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A General Formula for Channel Capacity 
Sergio Verdi?, Fellow, IEEE, and Te Sun Han, Fellow, IEEE 

Abstract-A formula for the capacity of arbitrary single-user 
channels without feedback (not necessarily information stable, 
stationary, etc.) is proved. Capacity is shown to equal the 
supremum, over all input processes, of the input-output inf 
information rate defined as the liminf in probability of the 
normalized information density. The key to this result is a new 
converse approach based on a simple new lower bound on the 
error probability of m-ary hypothesis tests among equiprobable 
hypotheses. A necessary and sufficient condition for the validity 
of the strong converse is given, as well as general expressions for 
e-capacity. 

Index Terms-Shannon theory, channel capacity, channel cod- 
ing theorem, channels with memory, strong converse. 

I. INTRODUCTION 

S HANNON’S formula [l] for channel capacity (the 
supremum of all rates R for which there exist se- 

quences of codes with vanishing error probability and 
whose size grows with the block length n as exp (rzR)), 

C = maxI(X;Y), 
X 

(1.1) 

holds for memoryless channels. If the channel has mem- 
ory, then (1.1) generalizes to the familiar limiting expres- 
sion 

C = !lim s;f iI(X”; Yn>. (1.2) 

However, the capacity formula (1.2) does not hold in full 
generality; its validity was proved by Dobrushin [2] for the 
class of information stable channels. Those channels can 
be roughly described as having the property that the input 
that maximizes mutual information and its corresponding 
output behave ergodically. That ergodic behavior is the 
key to generalize the use of the law of large numbers in 
the proof of the direct part of the memoryless channel 
coding theorem. Information stability is not a superfluous 
sufficient condition for the validity of (1.2).l Consider a 
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‘In fact, it was shown by Hu [3] that information stability is essentially 

equivalent to the validity of formula (1.2). 

binary channel where the output codeword is equal to the 
transmitted codeword with probability l/2 and indepen- 
dent of the transmitted codeword with probability l/2. 
The capacity of this channel is equal to 0 because arbi- 
trarily small error probability is unattainable. However 
the right-hand side of (1.2) is equal to l/2 bit/channel 
use. 

The immediate question is whether there exists a com- 
pletely general formula for channel capacity, which does 
not require any assumption such as memorylessness, in- 
formation stability, stationarity, causality, etc. Such a for- 
mula is found in this paper. 

Finding expressions for channel capacity in terms of the 
probabilistic description of the channel is the purpose of 
channel coding theorems. The literature on coding theo- 
rems for single-user channels is vast (cf., e.g., [4]). Since 
Dobrushin’s information stability condition is not always 
easy to check for specific channels, a large number of 
works have been devoted to showing the validity of (1.2) 
for classes of channels characterized by their memory 
structure, such as finite-memory and asymptotically mem- 
oryless conditions. The first example of a channel for 
which formula (1.2) fails to hold was given in 1957 by 
Nedoma [5]. In order to go beyond (1.2) and obtain 
capacity formulas for information unstable channels, re- 
searchers typically considered averages of stationary er- 
godic channels, i.e., channels which, conditioned on the 
initial choice of a parameter, are information stable. A 
formula for averaged discrete memoryless channels was 
obtained by Ahlswede [6] where he realized that the Fano 
inequality fell short of providing a tight converse for those 
channels. Another class of chanels that are not necessarily 
information stable was studied by Winkelbauer [7]: sta- 
tionary discrete regular decomposable channels with finite 
input memory. Using the ergodic decomposition theorem, 
Winkelbauer arrived at a formula for e-capacity that holds 
for all but a countable number of values of E. Nedoma [81 
had shown that some stationary nonergodic channels can- 
not be represented as a mixture of ergodic channels; 
however, the use of the ergodic decomposition theorem 
was circumvented by Kieffer [9] who showed that 
Winkelbauer’s capacity formula applies to all discrete 
stationary nonanticipatory channels. This was achieved by 
a converse whose proof involves Fano’s and Chebyshev’s 
inequalities plus a generalized Shannon-McMillan Theo- 
rem for periodic measures. The stationarity of the channel 
is a crucial assumption in that argument. 

Using the Fano inequality, it can be easily shown (cf. 
Section III) that the capacity of every channel (defined in 
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the conventional way, cf. Section II) satisfies 

C 4 liminf sup I1(X”;Yn). 
n-m xrl n 

(1.3) 

To establish equality in (1.3), the direct part of the coding 
theorem needs to assume information stability of the 
channel. Thus, the main existing results that constitute 
our starting point are a converse theorem (i.e., an upper 
bound on capacity) which holds in full generality and a 
direct theorem which holds for information stable chan- 
nels. At first glance, this may lead one to conclude that 
the key to a general capacity formula is a new direct 
theorem which holds without assumptions. However, the 
foregoing example shows that the converse (1.3) is not 
tight in that case. Thus, what is needed is a new converse 
which is tight for every channel. Such a converse is the 
main result of this paper. It is obtained without recourse 
to the Fano inequality which, as we will see, cannot lead 
to the desired result. The proof that the new converse is 
tight (i.e., a general direct theorem) follows from the 
conventional argument once the right definition is made. 

The capacity formula proved in this paper is 

c = supJ(X; Y). 
X 

(1.4) 

In (1.4), X denotes an input process in the form of a 
sequence of finite-dimensional distributions X = {X” = 
(Xj”);+., X(“‘>]T=i. We denote by Y = {Y” = 
(yp’“‘,... , YJ’$]r= I the corresponding output sequence of 
finite-dimensional distributions induced by X via the 
channel W = {IV” = P,,,,,: A” * Bn}rZ1, which is an 
arbitrary sequence of n-dimensional conditional output 
distributions from A” to B”, where A and B are the 
input and output alphabets, respectively.’ The symbol 
J(X; Y) appearing in (1.4) is the inf-information rate be- 
tween X and Y, which is defined in [lo] as the liminf in 
probability3 of the sequence of normalized information 
densities (l/n>i,.,dX”; Y”), where 

lXnWa(an; 6”) = log Pynlxn(b”lan) . . 

