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SUPPLEMENTARY NOTES ON THE
CONNECTION FORMULAE FOR THE
SEMICLASSICAL APPROXIMATION

© R. L. Jaffe 2002

The WKB “connection formulas” allow one to continue semiclassical solu-
tions from an allowed to a forbidden region and vice versa. However these
formulas are subtle and must be used with care. The purpose of these notes
is to explain how to use the them and why it is necessary to be careful.
Note that we are not deriving the connection formulas here. The deriva-
tion is either long and dull (e.g., Griffiths or Merzbacher) or short, elegant
and obscure (e.g., Landau and Lifschitz). In any case, the proper use of
the connection formulas is quite independent of how they are derived. The
semiclassical approximation is valid whenever the rate of change of the de

Broglie wavelength is small,
d\

dx

where A = Ii/p(z) and p(x) = \/2m(E — V(x)). Eq. (1) can be satisfied in a
classically allowed region, where F > V(x), and X is real, or in a classically
forbidden region where E < V(z), and A is imaginary. As derived in class
the wavefunctions in the semiclassical limit are given by:

<1 (1)

P(r) ey pl(x) exp [%/ dx’p(x')} +c_ pl(x) exp {—%/ dx’p(x’)}
(2a)
in the classically allowed region, and
Y(r) 2 d, ml(x) exp {%/ d$/I€<I/):| + d_ﬁ exp {—%/ dl’/li(l‘/):|
(2b)

in the forbidden region, where r(z) = /2m(V(z) — E). Notice that all
the integrals have been written as indefinite integrals. This is because a
change in the lower limit amounts to a change in the value of the constants
cy+ and d4. In specific applications the lower limits and the constants are



chosen to suit the problem. To make use of the semiclassical method it is
almost always necessary to continue the wavefunction from the allowed region
to a forbidden region, or vice versa. The trouble is that these regions are
separated by a classical turning point, xq, where E' = V(x), so p(z¢) = 0 and
d\/dx — oo. So the semiclassical approximation breaks down at a classical
turning point. The question is, then, how does one continue a solution from
an allowed region through a classical turning point into a forbidden region, or
vice versa? It should be possible because we are talking about the solution to
a second order differential equation (the Schrodinger equation). Once one has
specified two constants of integration, the solution is completely determined,
so specifying the solution in one region should fix it in the forbidden region.
In fact, this is not quite true, and that’s the subtlety of the “Connection
Formulas”.

1 What are the Connection Formulas?

First, let’s summarize the formulas and their domain of applicability. The
formulas depend on whether the classically forbidden region lies to the left or
right of the classically allowed region. To be complete we give the formulas
for both cases. Figure 1 shows the situation: in (a) the forbidden region is
on the right; in (b) it is on the left.

V(X) V(X)
@ (b)

X=a x=b Figure 1



I. Forbidden region to the right.

— If the wavefunction is known to be exponentially falling in the
forbidden region, then it’s phase and amplitude are known in the
allowed region:

;m exp [—% / ' fi(m’)d:l:/} N pz(x) cos [% / ' p(x')dx’—ﬂ

— A wavefunction 90° out of phase in the allowed region continues
into a growing exponential in the forbidden region as follows:

Foh RS WCEh i =]
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I1. Forbidden region to the left.

— If the wavefunction is known to be exponentially falling in the
forbidden region, then it’s phase and amplitude are known in the
allowed region:

;(x) exp {—% / bn(x’)da:’] N %Cos [% /b " pla')da’ — %j)

— A wavefunction 90° out of phase in the allowed region continues
into a growing exponential in the forbidden region as follows:

pl<x> cos {% /:p(x')dx’ + ﬂ = Kl(x) exp {% /xb,ﬁ(x/)dx/}
(6)

2 Are the Connection Formulas equalities?

(This section is written by Hong Liu, 2007)

Can we use the connection formulas in the directions opposite to the arrows
in (3)-(6)? The answer is yes, but extra care! must be paid in reversing the
arrows in equations (4) and (6).

n contrast, the arrows in (3) and (5) can be reversed relatively straightforwardly.
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To illustrate the subtleties, let us consider a specific example: Suppose
the wavefunction in a forbidden region to the right is given by

W(z) ~ %exp [%/jrﬁ(m‘/)d:{:/] (1+0(h))
—i—%exp [_% / ’ /i(x’)dx’] a+om) . (7

Then using (4) in the direction opposite to the arrow and (3), we obtain the
wave function on the left
d

oo {% / ' p(a')da’ + ﬂ (1+0(R))

+ 2;(3:) cos {% /:p(x/)da:' - ﬂ (1+O(n)) . (8)

The above procedure is correct provided in (7) we know the coefficient d_
before the exponentially falling term exp|—3 [ k(2)da’] precisely.

