en) (e.g.,
[21D); therefore, it vanishes as n — «. By definition of
I(X;Y), the second term vanishes as well, and the third
term is lower bounded by I(X;Y) — . O

Theorem 9 (Data Processing Theorem): Suppose that for
every n, X{' and X} are conditionally independent given
Xj. Then

I(X; X3) < I(Xg; X,). (6.4)
Proof: By Theorem 8f), we get
I(X;; X3) <I(X; X5, X3)
=I(X;; X,) (6.5)

where the equality holds because I(X,; X,, X,) is the
liminf in probability of [cf. (6.3)]

1 1 PX{'}X;‘X;'(Xlang’X;)

n ST P(XD
1 Py (XX
U Pypepns(XTIX3, XJ)
+ —log pr—
n Pypxs(XTIXT)
1 Py o (XTI X])
_ L jog gt Ae) (6.6)
a
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Theorem 10 (Optimality of Independent Inputs): If a dis-
crete channel is memoryless, i.e., Pyny» = W" = TT/_W,
for all n, then, for any input X and the corresponding
output’ Y,

I(X;Y) <I(X;Y) 6.7)

where Y is the output due to X, which is an independent
process with the same first-order statistics as X, ie.,
=117 {Py.
Proof Let « denote the liminf in probability (accord-
ing to {Pyx.y-}) of the sequence

Z, = —{iann(X" Y") = : Y 1ogw. (6.8)
" on , i Py (Y)
We will show that
a>I(X;Y) (6.9
and
a<I(X;Y). (6.10)
To show (6.9), we can write (6.8) as
1 n W,-(YiIXi) 1 WHY"X®)
- Z ——— = —log————
n;/z PY,-(Yi) n Py.(Y™)
1 Py (Y™
+ ——logm (6.11)

where the liminf in probability of the first term .on the
right-hand side is I(X;Y) and the liminf in probability of
the second term is nonnegative owing to Theorem 8a).
To show (6.10), note first (from the independence of the
sequence (X,,Y,), the Chebyshev inequality, and the dis-
creteness of the alphabets) that
I(X;Y) = liminfE[Z, ]

n—ow

1 =~
= liminf — Y I(X,; Y)). (6.12)

n—w® n i= 1 1? 1
Then (6.10) will follow once we show that «, the liminf in
probability of Z,, cannot exceed (6.12). To see this, let us
argue by contradiction and assume otherwise, i.e., for
some y > 0,

Plz,>IX; 1) + 9] > 1. (6.13)

But for every n, we have

E[Z,) 2 E1Z,1{Z, < O}] + (liminf E[Z,] + )

n—> 0

'P[Z,, >I(X;Y) + y]

1
< —;e’lloge + (liminfE[Z,,] + y)

n—w

P2, > 1(X; V) + 7). (6.14)

"As throughout the paper, we allow that individual distributions de-
pend on the block length, ie., X" = (X{",--, X{), W" = [T7 W™,
etc. However, we drop the exphmt dependence on (n) to simplify
notation.
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The second inequality is a resuit of
nE[Z,1{Z, < 0}]

= E[g(X",Y") log g(X", Y"1 {g(X",Y") < 1}]
>e lloge™!

where Y" is independent of X" and
n
g(x", y") = ].—.[I/Vi(yi|xi)/PYi(yi)'
i=1

Finally, note that (6.13) and (6.14) are incompatible for
sufficiently large n. 0O

Analogous proofs can be used to show corresponding
properties for the sup-information rate I(X;Y) arising in
the problem of channel resolvability [10].

VII. EXAMPLES

As an example of a simple channel which is not encom-
passed by previously published formulas, consider the
following binary channel.

Let the alphabets be binary A = B
every output be given by

={0,1}, and let

=X+ Z (7.1
where addition is modulo-2 and Z is an arbitrary binary
random process independent of the input X. The evalua-
tion of the general capacity formula yields
=log2 — H(Z)

sup_I(X? Y) (7.2)
X

where H(Z) is the sup-entropy rate of the additive noise
process Z (cf. definition in Section VI). A special case of
formula (7.2) was proved by Parthasarathy [22] in the
context of stationary noise processes in a form which, in
lieu of the sup-entropy rate, involves the supremum over
the entropies of almost every ergodic component of the
stationary noise.

In order to verify (7.2), we note first that, according to
properties d) and e) in Theorem 8, every X satisfies

I(X;Y) < log2 — H(Y|X). (7.3)

Moreover, because of the symmetry of the channel,
H(Y|X) does not depend on X. To see this, note that the
distribution of log Pyx x(Y"[a"]la") is independent of a”
when Y"[a"] is distributed according to the conditional
distribution Py y»_,». Thus, we can compute H(Y|X)
with an arbitrary X. In particular, we can let the input be
equal to the all-zero sequence, yielding H(Y|X) = H(Z).
To conclude the verification of (7.2), it is enough to notice
that (7.3) holds with equality when X is equally likely
Bernoulli.

Let us examine several examples of the computation of
(7.2).

1) If the process Z is Bernoulli with parameter p, then
the channel is a stationary memoryless binary symmetric
channel. By the weak law of large numbers,
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(1/n)log P,«(Z") converges in probability to its mean.
Thus, H(Z) = h(p) =plog(1/p) + (1 —p)log(1/1 —
p). More generally, if Z is stationary ergodic, then the
Shannon—MacMillan theorem can be used to conclude
that H(Z) is the entropy rate of the process.