Pydbn) 
(1.5) 

For ease of notation and to highlight the simplicity of 
the proofs, we have assumed in (1.5) and throughout the 
paper that the input and output alphabets are finite. 
However, it will be apparent from our proofs that the 
results of this paper do not depend on that assumption. 
They can be shown for channels with abstract alphabets 
by working with a general information density defined in 
the conventional way [ll] as the log derivative of the 

‘The methods of this paper allow the study, with routine modifica- 
tions, of even more abstract channels defined by arbitrary sequences of 
conditional output distributions, which need not map Cartesian products 
of the input/output alphabets. The only requirement is that the index of 
the sequence be the parameter that divides the amount of information in 
the definition of rate. 

31f A, is a sequence of random variables, its liminfinprobabilig is the 
supremum of all the reals 01 for which P[A, I cu] + 0 as IZ + a. 
Similarly, its limsup in probability is the infimum of all the reals p for 
which P[A, 2 p] --) 0 as n + m. 

conditional output measure with respect to the uncondi- 
tional output measure. 

The notion of inf/sup-information/entropy rates and 
the recognition of their key role in dealing with noner- 
godic/nonstationary sources are due to [lo]. In particular, 
that paper shows that the minimum achievable source 
coding rate for any finite-alphabet source X = {X”}z= 1 is 
equal to its sup-entropy rate H(X), defined as the limsup 
in probability of (l/n> log l/Pxn(X”). In contrast to the 
general capacity formula presented in this paper, the 
general source coding result can be shown by generalizing 
existing proofs. 

The definition of channel as a sequence of finite- 
dimensional conditional distributions can be found in 
well-known contributions to the Shannon-theoretic litera- 
ture (e.g., Dobrushin [2], Wolfowitz [12, ch. 71, and Csiszar 
and Kiirner [13, p. loo]), although, as we saw, previous 
coding theorems imposed restrictions on the allowable 
class of conditional distributions. Essentially the same 
general channel model was analyzed in [26] arriving at a 
capacity formula which is not quite correct. A different 
approach has been followed in the ergodic-theoretic liter- 
ature, which defines a channel as a conditional distribu- 
tion between spaces of doubly infinite sequences.4 In that 
setting (and within the domain of block coding [14]), 
codewords are preceded by a prehistory (a left-sided infi- 
nite sequence) and followed by a posthistory (a right-sided 
infinite sequence); the error probability may be defined in 
a worst case sense over all possible input pre- and posthis- 
tories. The channel definition adopted in this paper, 
namely, a sequence of finite-dimensional distributions, 
captures the physical situation to be modeled where block 
codewords are transmitted through the channel. It is 
possible to encompass physical models that incorporate 
anticipation, unlimited memory, nonstationarity, etc., be- 
cause we avoid placing restrictions on the sequence of 
conditional distributions. Instead of taking the worst case 
error probability over all possible pre- and posthistories, 
whatever statistical knowledge is available about those 
sequences can be incorporated by averaging the condi- 
tional transition probabilities (and, thus, averaging the 
error probability) over all possible pre- and posthistories. 
For example, consider a simple channel with memory: 

yi = xi + xiel + ni. 

where {nJ is an i.i.d. sequence with distribution PN. The 
posthistory to any n-block codeword is irrelevant since 
this channel is causal. The conditional output distribution 
takes the form 

where the statistical information about the prehistory 
(summarized by the distribution of the initial state) only 
affects PyI,, : 

P,,,,j!Y,lx,) = CPJY, -x1 - xo>px”(xJ. 
x0 

40r occasionally semi-infinite sequences, as in [9]. 
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In this case, the choice of P,,<x,> does not affect the 
value of the capacity. In general, if a worst case approach 
is desired, an alternative to the aforementioned approach 
is to adopt a compound channel model [12] defined as a 
family of sequences of finite-dimensional distributions 
parametrized by the unknown initial state which belongs 
to an uncertainty set. That model, or the more general 
arbitrarily varying channel, incorporates nonprobabilistic 
modeling of uncertainty, and is thus outside the scope of 
this paper. 

properties of mutual information are- satisfied by the 
inf-information rate, thereby facilitating the evaluation of 
the general formula (1.4). Examples of said evaluation for 
channels that are not encompassed by previous formulas 
can be found in Section VII. 

In Section II, we show the direct part of the capacity 
formula C 2 supx _I@; Y>. This result follows in a 
straightforward fashion from Feinstein’s lemma [15] and 
the definition of inf-information rate. Section III is de- 
voted to the proof of the converse C 4 supx _I(X; Y). It 
presents a new approach to the converse of the coding 
theorem based on a simple lower bound on error proba- 
bility that can be seen as a natural counterpart to the 
upper bound provided by Feinstein’s lemma. That new 
lower bound, along with the upper bound in Feinstein’s 
lemma, are shown to lead to tight results on the +capacity 
of arbitrary channels in Section IV. Another application 
of the new lower bound is given in Section V: a necessary 
and sufficient condition for the validity of the strong 
converse. Section VI shows that many of the familiar 

P,,,,, that satisfies 

[ 

1 
ES P --ix,,, 

n 
(X”;Yn) I :logM + y + exp(-yn). 1 

(2.1) 

Note that Theorem 1 applies to arbitrary fixed block 
length and, moreover, to general random transformations 
from input to output, not necessarily only to transforma- 
tions between nth Cartesian products of sets. However, 
we have chosen to state Theorem 1 in that setting for the 
sake of concreteness. 

Armed with Theorem 1 and the definitions of capacity 
and inf-information rate, it is now straightforward to 
prove the direct part of the coding theorem. 

