Massachusetts Institute of Technology
Physics Department

Physics 8.20 TAP 2008
Introduction to Special Relativity

Problem Set #1 Solutions

Note: All problems marked (RH) are taken from Resnick and Halliday, Basic Concepts in
Relativity (MacMillan, New York, 1992).

1. Speeds (4 points)
What fraction of the speed of light does each of the following speeds represent? (If any
calculation is required, use Newtonian mechanics; ignore any relativistic effects. In cases
where calculation — as opposed to unit conversion — is required, comment on whether
your Newtonian results are good approximations to the correct speed.)

(a) A billiard ball moving at 1 m/sec.

1m/s

=7 —333x107°
3x108m/s X

B

(b) A Kurt Schilling fast-ball, crossing the plate at 90 miles/hr.

1 1 h
8= (90 m;L:S x 1609% X 3500 ;) /(3 103m/s) = 1.34 x 1077

(c) A satellite orbiting the Earth in low-Earth orbit. The radius of the Earth is 6.4x10° m.
The Earth’s gravitational force on the satellite causes its centripetal

acceleration.

mv2

Re

= v =/gR. =~ 7.9 x 10°>m/s
= [~26x107°

Since 0 <« 1, the relativistic corrections are not significant and the Newtonian
calculation gives a good approximation to the true speed.

(d) A proton dropped onto the surface of a white dwarf star from rest at a great distance.
A white dwarf star is a compact star with a mass of about 1.4 times the mass of the
sun and a radius of about 5,000 km. The mass of the sun is 2.0 x 103 kg. Assume
that the proton starts at rest infinitely far from the star. Calculate its kinetic energy
when it crashes into the neutron star surface, and then calculate its velocity.

Using conservation of mechanical energy,

1
Emv2 - GMym/Ry, =0
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[2G M,
=y = = ~ 8.6 x 10%n/s

= (3~ 0.03.

Newtonian approximation holds good in this case as well.

(e) A spaceship, starting from rest, accelerated at 1m/sec? for 50 years. Note this is
about 1/10th the acceleration due to gravity at the surface of the earth.

v = at
— 12 x50 yr x (365 x 24 x 3600) —
s yr
1.6 x 109m/s
=p = 5.

The Newtonian calculation is inaccurate; it gives a speed about 5 times
larger than the speed of light.

(f) An electron in the circular LEP accelerator at CERN in Geneva. This is the highest
energy accelerator in the world, and accelerates electrons to a final energy of 1.01 x 10!
electron-Volts.

Using conservation of energy,

1 2
z —aV
2mv q
2qV
v =
m

=1.88 x 10"'m/s ~ 600c

. 2 x 1.01 x 101 (eV) x 1.60 x 10-19(J/eV)
B 9.11 x 10-31(kg)
~ 600

The Newtonian calculation is inaccurate.

2. Dropping a ball on a train (4 points)

A train moves at constant speed 20 m/s in the = direction as measured by ground observers.
A ball on the train is released from rest at a height of 5 m. Let .S denote the ground frame
of reference and S’ the train’s rest frame.

(a) Describe the motion of the ball as seen by an observer on the train. Write equations
describing the ball’s motion in the frame S’ by specifying z’,y’, 2’ as functions of ¢,
with the initial condition that ball is released at the position 2’ =4 =0, 2 = 5 m
at time ¢’ = 0.

In the frame S’ (train’s rest frame)
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Note: Since two frames have the same orientation: 2 =2/, etc.
For a constant acceleration we have:

T . .
rl = iz_z't/z + ot + 17

Write the components of the above vector equation:

\
o

1
/ _ - t/2 5.
z 29 +

The ball is moving down in the z direction.

(b) Use the Galilean transformation to write equations that describe the ball’s motion in
the frame S. Sketch the trajectory in this frame and state what curve it corresponds
to.

Galilean Transformation (assume at ¢ = 0 ;¢ = 0 and Origins of the two
frames coincide) is

x=a + uyt

y =y +uyt’

2z =2 +u,t
t=1t.