2) Let Z be an all-zero sequence with probability 8 and
Bernoulli (with parameter p) with probability 1 — 8. In
other words, the channel is either noiseless or a BSC with
crossover probability p for the whole duration of the
transmission (cf. [10]). The sequence of random variables
(1/mlog(1/P,.(Z™")) converges to atoms 0 and A(p) with
respective masses B and 1 — B. Thus, the minimum
achievable source coding rate for Z is H(Z) = h(p), and
the channel capacity is 1 — A(p) bits. This illustrates that
the definitions of minimum source coding rate and chan-
nel capacity are based on the worst case in the sense that
they designate the best rate for which arbitrarily high
reliability is guaranteed regardless of the ergodic mode in
effect. Universal coding [23] shows that it is possible to
encode Z at a rate that will be either 0 or 4(p) depending
on which mode is in effect. Thus, even though no code
with a fixed rate lower than A(p) will have arbitrarily
small error probability, there are reliable codes with ex-
pected rate equal to (1 — B)h(p). Can we draw a parallel
conclusion with channel capacity? At first glance, it may
seem that the answer is negative because the channel
encoder (unlike the source encoder or the channel de-
coder) cannot learn the ergodic mode in effect. However,
it is indeed possible to take into account the probabilities
of each ergodic mode and maximize the expected rate of
information transfer. This is one of the applications of
broadcast channels suggested by Cover [24]. The encoder
chooses a code that enables reliable transmission at rates
R, with the perfect channel and R, with the BSC, where
(R, R,) belongs to the capacity region of the correspond-
ing broadcast channel. In addition, a preamble can be
added (without penalty on the transmission rate) so that
the decoder learns which channel is in effect. As the
capacity result shows, we can choose R; = R, = 1 — h(p).
However, in some situations, it may make more sense to
maximize the expected rate BR, + (1 — B)R, instead of
the worst case min{R;, R,}. The penalty incurred because
the encoder is not informed of the ergodic mode in effect
is that the maximum expected rate is strictly smaller than
the average of the individual capacities and is equal to
(24]

max {1 — h(a+p — 2ap) + Bh(a)}.

O<ax<l

In general, the problem of maximizing the expected rate
(for an arbitrary mixture distribution) of a channel with K
ergodic modes is equivalent to finding the capacity region
of the corresponding K-user broadcast channel (still an
open problem, in general).

3) if Z is a homogeneous Markov chain (not necessarily
stationary or ergodic), then H(Z) is equal to zero if the
chain is nonergodic, and to the conventional conditional
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entropy of the steady-state chain if the chain is ergodic.
This result is easy to generalize to nonbinary chains,
where the sup-entropy rate is given by the largest condi-
tional entropy (over all steady-state distributions).

4) If Z is an independent nonstationary process with
P[Z; = 1] = §, then

n
H(Z) = limsup L Y h(8).
now My

To see this, consider first the case where the sequence §;
takes values on a finite set. Then the result follows upon
the application of the weak law of large numbers to each
of the subsequences with a common crossover probability.
In general, the result can be shown by partitioning the
unit interval into arbitrarily short segments and consider-
ing the subsequences corresponding to crossover probabil-
ities within each segment.

5) Define the following nonergodic nonstationary Z:
time is partitioned in blocks of length 1, 1, 2, 4, 8,---, and
we label those blocks starting with k& = 0. Thus, the length
of the kth block is 1 for k = 0 and 2%~ ! for k = 1,2,---.
Note that the cumulative length up to and including the
kth block is 2%. The process is independent from block to
block. In each block, the process is equal to the all-zero
vector with probability 1,/2 and independent equally likely
with probability 1,/2. In other words, the channel is either
a BSC with crossover probability 1,/2 or a noiseless BSC
according to a switch which is equally likely to be in either
position and may change position only after times 1, 2, 4,
8, . We will sketch a proof of H(Z) = 1 bit (and, thus,
the capacity is zero) by considering the sequence of nor-
malized log-likelihoods for block lengths n = 2*:

W, = 2% log1/P,(Z%).
This sequence of random variables satisfies the dynamics
W= W, +L+A)/2

where the random variables {L, + A,} are independent,
L, is equal to 0 with probability 1/2 and equal to 1 bit
with probability 1/2, and A, is a positive random variable
which is upper bounded by 2! * bit (and is dependent on
L,). The asymptotic behavior of W, is identical to the
case where A, = 0 because the random variable
Tk 27'A,_; converges to zero almost surely as k — .
Then, it can be checked [25] that W, converges in law to a
uniform distribution on [0,1], and thus, its limsup in
probability is equal to 1 bit. Applying the formula for
e-capacity in Theorem 6, we obtain C_ = .

VIII. CONCLUSION

A new approach to the converse of the channel coding
theorem, which can be considered to be the dual of
Feinstein’s lemma, has led to a completely general for-
mula for channel capacity. The simplicity of this approach
should not be overshadowed by its generality.
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No results on convergence of time averages (such as

eroodic fhpnr\l\ enter the nicture in order to derive the
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general capacity formula. It is only in the particularization
of that formula to specific channels that we need to use
the law of large numbers (or, in general, ergodic theory).

The utility of inf-information rate goes beyond the fact
that it is the “right” generalization of the conventional

mutnal infarmation rata avan if

Thera are cacag whera
niutual v iidalivil 1ate. wvlldl 11

LHUVILV dAlL Ladsued willvie,
conventional expressions such as (1.2) hold, it is advanta-
geous to work with inf-information rates. For example, in
order to show the achievability result C > «, it is enough
to show that I(X;Y) > a for some input process, to
which end it is not necessary to show convergence of the
information density to its expected value.
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