Theorem 2: 6 

c 2 sup f(X; Y>. 
X 

(2.2) 

Proof Fix arbitrary 0 < E < 1 and X. We shall show 
that 1(X; Y) is an e-achievable rate by demonstrating 
that, for every S > 0 and all sufficiently large n, there 
exist (n, M, exp (-n6/4) + e/2) codes with rate 

log M 
J(X;Y> - s < - 

If, in Theorem 1, we choose y = 6/4, then the probability 

<J(X;Y) - ;. (2.3) 

in (2.1) becomes 

n 

1 
XnWn(Xn;Yn) 5 - log M + S/4 

n 1 
II. DIRECT CODING THEOREM: C 2 sup, J(X; Y) 

The conventional definition of channel capacity is (e.g., 
[13]) the following. 

Definition I: An (n, M, E) code has block length n, M 
codewords, and error probability5 not larger than E. R 2 0 
is an e-achievable rate if, for every S > 0, there exist, for 
all sufficiently large n, (n, M, E) codes with rate 

log M 
->R-S. 

n 

The maximum e-achievable rate is called the e-capacity 
C,. The channel capacity C is defined as the maximal rate 
that is e-achievable for all 0 < E < 1. It follows immedi- 
ately from the definition that C = lim, 1 J,. 

The basis to prove the desired lower and upper bounds 
on capacity are respective upper and lower bounds on the 
error probability of a code as a function of its size. The 
following classical result (Feinstein’s lemma) [15] shows 
the existence of a code with a guaranteed error probabil- 
ity as a function of its size. 

Theorem 1: Fix a positive integer n and 0 < E < 1. For 
every y > 0 and input distribution Px” on A”, there exists 
an (n, M, E) code for the transition probability W” = 

1 
5 P --ixnw. (X”;Y”) I i(X; Y) - 6/4 

n I 
4 ; (2.4) 

where the second inequality holds for all sufficiently large 
n because of the definition of l(X; Y). In view of (2.41, 
Theorem 1 guarantees the existence of the desired codes. 

0 

III. CONVERSE CODING THEOREM: C 5 sup, l(X; Y> 
This section is devoted to our main result: a tight 

converse that holds in full generality. To that end, we 
need to obtain for any arbitrary code a lower bound on its 
error probability as a function of its size or, equivalently, 
an upper bound on its size as a function of its error 
probability. One such bound is the standard one resulting 
from the Fano inequality. 

Theorem 3: Every (n, M, E) code satisfies 

log M I &1(X”; Yn> + h(E)1 (3.1) 

where h is the binary entropy function, X” is the input 
distribution that places probability mass l/M on each of 
the input codewords, and Y” is its corresponding output 
distribution. 

5We work throughout with average error probabiiity. It is well known 6Whenever we omit the set over which the supremum is taken, it is 
that the capacity of a single-user channel with known statistical descrip- understood that it is equal to the set of all sequences of finite-dimen- 
tion remains the same under the maximal error probability criterion. sional distributions on input strings. 
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Using Theorem 3, it is evident that if R 2 0 is E- 
achievable, then for every 8 > 0. 

R-8< (3.2) 

which, in turn, implies 

R_< & liminf 1 sup Z(X”; Y”). (3.3) 
n+m n xn 

Thus, the general converse in (1.3) follows by letting 
E + 0. But, as we illustrated in Section I, (1.3) is not 
always tight. The standard bound in Theorem 3 falls short 
of leading to the desired tight converse because it de- 
pends on the channel through the input-output mutual 
information (expectation of information density) achieved 
by the code. Instead, we need a finer bound that depends 
on the distribution of the information density achieved by 
the code, rather than on just its expectation. The follow- 
ing basic result provides such a bound in a form which is 
pleasingly dual to the Feinstein bound. As for the 
Feinstein bound, Theorem 4 holds not only for arbitrary 
fixed block length, but for an arbitrary random transfor- 
mation. 

Theorem 4: Every (n, M, E) code satisfies 

1 
(X”;Y”) 2 -logM- y - exp(-yn) 

12 I 
(3.4) 

for every y > 0, where X” places probability mass l/M 
on each codeword. 

Proofi Denote p = exp (- yn). Note first that the 
event whose probability appears in (3.4) is equal to the set 
of “atypical” input-output pairs 

L = {(a”, b”) E A” X Bn:Px,lya(anIbn) I p}. (3.5) 

This is because the information density can be written as 

P 
i,.,,,(a”; b”) = log 

xn,yn(anlbn) 
p (a”> (3.6) 

X” 

and Px,I(ci) = l/M for each of the M codewords ci E A”. 
We need to show that 

P yyJL1 I E + p. (3.7) 

Now, denoting the decoding set corresponding to ci by Di 
and 

Bi - ( b” E B”:Px,&cilb”) < p) (3.8) 

we can write 

P X"Y" [Ll = f Pxnyn[(ci, B,)l 
i=l 

= f pxnyn[(ci, Bi n Di”)l 
i=l 

M  

SE+@ (3.9) 
where the second inequality is due to (3.8) and the dis- 
jointness of the decoding sets. 0 

Theorems 3 and 4 hold for arbitrary random transfor- 
mations, in which general setting they are nothing but 
lower bounds on the minimum error probability of M-ary 
equiprobable hypothesis testing. If, in that general setting, 
we denote the observations by Y and the true hypothesis 
by X (equiprobable on {l;.., M}), the M hypothesized 
distributions are the conditional distributions {PyIxzi, i = 
l;**, M}. The bound in Theorem 3 yields 

E21- 
Z(X; Y > + log 2 

log M . 

A slightly weaker result is known in statistical inference as 
Fano’s lemma [16]. The bound in Theorem 4 can easily be 
seen to be equivalent to the more general version 

E 2 PIP,Iy(xIY) 5 a] - (Y 

for arbitrary 0 5 (Y I 1. A stronger bound which holds 
without the assumption of equiprobable hypothesis has 
been found recently in [171. 

Theorem 4 gives a family (parametrized by y) of lower 
bounds on the error probability. To obtain the best bound, 
we simply maximize the right-hand side of (3.4) over y. 
However, a judicious, if not optimum, choice of y is 
sufficient for the purposes of proving the general con- 
verse. 