Where @ is relative velocity of the S’ with respect to S which for this
problem is «# = 4+20%. Then we get:

x =0+ 20t =20t
y=0
1 1
= ——gt? +5=——gt? +5
z 29 + 2g +
We should get rid of ¢ for obtaining the trajectory in the z-x plane:
t=u1x/20

g o
sa=-9 4245
#= 50" T

which is a parabola.
(¢) By differentiating the expressions derived in parts (a) and (b), find the three com-

ponents of the ball’s velocity and acceleration in each frame. Verify that Newton’s
second law is satisfied in each frame.

From expression for z/(t'), y'(t'), 2/(¢') we have in frame S’ : (We will write
the equations in the vetor form, it’s just a compact way of writing 3 equations)
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= d’U/ N
a — = —gz.

—ar

In the frame S from the expressions for xz(t), y(t), z(t) we have:

.
ﬁ:agzﬂﬁ—gﬁ

Which results in:

Newton’s second law is obviously satisfied in each frame because
mid=F=-mg:=F =md

3. The Galilean transformation generalized (RH) (4 points)

Write the Galilean coordinate transformation equations (see Resnick Egs. 1-1a and 1-1b)
for the case of an arbitrary direction for the relative velocity ¢’ of one frame with respect to
the other. Assume that the corresponding axes of the two frames remain parallel. (Hint:
let ¥ have components vy, vy, v;.)

The laws of physics (and how to transform from one frame to another) are in

the vector form since Nature doesn’t have any preferance for any direction.

Assume the two coordinates have the same orientation at all times. ( If they

don’t have the same orientation even when there is no relative velocity z #

x', etc. They will be related by a rotation which at this moment is not of interest
to us.) The vector form of Galilean transformation takes the form:

=7 — 0t
t'=t
Write this in the component form:

' =x— vyt

Y =y — vyt

4. Frame independence of momentum conservation (RH) (4 points)
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(a) Let the two particles of masses m; and mo have pre-collision velocities
of #; and i, respectively. Let the post-collision velocities be ¥; and
Us respectively. Then, by conservation of momentum,

—

~
P = Pf )

= mlﬁl + mgﬁg = mlz_)'l + ’ITLQ’UQ .
Now the collision is observed from a train moving with a velocity ¥ relative

to the first observer. The total momentum before the collision in the train’s
frame is

—

P = my @, 4 maily = my (@1 — 0) 4+ mg (@ — T) = P, — (mq 4 my)7.
Similarly, the final momentum is
f%-zzf%-—(nn,+1n2ﬁ7
Therefore,
f% = f%-—(nn,+7n2ﬁ7

—

= P, — (my +m2)7 (using P conservation in unprimed frame)
= P;I .

Hence, if momentum is conserved in one inertial reference frame, then it
is conserved in all inertial reference frames.

(b) Now a transfer of mass takes place and the initial masses are m; and my
while the final masses are m} and m). Proceeding exactly as in part (a),
we find that

13{ = é—(m1+m2)77,
]3} = ﬁf—(m'1+m’2)17
Now if
CR
= Py —(m) +mb)T = P —(my+my)7
=mi+me = m)+mh

1.e. momentum in ground frame is conserved only if the total mass is conserved
/ /
(mq +mg = mi +mj).

5. The invariance of elastic collisions (RH) (4 points)

A collision between two particles in which kinetic energy is conserved is defined to be elas-
tic. Show, using the Galilean velocity transformation equations, that if a collision is elastic
in one intertial reference frame, it will also be elastic in all other such frames. Could this
result have been predicted from the principle of conservation of energy?