In most circumstances, however, the accuracy of the WKB approximation
is not enough for us to know d_ exactly. This is due to that the second term
in (7) is so small compared with the first term, that it is normally dropped
completely. Note that for each term in (7), we have dropped terms of order
O(h), as indicated in the equation. The O(h) contribution in the first term,
which was already dropped, is much larger than the exponentially suppressed
second term in the small A limit. Thus it is completely legitimate to drop
the second term in (7). In such a situation we are simply left with

Y(a) ~ % ow |5 [ wsae )

and it is then incorrect to use equation (4) backwards to conclude that the
wavefunction on the left is of the form

%COS {% / ap(x')da;'+ﬂ . (10)

In comparing (10) with (8), we see that (10) misses the second term in (8),
which is of the same order as the term in (10).

Nevertheless, one does encounter situations in which d_ in (7) is known
precisely, often due to symmetry. For example, consider a situation in which
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a = 0 and both 9(x) and k(x) are even functions of z. Then the symme-
try requires that d; = d_. (We will see such an example in the problem
of a double well potential in pset 8). Sometimes it is also possible to use
more sophisticated mathematical methods to keep track of the coefficient d_
precisely even without symmetry. In these situations one can then use the
connection formulas in both directions.

3 An Example

A worked example will help show how the Connection Formulas are to be
applied. Consider a particle trapped between the origin at * = 0 and a
high potential V(x). Figure 2 gives an illustration. For energy E, the clas-
sical turning point is at @ = a(E). a is the point where E = V(a). The
semiclassical solution which vanishes at the origin is

V(X)

Figure 2

¥(z) = sin [% /0 ' p<x')dx/] | (11)

This form is valid for x < a. What do we do as = approaches the turning
point at = a? We rewrite the sin|[...] as the a linear combination of the
two cosines for which we have connection information:

¥(z) = sin [% /0 xp(x’)dx’] (12)
— sinAcos {% / ap<x'>dx'—ﬂ + cos A cos [% / ap(:z:’)d:c'—i—z]
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where

A= %/Oap(x)dx - % (13)

This much is just application of trig identities. If the coefficient of cos[3 [ p(a’)dx’'+

7] is not zero, then the wave function continues into a growing exponential
for x > a according to eq. (4). The only thing we can say for certain is that

¥ (x) has an exponentially growing term in the forbidden region:

W) ~ cosAﬁ exp [% / ' n(m’)dx'] | (14)

¥ (x) would in general also contain exponentially falling terms in the forbid-
den region, but we don’t have the accuracy to compute them. Tiny correc-
tions to the exponentially growing term, which we did not keep track of in
our WKB approximation will be much larger than the exponentially falling
term. However, if cos A = 0, then there is no exponentially growing term in
the forbidden region. Thus, if we know that ¢ (z) falls exponentially in the
forbidden region cos A must be zero. Since a bound state wavefunction must
fall exponentially in the forbidden region we learn that the WKB condition
for a bound state is cos A = 0, or

/0 Cplx)de = (n+ Z)wh (15)

which is the Bohr-Sommerfeld Quantization condition when there is a hard
wall on one side. The problem set contains other problems which require
careful use of the Connection Formulas.

4 Deriving the Connection Formulae

This section (©) Krishna Rajagopal, 2004

Let us consider the case depicted in the left panel of Fig. 1, with a turning
point at x = a with the allowed region at x < a and the classically forbidden
region at x > a. We know that in the forbidden region

¥(z) = :f(x) exp {—% / ' M:ﬂ)m’} for 2> a (16)




and in the allowed region

s exp [1 / dx’p(x')} = exp {—1 / dx’p(:v’)} forr < a.
p(z) h S p(z) h S

(17)
Our task is to relate c; and c_ to d, and we expect to find the relation
described by the connection formula (3). I’ll take you through this derivation,
and leave deriving the other three connection formulae to you. In the vicinity
of the turning point a, the potential is approximately linear and we can write

P(r) =

V—FE~bz—a) Wherebzd—v

. 1
o >0 (18)

r=a

This linearized potential is a good description for |z — a| < L, where L is
the “length scale over which V' curves”. The semiclassical forms for the wave
function, (16) and (17), are not valid too close to a. For example, (16) is

valid where
d h

dz r(z)
and we must ask whether there are values of (z — a) that are simultaneously
large enough that (19) is valid, but not so large that (18) breaks down. If

there is a range of (x — a) in which both (19) and (18) are valid, then within
this domain (19) becomes

> 1 (19)

d h _h 1 <1
dz \/2mb(z — a) smb (v — a)3/? '
We can therefore conclude that as long as
h
L3> , (20)