Theorem 5: 
c I sup I(X:Y). 

X 
(3.10) 

Proof: The intuition behind the use of Theorem 4 to 
prove the converse is very simple. As a shorthand, let us 
refer to a sequence of codes with vanishingly small error 
probability (i.e., a sequence of (n, M, l n> codes such that 
E, + 0) as a reliable code sequence. Also, we will say that 
the information spectrum of a code (a term coined in [lO I> 
is the distribution of the normalized information density 
evaluated with the input distribution X” that places equal 
probability mass on each of the codewords of the code. 
Theorem 4 implies that if a reliable code sequence has 
rate R, then the mass of its information spectrum lying 
strictly to the left of R must be asymptotically negligible. 
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In other words, R 2 i(X; Y) where X corresponds to the 
sequence of input distributions generated by the sequence 
of codebooks. 

To formalize this reasoning, let us argue by contradic- 
tion and assume that for some p > 0, 

c = sup J(X; Y) + 3p. 
X 

(3.11) 

By definition of capacity, there exists a reliable code 
sequence with rate 

log M 
->C-0. (3.12) 

n 

Now, letting X” be the distribution that places probabil- 
ity mass l/M on the codewords of that code, Theorem 4 
(choosing y = p), (3.11) and (3.12) imply that the error 
probability must be lower bounded by 

[ 

1 
En 2 P -ix,,, w; Y”) I supl(X; Y) + p n X 1 

- exp (-np). (3.13) 

But, by definition of _I(X; Y), the probability on the right- 
hand side of (3.13) cannot vanish asymptotically, thereby 
contradicting the fact that E, + 0. 0 

Besides the behavior of the information spectrum of a 
reliable code sequence revealed in the proof of Theorem 
5, it is worth pointing out that the information spectrum 
of any code places no probability mass above its rate. To 
see this, simply note that (3.6) implies 

1 
,,,n(X”; Y”) I - log M 1 = 1. (3.14) 

n 

Thus, we can conclude that the normalized information 
density of a reliable code sequence converges in probabil- 
ity to its rate. For finite-input channels, this implies [lo, 
Lemma 11 the same behavior for the sequence of normal- 
ized mutual informations, thereby yielding the classical 
bound (1.3). However, that bound is not tight for informa- 
tion unstable channels because, in that case, the mutual 
information is maximized by input distributions whose 
information spectrum does not converge to a single point 
mass (unlike the behavior of the information spectrum of 
a reliable code sequence). 

Upon reflecting on the proofs of the general direct and 
converse theorems presented in Sections II and III, we 
can see that those results follow from asymptotically tight 
upper and lower bounds on error probability, and are 
decoupled from ergodic results such as the law of large 
numbers or the asymptotic equipartition property. Those 
ergodic results enter in the picture only as a way to 
particularize the general capacity formula to special classes 
of channels (such as memoryless or information stable 
channels) so that capacity can be written in terms of the 
mutual information rate. 

Unlike the conventional approach to the converse cod- 
ing theorem (Theorem 31, Theorem 4 can be used to 
provide a formula for e-capacity as we show in Section IV. 

Another problem where Theorem 4 proves to be the key 
result is that of combined source/channel coding [la]. It 
turns out that when dealing with arbitrary sources and 
channels, the separation theorem may not hold because, 
in general, it could happen that a source is transmissible 
over a channel even if the minimum achievable source 
coding rate (sup-entropy rate) exceeds the channel capac- 
ity. Necessary and sufficient conditions for the transmissi- 
bility of a source over a channel are obtained in [181. 

Definition 1 is the conventional definition of channel 
capacity (cf. [15] and [13]) where codes are required to be 
reliable for all sufficiently large block length. An alterna- 
tive, more optimistic, definition of capacity can be consid- 
ered where codes are required to be reliable only in- 
finitely often. This definition is less appealing in many 
practical situations because of the additional uncertainty 
in the favorable block lengths. Both definitions turn out to 
lead to the same capacity formula for specific channel 
classes such as discrete memoryless channels [13]. How- 
ever, in general, both quantities need not be equal, and 
the optimistic definition does not appear to admit a sim- 
ple general formula such as the one in (1.4) for the 
conventional definition. In particular, the optimistic ca- 
pacity need not be equal to the supremum of sup-infor- 
mation rates. See [18] for further characterization of this 
quantity. 

The conventional definition of capacity may be faulted 
for being too conservative in those rare situations where 
the maximum amount of reliably transmissible informa- 
tion does not grow linearly with block length, but, rather, 
as O(b(n)). For example, consider the case b(n) = n + 
y1 sin (an). This can be easily taken into account by “sea- 
sonal adjusting:” substitution of n by b(n) in the defini- 
tion of rate and in all previous results. 

Iv. E-CAPACITY 

The fundamental tools (Theorems 1 and 4) we used in 
Section III to prove the general capacity formula are used 
in this section to find upper and lower bounds on C,, the 
e-capacity of the channel, for 0 < E < 1. These bounds 
coincide at the points where the e-capacity is a continuous 
function of E. 

Theorem 6: For 0 < E < 1, the e-capacity C, satisfies 

C, 5 sup sup{R: F,(R) 5 E) 
X 

(4.1) 

C, 2 sup sup{R: F,(R) < E} 
X 

(4.2) 

where F,(R) denotes the limit of cumulative distribution 
functions 

F,(R) = 1imsupP ;ixnwn(Xn,Yn) < R . (4.3) 
n-m [ 

1 1 
The bounds (4.1) and (4.2) hold with equality, except 
possibly at the points of discontinuity of C,, of which 
there are, at most, countably many. 