For elastic collision in the frame S we have:

1 1 1 1
§m1v% + imgvg - (2m1u% + 2m2u§) =0 (1)
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The question is do we have

1 1 1 1
§mlv’12 + 5m20§2 - (2m1u’12 + ngu’f) =07

From Galilean transformation we have:
i
V=0 +w

Where w is the relative velocity of the frame S’ with respect to frame S. Put
this into equation (1) we have:

1 1 1 1
5’”’11(’0/1 + 1U)2 + img(vé + ’UJ)2 — <2m1(u'1 + ’UJ)2 + §m2(u’2 + 1U)2> =0

1 1 1 1
= §mlv’12 + §m2v§2 - <2m1u/12 + 2m2u’22> +w(P; — P))=0

We know that the last term is zero from problem 4(a)

1 1 1 1
§mlv£2 + §m2v§ — (2m1u’12 + 2m2u’22) =0

Energy conservation is a consequance of Newton’s equations and Galilean transformations
don’t change the Newton’s equations. So energy has to be conserved after doing
Galilean transformation.

6. Work in two inertial frames, I (5 points)

Observer G is on the ground and observer T is on a train moving with uniform

velocity ¢ with respect to the ground. Each observes that a particle of mass

m, initially at rest with respect to the train, is acted on by a constant force

F applied to it in the forward direction for a time ¢ and a is the common acceleration
of the particle.

(a) w.r.t train frame T:
1 1
AFp = 55# +0xt= Eatg

Work done 1 1
Wr = F. AT =md - 5[1’152 = 5ma2t2

Change in kinetic energy
T r_ 1 2 L 9.
Ky — K{ zim(at—l—O) -0= §mat =Wr
w.r.t. ground frame G:

1
ATy = 55#2 +at



MIT 8.20 Special Relativity IAP 2008 7

(b

Work domne

ﬂ 1
Wa=F- -Afg = imaQt2 + muat

Change in kinetic energy

1 1 1
K§ - K& = im(at +u)? — imu2 = §ma2t2 + muat = Wg

So work-energy theorem holds in both frames.

From part (a) we see that A7y # A7y but the forces (for two inertial frames)
are always the same. Displacement in the ground frame is more than the
displacement in the train frame, therefore, despite the forces are same

work done is different in the two frames.

In reference frame attached to train if one wishes to stop the particle

one can draw the work from the particle until it comes to a stop. For example
letting the particle work against a spring attached to train until it stops
relative to train. The amount of work drawn via this process is equal to

the kinetic energy of the particle in the reference frame of the train.

With respect to the ground particle is still moving and still has kinetic
energy. 0One can repeat the same experiment but this time with an spring
attached to ground to bring it to rest relative to ground. In this process
more work can be drawn from the particle by the ground observer and hence
ground observer measuring higher kinetic energy than train observer. However
notice that in the second process train observer will observe that spring
attached to the ground did work on the particle eventually accelerating

in the other direction.

7. Work in two inertial frames, II (5 points)

(a)

()

In the train frame work done by friction is
T L, o
Wf = fAT'T = ifat .

In the ground frame work done by friction is (frictional force X relative
displacement w.r.t. train surface)

1
ng = f(Arg —vt) = §fat2

Alternatively one can think as (work done by friction = work done by friction
on particle - work done by friction on train), since frictional force acting
on the train is in the other direction.

= W§ = fArg — fot = % fat®.

Either way heat produced due to friction is measured to be the same in either
frame of reference.

The only external force acting on the train is reaction of friction from
the particle in forward direction. Since in the time ¢ train moves distance
ut work done on train by friction is fut. Notice that this is also the
gain in the kinetic energy by the train. For the observer on the train,
train surface does not move so there is no equivalent performance by the
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observer on the train.

From ground frame, applied force on particle is (ma+f) and distance travelled
is ($at?+ut). So work done on the particle is (ma-+ f)(3at’+ut). From
previous problem, gain in kinetic energy by the particle is ma(%atQ—i—ut).
However in this problem kinetic energy gained by train is fut. Subtracting
total gain in kinetic energy from total work done by the applied force we

get the heat loss due to friction %fat2 which is independent of the frame

of reference. Alternatively, this amounts to saying that no matter what
frame of reference we are using heat loss due to friction only depends on

the relative surface displacement.

Note: In problems like this, it is useful to break down the system into
simpler components and make free body diagrams for each object separately.