8mb

there is a region where (19) is valid, meaning that (16) describes the wave
function, and where (18) describes the potential. The same condition (20)
implies that there is a range of a — x, in the allowed region in which a —
x is big enough that (17) is a valid description of the wave function and
small enough that (18) still describes the potential. The condition (20) must
be satisfied by the potential near its turning points in order to ensure the
validity of the analysis we are pursuing (with semiclassical wave functions
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far away from turning points and connection formulae prescribing how they
are connected “across” the turning points.) One way of reading (20) is that
it is always satisfied in the 7 — 0 limit, and indeed this is why the method is
called “semiclassical”. Perhaps a better way to read the condition, though,
is to leave h fixed—it is after all a constant of nature—and view (20) as
the statement of how smooth the potential must be near its turning points.
Henceforth, we assume that (20) is satisfied. Within the domain of z — a
where both (18) and (19) hold, the wave function is given by

blz) = {_Vﬂwp[ /'¢%£;tzq{

[2mb(x

d 2 3/2
T mb(e—a T [_3_h 2mb (z = a)* ] ' 2y

Now, we want to “analytically continue” this expression from x —a > 0 to
x—a < 0. The trick is to consider (z —a) a complex variable, which we shall
write as

(2 —a) = pexpio .

and to start with ¢ = 0 and p in the range such that all our approximations
are valid and then to continuously change ¢ from 0 to 7, all the while keeping
p fixed. In this way, we end at a point in the allowed region (with x —a < 0)
where both (18) and (19) hold. Lets see what happens to the wave function
upon performing this procedure. First, we rewrite the wave function as

Y(z) = d — exp [—3%\/ 2mb p*/? exp 3%5} (22)

1/4 22
(2mbp) " exp 4

which, for ¢ = 0, is what we had before. For ¢ = 7, namely z — a < 0, the
wave function becomes

() = d — exp {4—2'3%\/ 2mb p3/2} : (23)

(2mbp)'/* exp =

So, this is the wave function in the allowed region that we obtain by starting
from the wave function in the forbidden region and analytically continuing.
Note that the turning point is at p = 0, and we never went near it. By
turning z — a into a complex variable, we were able to start with x —a > 0,
end with  — a < 0, and never go near x — a = 0. We must now compare



(23) to the form of the wave function we were expecting to get in the allowed
region, namely (17). Using (18)—and, note that we are in the region where
this is valid—we can rewrite the wave function in the allowed region (17) as
follows:

P(r) = [me(aci 7 exp [h/ da’ 2mb(a—x’)}

+[2mb(:‘_ m exp{ h / dz’ me(a—x/)}

¢ 2
- [2mb(a i $)]1/4 exXp {4‘@3—71 2mb (a — 33)3/21

Cc_

" lombla— o)
= ]1/4 exp {+Z—\/_p3/21

[mep

2 3/2
1/Llep[ iy 2mb (a — ) }

¢~ 2 o a3
+W6Xp |:—Z% mep/} . (24)

We now see that if we choose

d
Cr = i (25)
exp 1

then the wave function (23) that we obtained by analytically continuing
the forbidden-region wave function to the allowed region is the same as the
“c, term” in (24)! This looks good, but what has happened to the c¢_ term??7
Let’s try to figure out why we found the ¢, term, but not the c_ term. To
do this, we start with (24), including both the ¢, and c_ terms, and try to
analytically continue it in the opposite direction to what we did before, back
to the forbidden region. We do the analytical continuation by changing ¢
from 7 to 0. Note that the imaginary part of (z — a) is positive during the
continuation. You can easily check that if you start with (24) and perform
this procedure, as you begin the continuation into the complex plane (i.e. as
you start reducing ¢ from 7) the magnitude of the ¢_ term becomes expo-
nentially small compared to the magnitude of the ¢, term. As we discussed
in lecture, the semiclassical approximation entails dropping such exponen-
tially small terms. So, if we start with (24) and “continue backward”, we
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lose the c_ term and the c; term turns into the correct wave function in the
forbidden region once ¢ is back to 0. Analogously, when we started with the
forbidden-region wave function and “continued forward”, we only obtained
the c, term. Now that we understand why we lost the c¢_ term, how can we
find it?? Simple. Start with the forbidden-region wave function (22) again.
This time, change ¢ from 0 to —mw. As before, we start in the forbidden re-
gion and end in the allowed region. This time, though, the imaginary part of
x — a is negative during the continuation. This means that near ¢ = —m, the
magnitude of the ¢, term is exponentially smaller than that of the ¢_ term,
so we expect this time to “lose” the ¢, term. And, lo and behold, the wave
function in the allowed region that we obtain by starting from the forbidden
region and continuing ¢ from 0 to — is

T) = d X —iiv m 3/2}
vt (2mbp)1/4exp(—iz”)ep{ ] .

which is not the same as (23). Instead, it is precisely the c_ term in (24), as
long as we choose

d
C_ = AT N (27)
exp (- )
By doing the analytic continuation from ¢ = 0 to ¢ = —m, we have lost

the ¢, term and obtained the ¢_ term! By performing these two different
analytic continuations, we are able to start from the wave function in the
forbidden region and determine the complete wave function in the allowed
region. What we find is that in the allowed region, the wave function is given
by (24) or, equivalently, (17) with ¢y and c_ specified by (25) and (27). That
is, in the allowed region

olo) = o cos |1 [ plaar = ] (28)

p(x)

which is the connection formula (3) we set out to prove. Elegant, n’est-ce
pas?
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