1152 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 4, JULY 1994 

Proofi To show (4.1), select an e-achievable rate R 
and fix an arbitrary 6 > 0. We can find a sequence of 
(n, M, E) codes such that for all sufficiently large n, 

llog M > R - S. (4.4) 
12 

If we apply Theorem 4 to those codes, and we let X” 
distribute its probability mass evenly on the nth code- 
book, we obtain 

xnWn(Xn,Yn) I ;log M - 6 - 1 exp (- Sn> 

1 
2 P -ixaw. 

n 
(X”,Y”) I R - 2S - exp (-Sn). (4.5) 1 

Since (4.5) holds for all sufficiently large n and every 
6 > 0, we must have 

F,(R - 26) I E, for all 6 > 0 (4.6) 

but R satisfies (4.6) if and only if R I sup{R: F,(R) I E]. 
Concluding, any e-achievable rate is upper bounded by 
the right-hand side of (4.11, as we wanted to show. 

In order to prove the direct part (4.2), we will show that 
for every X, any R belonging to the set in the following 
right-hand side is e-achievable: 

{R: F,(R - S) < E, for all S > O ] 

xnWn(X*,Yn) I R - 6 
I 

(4.7) 

Theorem 1 ensures the existence (for any 6 > 0) of a 
sequence of codes with rate 

R-3SdlogM<R-2S 
n 

and error probability not exceeding 

./nWn(Xn,Yn) 5 ; log M + 6 
I 

[ 

1 
5 exp (- Sn) + P -i,,,,(X”, Y”) 5 R - 6 

n 1 SE 
for all sufficiently large n. Thus; R is c-achievable. 

It is easy to see that the bounds are tight except at the 
points of discontinuity of C,. Let U(E) and I(E) denote 
the right-hand sides of (4.1) and (4.21, respectively. Since 
U(E) is monotone nondecreasing, the set D c (0, 1) of E 
at which it is discontinuous is, at most, countable. Select 
any E E (0, 1) - D and a strictly increasing sequence 
(61, $3 ..* > in (0, 1) converging to E. Since F,(R) is non- 
decreasing, we have 

sup {R: F,(R) < E} = sup sup {R: F,(R) < EJ 

from which it follows that 

Z(E) = sup supsup(R: Fx(R) 4 ei} 
X i 

= SUP SUPSUP{R: F,(R) I Ei} 
i x 

= sup&) = U(E) 
i 

where the last equality holds because u(a) is continuous 
nondecreasing at E. 0 

In the special case of stationary discrete channels, the 
functional in (4.1) boils down to the quantile introduced . 
in [7] to determine e-capacity, except for a countable 
number of values of E. The c-capacity formula in [7] was 
actually proved for a class of discrete stationary channels 
(so-called regular decomposable channels) that includes 
ergodic channels and a narrow class of nonergodic chan- 
nels. The formula for the capacity of discrete stationary 
nonanticipatory channels given in [9] is the limit as E --) 0 
of the right-hand side of (4.2) specialized to that particu- 
lar case. 

The inability to obtain an expression for e-capacity at 
its points of discontinuity is a consequence of the defini- 
tion itself rather than of our methods of analysis. In fact, 
it is easily checked by slightly modifying the proof of 
Theorem 6 that (4.1) would hold with equality for all 
0 I E < 1 had e-achievable rates been defined in a slightly 
different (and more regular) way, by requiring sequences 
of codes with both rate and error probability arbitrarily 
close to R and E, respectively. More precisely, consider an 
alternative definition of R as an e-achievable rate (0 I E 
< 1) when there exists a sequence of (n, M, E,,) codes 

with 

liminf 
log M 
->R 

and 
n-m n 

limsup E, I E. 
n-m 

With this definition, the resulting C, would be the right- 
continuous version of the conventional e-capacity, (4.1) 
would hold with equality for all 0 I E < 1, and the chan- 
nel capacity could be written as 

C, = ;z C, = supJ(X;Y) = supsup{R: F,(R) = O}. 
X X 

A separate definition would then be needed for zero-error 
capacity-not a bad idea since it is a completely different 
problem. 

V. STRONG CONVERSE CONDITION 

Definition 2: A channel with capacity C is said to satisfy 
the strong converse if for every 6 > 0 and every sequence 
of (n, M, A,> codes with rate 

log M 
->c+s 

n 

it holds that A, + 1 as n + a. 
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This concept was championed by Wolfowitz [19], [20], Theorem 7 that for any finite-input channel, the validity 
and it has received considerable attention in information of the strong converse is not only sufficient, but also 
theory. In this section, we prove that it is intimately necessary for the equality S = C to hold. 
related to the form taken by the capacity formula estab- Corollary: If the input alphabet is finite, then the fol- 
lished in this paper. 

Consider the sup-information rate f(X; Y), whose defi- 
nition is dual to that of the inf-information rate l(X; Y>, 
that is, f(X; Y) is the limsup in probability (cf. footnote 3) 
of the normalized information density due to the input X. 
Then, Theorem 4 plays a key role in the proof of the 
following result. 

Theorem 7: For any channel, the following two condi- 
tions are equivalent: 

1) The channel satisfies the strong converse. 
2) sup, 1(X; Y> = supx Rx; Y>. 

Proo$ It is shown in the proof of [lo, Theorem 81 
that the capacity is lower bounded by C 2 sup,j(X; Y) if 
the channel satisfies the strong converse. Together with 
the capacity formula (1.4) and the obvious inequality 
l(X; Y) I i(X; Y), we conclude that condition 1) implies 
condition 2). 

To show the reverse implication, fix S > 0, and select 
any sequence of (n, M, h,) codes that satisfy 

lowing two conditions are equivalent. 
1) The channel satisfies the strong converse. 