8. Binomial expansion (4 points)

We will be using the “binomial expansion” often in 8.20. It reads:

o a ala—=1) 5 ala—1)(a—2)
I+ = 14+qe+t o€ +——7—~ 3
“(a_i)'(gfzé)l(“_?’)e‘*w.. (2)

This expansion converges when |e| < 1.

(a) For what values of a does the expansion terminate with a finite number of terms?
If ’a’ is a non-negative integer, then the Binomial expansion terminates
with a finite number of terms. The number of terms is then a+1.

(b) Use eq. (2) to derive an expansion for (a + b)® when [b| < |al.

b C
(a+b)¢ = ac<1+> (where |g|<1)
a

. cb cle—1) (b)?
= a <1+1a+2.1(a> +>

(¢) Consider 1/4/1 —v2/c2. Write this in the form (1 + €)* and expand it using the bi-
nomial expansion and give the first four terms.

V- e = (1_’”)_

N U N Ui I S N
B 2¢2 8\ ¢? 16 \ ¢2 o
(d) If v/c = 0.3 how large an error would you make by keeping only the first two terms

in part (c)? the first three terms?
For %’:O.S, the above series becomes

14 0.045 4 0.0030375 + . ..

and the true answer (to 6 dec. pl.) is 1.048285.
Keeping two terms, we get 1.045 which gives an error of 0.003285 or about
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0.3% of the true answer.
Keeping three terms, we get 1.0480375 which gives an error of 0.000247 or
about 0.02% of the true answer.

9. Numbers for Michelson-Morley (4 points)

10.

In the Michelson-Morley experiment of 1887, the length, ¢ of each arm of the interferometer
was 11 meters, and sodium light of wavelength 5.9 x 10~7 meters was used. Suppose that
the experiment would have revealed any shift larger than 0.005 fringe. What upper limit
does this place on the speed of the Earth through the supposed aether? How does this
compare with the speed of the Earth around the Sun?

From eq. (1-8) in Resnick and Halliday,

2132
AN = —
A

AAN
=8 = 5

\/5.9 x 10=7 x 0.005
2 % 11

=04 < 12x107°

=v < 36km/s.

=0 <

The earth’s orbital speed is about 30km/s which is 12 times greater than the
upper limit predicted above.

Michelson-Morley for a real wind (RH) (4 points)

A pilot plans to fly due east from A to B and back again. If u is her airspeed and if £ is
the distance between A and B, it is clear that her round-trip time tq — if there is no wind
— will be 2¢/u.

(a)

Suppose, however, that a steady wind of speed v blows from the west. What will the
round trip travel time now be, expressed in terms of ¢y, u, and v?

If a steady wind of speed v blows from west to east, then the speed of the
airplane relative to the earth is u+wv toward the east and u—v toward
the west. So,

u—+v U —v
2lu

w2 — 2

1—(v/u)?

where 1y = %l

If the wind is from the south, find the expected round-trip travel time, again as a
function of tg, u, and v.

If the wind is from the south, the plane will have to be directed at an
angle 0 south of east in going from A to B so that the southward speed relative
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to the earth is wsinf — v. This will be zero when 6 = sin~! ©. So the
eastward travel time will be uci)st?' The westward travel time is exactly
the same. So,
f 21
27 ucosd
_ 21
uyv/1—sin0
to

1—(v/u)?

(c) Note that these two travel times are not equal. Should they be? Did you make a
mistake?

The two travel times must be unequal, as velocity of the wind is a vector.
The only way these two times can be the same is if v = (0. Hence given
a non-zero wind velocity, the result is correct.

(d) In the Michelson-Morley experiment, however, the experiment seems to show that
(for arms of equal length) the travel times for light are equal; otherwise these ex-
perimenters would have found a fringe shift when they rotated their interferometer.
What is the essential difference between these two situations?

The essential difference is that light does not propagate in an ether wind
and the speed of light is the same in all inertial frames of reference.

In other words something that propagates in a medium gets dragged by the
medium in a frame of reference in which medium is moving. The result of
Michelson-Morley experiment shows that light does not propagate in a medium.