2) C = S = lim,,, sup,.(l/n)Z(X”; Y”). 
Proof Because of (1.4) and (5.2), all we need is to 

show the second equality in condition 2) when 
supx i(X; Y) = supx i(X; Y). This has been shown in the 
proof of [lo, Theorem 71. 0 

Wolfowitz [20] defined capacity only for channels that 
satisfy the strong converse, and referred to the conven- 
tional capacity of Definition 1 (which is always defined) as 
weak capacity. The corollary shows that the strong capacity 
of finite-input channels is given by formula (1.2). It should 
be cautioned that the validity of the capacity formula in 
(1.2) is not sufficient for the strong converse to hold. In 
view of Theorem 7, this means that there exist channels 
for which 

c = sup _I(X; Y> 
X 

log M 
->c+s 

n 
lim sup IZ(X”;Y”) 

n+m xn n 

for all sufficiently large n. Once we apply Theorem 4 to 
this sequence of codes, we get (with y = S/2) 

h,2P li 
[ 

1 
XnWn(Xn,Yn) 5 - log M - S/2 

n n 1 
- exp (- Sn/2) 

< sup I(x; Y). 
X 

For example, consider a channel with alphabets A = B = 
{0, 1, (Y, p} and transition probability 

wn(-%,.-*, X,IXl,“‘~ 4 = 
if (x1;.., xn> E D,, 
if (x . ..) x ) @  D 

17 n n 

1 
wy a!,“‘, (YIX1,“‘, x,> = 0.99 if (x1;*., xn> e 0,. 

(Xn,Yn) 5 C + S/2 - exp(-Sn/2) where D, = (0, l]” U (a,. . . a>. Then 

(5.1) 

for all sufficiently large n. But since condition 2) implies 
C = sup,i(X; Y), the probability on the right-hand side 
of (5.1) must go to 1 as n + 00 by definition of &X; Y>. 
Thus A, --f 1, as we wanted to show. 0 

Due to its full generality, Theorem 7 provides a power- 
ful tool for studying the strong converse property. 

The problem of approximation theory of channel out- 
put statistics introduced in [lo] led to the introduction of 
the concept of channel resolvability. It was shown in [lo] 
that the resolvability S of any finite-input channel is given 
by the dual to (1.4) 

s = sup I(X; Y). 
X 

(5 2) 

It was shown in [lo] that if a finite-input channel satisfies 
the strong converse, then its resolvability and capacity 
coincide (and the conventional capacity formula (1.2) 
holds). We will next show as an immediate corollary to 

C = [(X1; yl) = lim lZ(X;‘;Y,“) = 1 bit 
n+~ n 

and 

sup&X; Y) = I(X,; Y2> = 2 bits 
X 

where X, is i.i.d. equally likely on (0, 1) and X, is i.i.d. 
equally likely on (0, 1, (Y, /3}. 

VI. PROPERTIESOF~NF-INFORMATIONRATE 

Many of the familiar properties satisfied by mutual 
information turn out to be inherited by the inf-informa- 
tion rate. Those properties are particularly useful in the 
computation of supx 8(X; Y) for specific channels. Here, 
we will show a sample of the most important properties. 
As is well known, the nonnegativity of divergence (itself a 
consequence of Jensen’s inequality) is the key to the proof 
of many of the mutual information properties. In the 
present context, the property that plays a major role is 
unrelated to convex inequalities. That property is the 
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nonnegativity of the inf-divergence rate @(U]lV) defined 
for two arbitrary processes U and V as the liminf in 
probability of the sequence of log-likelihood ratios 

1 log 
pUn(Un) 

n Pvn(U”). 

The sup-entropy rate H(Y) and inf-entropy rate H(Y) intro- 
duced in [lo] are defined as the limsup and liminf, respec- 
tively, in probability of the normalized entropy density 

$ log 
1 

Pyn(Yn) . 

Analogously, the conditional sup-entropy rate H(Y IX) is 
the limsup in probability (according to {Pxny.}) of 

1 log 
1 

n 
p 

..,,nW”lX”> . 

Theorem 8: An arbitrary sequence of joint distributions 
(X, Y) satisfies 

a> _D(XIIY) 2 0 
b) J(X; Y) = J(Y; X) 
c> l(X; Y> 2 0 
d) I(X; Y) I g(Y) - $YIx) 

I(X; Y) 4 H(Y) - H(YIX) 
_I(X; Y> 2 _H(Y) - H(YIX) 

e) 0 5 rsr<Y> < log IB] 
f) J(X, Y; 2) 2 1(X; Z) 
g) If i(X; Y) = I(X; Y) and the input alphabet is finite, 

then J(X; Y) = lim. em (l/n>Z(X”; YE> 
h) l(X; Y) < liminf,,, (l/n)Z(X”; Y”). 

Prooj? Property a) holds because, for every 6 > 0. 

= c Pxn(x”) 2 exp (- 6n). 
x”: Px,,(x”)~P,,(x”)exp(- Sn) 

(6.1) 

Property b) is an immediate consequence of the defini- 
tion. Property c) holds because the inf-information rate is 
equal to the inf-divergence rate between the processes -- 
(X,Y) and (X, Y), where X and Y are independent and 
have the same individual statistics as X and Y, respec- 
tively. 

The inequalities in d) follow from 

’ 
1 

iXnWn(Xn,Yn) = log 
py~w) 

- log 
Wn(YnlXn> (6.2) 

and the fact that the liminf in probability of a sequence of 
random variables U, + V, is upper (resp. lower) bounded 
by the liminf in probability of U, plus the limsup (resp. 
liminf) in probability of V,. 

Property e) follows from the fact that H(Y) is the 
minimum achievable fixed-length source coding rate for Y 
m. 

To show f), note first that Kolmogorov’s identity holds 
for information densities (not just their expectations): 

; log 
P ~“,py”wlXn, Y”> 

p&m 

= $ log 
P ~“,&mm 

P&3 
1 PZ”,X”y”(ZnlXn, Y”) 

+ - log 
PZ+ZnlX”) * 

(6.3) rl 

Property f) then follows because of the nonnegativity of 
the liminf in probability of the second normalized infor- 
mation density on the right-hand side of (6.3). 