11. Michelson-Morley generalized (French - Ch.2, problem 8, p 60) (5 points)

From Figure 1 schematics of Michelson-Morley experiment for general orientation
should be evident. At time ¢{=0 light rays leave the beam splitter for mirrors
M; and M,. The light ray that left for mirror M; hits the mirror at ¢t =1,
and at ¢ =1{;+i> it comes back to beam splitter. The light ray that left for
mirror M, hits the mirror at ¢t = t3 and at ¢t = t3 + t4 it comes back to beam
splitter.In order to evaluate At = (t3+1t4)—(t1+12) we wish to evaluate time
intervals t1 +ty and tg+ 4.

Before we get down to calculation remind yourself of this identity for triangles.
Consider a triangle ABC with sides AB, BC, CA and angle at C (say «a), then
we know that following relation holds

(AB)? = (BC)? + (CA)? — 2(BC)(CA) cos a. (3)

Now consider triangle OAM;. We know that angle /OAM; =90°4+60. Therefore
using the triangle identity above we have

(ct1)?* = (vt1)* + 1% — 2lvt; cos(90° + 0)
= (vt1)* + 1% + 2lvt, sin 6. (4)

Similarly from triangle BAM; (/BAM; =90° —0) we get
(ct2)? = (vtg)* + 1 — 2ty sin 6. (5)
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t=0 t=t1 t=tl+t2

M1
e
v
—v.tl—v.t2— Lo
(a) arm L1 in ether frame O:
M2

b— vVv.t3 —+v.t4 —

O: (c) apparatus in lab frame

(b) arm L2 in ether frame

11

Figure 1: Schematics of Michelson-Morley experiment for general orientation w.r.t ether wind.

Paths of light rays from beam splitter to mirrors and back are indicated in red.

Solving eqn. (4) and eqn. (5) we get

2lvsin 6 + \/4l2112 sin? @ + 412(c2 — v2)

b= 2(c? —v?)
—2lvsinf + \/4[2112 sin? 0 4 412(c2 — v?)
2 = 2(c? —v?)
2\/4l21/2 sin? @ + 412(¢c2 — v2)
=ttty = o
20v/c? —v2cos? 6

(=)

Now for triangle OCM;y (with /OCM,; = 180° — #) and triangle DCM; (with

LDCMy =6)

(ct3)> = (vt3)? + 1% + 2lvts cos d
(cty)® = (vty)? + 1% — 2wty cosh

respectively. Solving these equations we get

2lv cos 0 + /41202 cos? 0 + 412(c2 — v?)
2(c? —v?)

ty =
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—2lv cos 0 + /41202 cos? 0 + 412(c? — v?)

2(c? —v?)
2\/4121)2 cos? 0 + 412 (c? — v?)
= ts bty =
st 2(c? —v?)
2 2 —v2sin% 0
- T @-®
Therefore,

At = (t3 + t4) — (tl + tz)

= 2_lv2 (\/CQ—UZSiHQH—\/02—1}200829)

c2

21 2 v2sin%0 v2 cos? 0
= 2Uta et e ) el e

21 v? v2 v

2

lv
5 cos(20).

%

12. Michelson-Morley for sound waves (French - Ch.2, problem 9, p 61) (5 points)

(a) From previous problem we know that the time difference between pulse reflected
from M; and pulse reflected from M, is given

2
At = lc% cos(26)

where 0 is angle between wind and one of the arms. Microphone receives

the pulse reflected from one of the arms and then a pulse reflected from

another arm because of this time lag. In most orientations cos(26) is a

number of order 1, therefore At will be small but finite. Only when cos(20) =

0 there will be no time lag.

(b) Time delay is maximum when cos(20) = £1. This happens at 0§ =0, 7/2, w, 3mw/2
1.e. in four orientations. In other words when wind is parallel to one
of the arms.