Property g) is [lo, Lemma 11. 
To show h), let us assume that _IX; Y) is finite; other- 

wise, the result follows immediately. Choose an arbitrarily 
small y > 0 and write the mutual information as 

AZ(X”; Y”) = E 
n 

lixn,.(X”, Y”) 
n 1 

=E Ai 
[ n 

xe,n(X”, Y”)l{i,,,,(X”, Yn) 5 0) 1 
+ E -i,,,.(X”, Yn) [ 1 

n 

.l O< :i 
i n 

X”W”(Xn,Yn) 4J(X:Y) - y II 
[ 1 

+ E -ix,,wfl(X’z, Y”) 
n 

-1 l(X; Y) - y 4 li,,,,(X”,Y”) 
l II 

. 
n 

The first term is lower bounded by -(log e)/(bz) (e.g., 
[21]); therefore, it vanishes as n + ~0. By definition of 
J(X; Y), the second term vanishes as well, and the third 
term is lower bounded by l(X; Y) - y. 0 

Theorem 9 (Data Processing Theorem): Suppose that for 
every n, Xc and Xl are conditionally independent given 
X;. Then 

I(X,; XJ II(x,; x,x (6.4) 
Proof By Theorem 8f), we get 

m,; x,1 5 m,; x,, x,> 
= m,; X,) (6.5) 

where the equality holds because l(X,; X,, X,) is the 
liminf in probability of [cf. (6.3)] 

1 log 
P xl”,xpp;Ix,“> XT) 

n P&y) 

= llog P a;lx;> xfIxz 
n P&q7 

1 Px~,-q&;lx;, x;> 
+ - log 

n P x~,x&Y;Ix;) 

= $ log 
Px~,&;Ix;) 

Px;(X;z) . 
(6.6) 

0 
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Theorem 10 (Optimal@ of Independent Inputs): If a dis- 
crete channel is memoryless, i.e., PynIxn = W” = rIFEIF, 
for all n, then, for any input X and the corresponding 
output7 Y, 

- - 
l(X; Y> 5 J(X; Y> (6.7) 

where y is the output due to X, which is an independent 
process with the same first-order statistics as X, i.e., 
Pxll = rI;==,P,,. 

Proofi Let (Y denote the liminf in probability (accord- 
ing to {Pxnyti}) of the sequence 

We will show that 
a! 2 J(X; Y) 

and 
- - 

CY 5 1(X; Y). 

To show (6.91, we can write (6.8) as 

(6.9) 

(6.10) 

1 
f-log 

P,dY”> 
I-K’=lP,(yi> 

(6.11) 
n 

where the liminf in probability of the first term on the 
right-hand side is 1(X; Y) and the liminf in probability of 
the second term is nonnegative owing to Theorem 8a>. 

To show (6.10), note first (from the independence of the -- 
sequence (Xi, Y,), the Chebyshev inequality, and the dis- 
creteness of the alphabets) that 

- - 
J(X; Y) = liminfE[Z,] 

n+m 

= lirri:f i ,$ Z(Xi; E;:). (6.12) 
I-1 

Then (6.10) will follow once we show that (Y, the liminf in 
probability of Z,, cannot exceed (6.12). To see this, let us 
argue by contradiction and assume otherwise, i.e., for 
some y > 0, 

- - 
P[Z, >J(X;Y> + y] + 1. (6.13) 

But for every n, we have 

E[Z,l 2 E[Z,l{Z, 5 011 + (l~m+i~fE[Z,l + 7) 
- _ 

*p[zn >I(X;Y) + y] 
1 

I --e 
n -‘loge + (lin+iifE[Z,] + 7) 

- - 
.P[ z, > 1(X; Y> + y]. (6.14) 

7As throughout the paper, we allow that individual distributions de- 
pend on the block length, i.e., X” = (X,(“);.., Xi”)), W ” = II:= lW;(n), 
etc. However, we drop the explicit dependence on (n) to simplify 
notation. 

The second inequality is a result of 

nE[Z,l{Z, I 011 

= E[g(X”, 7”) log g(Xn, yn>l{g(Xn, Y”> I l]] 

2e -‘log e-l 

where r” is independent of X” and 

gCxn, y”> = fi &(yilx~>/pyi(yi). 
i=l 

Finally, note that (6.13) and (6.14) are incompatible for 
sufficiently large n. 0 

Analogous proofs can be used to show corresponding 
properties for the sup-information rate 1(X; Y> arising in 
the problem of channel resolvability [lo]. 

VII. EXAMPLES 

As an example of a simple channel which is not encom- 
passed by previously published formulas, consider the 
following binary channel. 

Let the alphabets be binary A = B = {O, l], and let 
every output be given by 

F = xi + zi (7.1) 

where addition is modulo-2 and Z is an arbitrary binary 
random process independent of the input X. The evalua- 
tion of the general capacity formula yields 

supl(X; Y> = log2 - H(Z) 
X 

(7.2) 

where H(Z) is the sup-entropy rate of the additive noise 
process Z (cf. definition in Section VI). A special case of 
formula (7.2) was proved by Parthasarathy [221 in the 
context of stationary noise processes in a form which, in 
lieu of the sup-entropy rate, involves the supremum over 
the entropies of almost every ergodic component of the 
stationary noise. 

In order to verify (7.21, we note first that, according to 
properties d) and e> in Theorem 8, every X satisfies 

1(x; Y) I log2 - HCYIX). (7.3) 

Moreover, because of the symmetry of the channel, 
@Y(X) does not depend on X. To see this, note that the 
distribution of log Pynlxn(Y”[a”]lan) is independent of an 
when Y”[a”] is distributed according to the conditional 
distribution PYnIXflzan. Thus, we can compute &YIX) 
with an arbitrary X. In particular, we can let the input be 
equal to the all-zero sequence, yielding H(YIX) = H(Z). 
To conclude the verification of (7.2), it is enough to notice 
that (7.3) holds with equality when X is equally likely 
Bernoulli. 

Let us examine several examples of the computation of 
(7.2). 

1) If the process Z is Bernoulli with parameter p, then 
the channel is a stationary memoryless binary symmetric 
channel. By the weak law of large numbers, 
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(l/n) log P&Z”) converges in probability to its mean. 
Thus, H(Z) = h(p) = p log (l/p) + (1 - p) log (l/l - 
p). More generally, if Z is stationary ergodic, then the 
Shannon-MacMillan theorem can be used to conclude 
that H(Z) is the entropy rate of the process. 