(c) We have
A w2
(At)max = =
Cg(At)maX

l

(300)3 x 105

=\ s

9.49 m/s.
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13. Ehrenfest’s thought experiment (RH) (5 points)

Paul Ehrenfest (1880-1933) proposed the following thought experiment to illustrate the
different behavior expected for light under the ether wind hypothesis and under Einstein’s
second postulate:

Imagine yourself seated at the center of a spherical shell of radius 3 x 108 meters, the inner
surface being diffusely reflecting. A source at the center of the sphere emits a sharp pulse of
light, which travels outward through the darkness with uniform intensity in all directions.
Ezplain what you would expect to see during the three second interval following the pulse

under the assumptions that,

(a)

there is a steady ether wind blowing through the sphere at 100 km/sec,

The light will radiate outwards, hitting first the wall in the direction
the ether wind is blowing, in a time slightly less than one second. Light
will bounce off of the walls, and slightly more than two seconds later you
will see the first reflected light. You will be illuminated from reflected
light from that time forward.

there is no ether and Einstein’s second postulate holds.

The light will radiate outwards, hitting all points on the spherical shell
at the same time. Light will bounce off the walls, and exactly two seconds
later you will see the first reflected light. You will be illuminated from
reflected light from that time forward.

Discuss the relationship of this thought experiment to the Michelson-Morley Experi-

ment.

Both this thought experiment and the Michelson-Morley experiment set up
situations in which the ether wind hypothesis and Einstein’s second relativity
postulate make observably different predictions.

14. Weighing the sun (RH) (4 points)

(a)

Show that M, the mass of the sun, is related to the aberration constant, o = tan =1 o
by
a’c®R
G
in which R is the radius of the Earth’s orbit (which we assume to be circular) and G
is Newton’s constant (G = 6.67 x 107N m/kg?. Hint: apply Newton’s second law
to the Earth’s motion around the sun.

The Earths orbital motion around the Sun causes the Sun to have an aberration
angle « when viewed through a telescope. Since the distance between the
Earth and the Sun is much larger than the diameter of the Earth, the motion
of the telescope may be considered to be perpendicular to the direction

of the sun. ©So the aberration is given by

v v
a=tan -~ —
c

for small orbital velocity v.(NOTE: o« for the above relation is in radians).
Now v may be computed by considering the centripetal acceleration of the
earth caused by the gravitational force due to the sun:

GM 2
R2 R
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N GM
v o= —_—
R
g = M
@ = Re?
2¢2R
M =
= G

(b) Calcuate M given that o = 20.5” and R = 1.50 x 10'1m.

Angel unit conversions: ” denotes arc seconds which is 1/60 of arc minute
(/) and arc minute itself is 1/60 of a degree (°). 180° is w radians.

Plugging in a = 20.5” = 9.94 x 107° rad., R = 1.50 x 10m, G = 6.67 x
107 1m3/(kgs?) and ¢ =3 x 103m/s, we get

M = 2.00 x 10%%kyg .

This agrees with the known mass of the sun.

15. “Emission theories” (6 points)

One of the early responses to the realization that electromagnetism predicts that the speed
of light is a constant took the form of “emission theories”. These theories assume that the
speed of light is a constant, ¢, with respect to the source that emits it. They then have
to deal with what happens when the emitted light reflects off a mirror — what velocity
counts then? Consider three versions of emission theories that differ in their predictions of
what the speed of light will be upon reflection from a mirror:

e The “original source” theory: the speed remains c relative to the original source.

e The “ballistic” theory: the speed is originally c relative to the original source, but
upon reflection from the mirror it becomes c relative to the mirror.

e The “new source” theory: the speed is originally c relative to the original source, but
becomes c relative to the mirror image of the source upon reflection.

Now suppose that a source of light, .S, and a mirror M are moving away from one another.
To be explicit, assume that the source is moving to the left with speed w in the laboratory,
and a mirror, M is originally moving to the right with speed v. What is the speed of a
light beam (as measured in the laboratory) originally emitted by the source after it has
been reflected from the mirror according to each of the three “theories”?

Choose the left direction to be negative and the right positive. The speed
of the mirror is v and that of the source is —wu in the lab frame. Consider
the situation before the reflection from the mirrior of the beam of light. 1In
all three emission theories the speed of light in the rest frame of the source
is ¢, in the rest frame of the mirror is c—u—v, and in the lab frame is c—

Uu.
After reflection from the mirror, the velocity of light as measured in the lab
frame:

e in the ‘‘original source’’ theory is —(c+wu): In the rest frame of the

source, the light is reflected back from the mirror with velocity —c. To



MIT 8.20 Special Relativity IAP 2008 15

transform back to the lab frame, we must add the velocity —w, which gives
—(c+u).

e in the ‘‘ballistic’’ theory is —(c—v): This time, the light is refelcted
back with velocity —c¢ in the rest frame of the mirror. So to go back to
the lab frame, we must add v, which gives —c+w.

e in the ‘‘new source’’ theory is —(¢—wu —2v): In the rest frame of the
mirror, the source and its image move away from each other with equal and
opposite velocites and the velocity of the image is u+wv. The light is
reflected with velocity —c in the rest frame of the image, in which the
mirror now moves with velocity —(u+v). To transform back to the lab frame,
we need to add (u+wv)+ v, resulting in —c+ u+ 2v.

According to Einstein’s second postulate what would be the the measured speed of a light
pulse (either before or after reflection from the mirror) as viewed from i) the lab frame; ii)
the rest frame of the mirror; iii) the rest frame of the source.

The lab frame and the rest frames of the source and the mirror, all three are
inertial frames. So, according to Einstein’s second postulate the speed of
light is ¢, in all of them, both before and after the reflection from the mirror.

16. Invariance of the wave equation (3 points)

As discussed in lecture, starting from Maxwell’s equations, it is possible to derive a wave
equation whose solutions represent electromagnetic waves. The equation for the electric
field, E, may be written
0? 1 02
—E(z,t) - 5 =—
Ox? 2 ot?

where c is the speed of light.

E(z,t) =0 (6)

(a) In lecture, we showed that E(x,t) = fo(x — ct) is a solution to this equation that
travels to the right with speed c. for any function, fo. Is fo(x + ct) also a solution?

Let wy =2 +ct. Then,

9 _ df(wy) Qwy
P e e re
~ df(wy)
o dU)+
9?2 d>
= @f(uhr) = mf(wﬂ
and
9 _ df(wy) Owy
ol = T e
0
= +c Jus flwy)
0? d?
= @f(ubr) = chwi flwy).
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So,

0? 1 02 d? 1 d?
@f(wﬁ - cﬁ@f(““—) = rwi flwy) — 072027(11111
0

fwy)

and f is a solution to the wave equation.
If so, describe its motion.

To track which way a wave is going we can focus at the particular height
(or in the case of electromagnetic wave at some intensity) and follow its
motion. For our solution this correspons to fixing the argument of f at
zo then,

T+ ct=x9 = =209 — Ct.

This shows that the point that we have focused on is moving to the left
direction. This solution corresponds to a wave which is moving to the left.

(b) Show that eq. (6) is not invariant under the Galilean transformation z’ = x—vt, t' = t.

Under a Galilean transformation, E(z,t) — E(z/,t).

EE( By = OE s’  OE O
oz YT 8 ox T ov oz
_ aj 1+a£ 0
- ox ot’
_ 9F
- ox
52 PE
= o2t = Hep
Similarly,
o OE 0x'  OFE o'
af@ = oo Tar
_ _,O9E 0B
= Y T or
92 52 52 52
— E(z,t) = 2 -2 E(
= gz t@t) (a(t/)2 FTPOE ”ax'at') @ 6)
So,
2 82 82 .y 82 .y
ﬁE(IE,t)—?@E(I',t) 7é WE(x7t) ?a(t/)gE(xvt)

and the wave equation is not Galilean-invariant.