2) Let Z be an all-zero sequence with probability p and 
Bernoulli (with parameter p) with probability 1 - p. In 
other words, the channel is either noiseless or a BSC with 
crossover probability p for the whole duration of the 
transmission (cf. [lo]). The sequence of random variables 
(l/n)log(l/Pz&Z”)) converges to atoms 0 and h(p) with 
respective masses p and 1 - p. Thus, the minimum 
achievable source coding rate for Z is H(Z) = h(p), and 
the channel capacity is 1 - h(p) bits. This illustrates that 
the definitions of minimum source coding rate and chan- 
nel capacity are based on the worst case in the sense that 
they designate the best rate for which arbitrarily high 
reliability is guaranteed regardless of the ergodic mode in 
effect. Universal coding [23] shows that it is possible to 
encode Z at a rate that will be either 0 or h(p) depending 
on which mode is in effect. Thus, even though no code 
with a fixed rate lower than h(p) will have arbitrarily 
small error probability, there are reliable codes with ex- 
pected rate equal to (1 - p )/z(p). Can we draw a parallel 
conclusion with channel capacity? At first glance, it may 
seem that the answer is negative because the channel 
encoder (unlike the source encoder or the channel de- 
coder) cannot learn the ergodic mode in effect. However, 
it is indeed possible to take into account the probabilities 
of each ergodic mode and maximize the expected rate of 
information transfer. This is one of the applications of 
broadcast channels suggested by Cover [24]. The encoder 
chooses a code that enables reliable transmission at rates 
R, with the perfect channel and R, with the BSC, where 
(R,, R2) belongs to the capacity region of the correspond- 
ing broadcast channel. In addition, a preamble can be 
added (without penalty on the transmission rate) so that 
the decoder learns which channel is in effect. As the 
capacity result shows, we can choose R, = R, = 1 - h(p). 
However, in some situations, it may make more sense to 
maximize the expected rate PR, + (1 - P)R, instead of 
the worst case min{R,, R,}. The penalty incurred because 
the encoder is not informed of the ergodic mode in effect 
is that the maximum expected rate is strictly smaller than 
the average of the individual capacities and is equal to 
WI 

max (1 - h(a fp - 2ap) + @z(a)). 
OILY51 

In general, the problem of maximizing the expected rate 
(for an arbitrary mixture distribution) of a channel with K 
ergodic modes is equivalent to finding the capacity region 
of the corresponding K-user broadcast channel (still an 
open problem, in general). 

3) if Z is a homogeneous Markov chain (not necessarily 
stationary or ergodic), then I?(Z) is equal to zero if the 
chain is nonergodic, and to the conventional conditional 

entropy of the steady-state chain if the chain is ergodic. 
This result is easy to generalize to nonbinary chains, 
where the sup-entropy rate is given by the largest condi- 
tional entropy (over all steady-state distributions). 

4) If Z is an independent nonstationary process with 
P[Zi = 11 = a,, then 

H(Z) = li;iu_p i ,+ h(6,). 
I=1 

To see this, consider first the case where the sequence ai 
takes values on a finite set. Then the result follows upon 
the application of the weak law of large numbers to each 
of the subsequekces with a common crossover probability. 
In general, the result can be shown by partitioning the 
unit interval into arbitrarily short segments and consider- 
ing the subsequences corresponding to crossover probabil- 
ities within each segment. 

5) Define the following nonergodic nonstationary Z: 
time is partitioned in blocks of length 1, 1, 2, 4, 8;**, and 
we label those blocks starting with k = 0. Thus, the length 
of the kth block is 1 for k = 0 and 2k- ’ for k = 1,2, *se. 
Note that the cumulative length up to and including the 
kth block is 2k. The process is independent from block to 
block. In each block, the process is equal to the all-zero 
vector with probability l/2 and independent equally likely 
with probability l/2. In other words, the channel is either 
a BSC with crossover probability l/2 or a noiseless BSC 
according to a switch which is equally likely to be in either 
position and may change position only after times 1, 2, 4, 
8, -*. . We will sketch a proof of H(Z) = 1 bit (and, thus, 
the capacity is zero) by considering the sequence of nor- 
malized log-likelihoods for block lengths y1 = 2k: 

w, = 2-k log l/Pz,k(Z2”). 

This sequence of random variables satisfies the dynamics 

W k+l = (w, + L, + &)/2 

where the random variables {Lk + Ak} are independent, 
L, is equal to 0 with probability l/2 and equal to 1 bit 
with probability l/2, and Ak is a positive random variable 
which is upper bounded by 2iPk bit (and is dependent on 
L,). The asymptotic behavior of W, is identical to the 
case where Ak = 0 because the random variable 
Cf= 12-iAkP i converges to zero almost surely as k + 00. 
Then, it can be checked [25] that W, converges in law to a 
uniform distribution on [0, 11, and thus, its limsup in 
probability is equal to 1 bit. Applying the formula for 
e-capacity in Theorem 6, we obtain C, = E. 

VIII. CONCLUSION 

A new approach to the converse of the channel coding 
theorem, which can be considered to be the dual of 
Feinstein’s lemma, has led to a completely general for- 
mula for channel capacity. The simplicity of this approach 
should not be overshadowed by its generality. 
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No results on convergence of time averages (such as 
ergodic theory) enter the picture in order to derive the 
general capacity formula. It is only in the particularization 
of that formula to specific channels that we need to use 
the law of large numbers (or, in general, ergodic theory). 

The utility of inf-information rate goes beyond the fact 
that it is the “right” generalization of the conventional 
mutual information rate. There are cases where, even if 
conventional expressions such as (1.2) hold, it is advanta- 
geous to work with inf-information rates. For example, in 
order to show the achievability result C 2 LY, it is enough 
to show that [(X; Y) 2 (Y for some input process, to 
which end it is not necessary to show convergence of the 
information density to its expected value. 
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