(¢) Show however that eq. (6) is invariant under the Lorentz transformation z’ = a(z—vt),
t' = a(t —vz/c?), where a = 1/,/1 —v2/c2.
Plug in the expressions for the primed coordinates and simply to get the
same wave equation in primed coordinates.
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9O ployy = 2B OB
T, WO T
_ o8 OB —w
T o v ot c2
0? o [ 02 v? 92 20 02
= gzt = 1 (8(x’)2+c48(t’)2_028t’8m’>E
Similarly,
) OF 8z’ OE ot
alf@t = o Tarar
OF OF
= o U g
o2 L[ 2, 52
= et = 7 (a(t/)2+” 8(x’)2_2vam’8t’)E
So,

0? 1 092 v? 02 1 92

——FB(z,t) — == F(z,t) = ¥*(1-—= ——Et)- = E(2'
SE@d) - 5abad) = 7 (1- %) (Gombet) - Z5mEa )
0? I

—=E@ ) - 5 —= Bt

therefore the wave equation is Lorentz-invariant.

Aberration, before and after Einstein (RH) (5 points)

Show that, according to special relativity, the classical aberration equation,
v .
tana, = — classical theory
c

must be replaced by
v
sina, = — relativity theory.
c

According to the special theory of relativity, the speed of light is a constant
in all inertial frames, and so the speed along the telescope axis is

C.

According to relativity, in a time At, light travels a distance cAt along the
telescope and the telescope itself travels a distance vAt. So,

. vAt v

sinq, = —— = —.
" At ¢

According to the ether hypothesis, the light is traveling with a speed ¢ and
an ether wind of speed v is perpendicular to it. So, the net speed of light

along the telescope axis is
V2 402

. vAt v St v
SN &, = = ano,. = —
CVETVIAL R 2 e
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18.

Thus the ether theory and relativity make different predictions for the aberration of
starlight. However the differences are very small. To see this, consider a realistic case.
Assume that the Earth’s orbital speed is 30 km/sec and take ¢ = 3.00 x 10® m/sec. Find
the fractional difference,
_ Qe — Qp
f= o

Note the differences are so small that your calculator may fail to capture the significant
figures. Instead use the series expansions:

1 3
s o—1 _ L3 5
sin. "z = x—|—6x +—4Ox
1 1
tan—! _ 1t 3, 1.5
an ~x x 39: +5x

The earth’s orbital speed is 30km/s which corresponds to
B=10""«1.

Now,
tana, = f =sinay. .

Since [ is much smaller than 1, a. and «, may be expanded in a series in powers
of B and a truncation after the first few terms will yield an accurate answer.

a, = sin 'p
1
= B+,
6
a. = tan"'p
L 3
= ﬁ—gﬁ + ...,
143
Qe — Oy Qﬁ 4
- < T _ _2F 10
~ —5x1077.

So, stellar aberration is not very sensitive to the difference between the ether
hypothesis and relativity.

Aberration due to the Earth’s rotation (5 points)

In class we discussed the stellar aberration generated by the Earth’s motion around the
Sun. The rotation of the Earth about its axis also causes stellar aberration.

(a) Explain why the amount of stellar aberration generated by the Earth’s rotation de-
pends upon the latitude of the observer.

The linear velocity, v, at a latitude 0, owing to the Earth’s rotation,
is
v = w(Re cos )
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where the angular velocity of rotation is w = 27/(lday) and the radius
of the Earth is R, = 6400km. So, the stellar aberration for a star in
a direction perpendicular to the direction of v is given by

v

tana = -
c

wR, cosb
c
1.55 x 107 % cos @

=a =~ (1.55x10 %cosf) rad. or (0.32cosh)”.

(b) For an observer at a given latitude explain why the amount of aberration depends on
the compass direction of the star being observed. Compare, for example, the aber-
ration of a star viewed on the eastern or western horizon with one on the northern
horizon and with one directly overhead.

A star viewed on the eastern or western horizon has no aberration because

the direction of motion of the telescope is along the direction of the starlight.
However, if a star is viewed on the northern horizon then the telescope

is moving perpendicular to the starlight and tana is given by the expression

in part (a). Similarly, for a star directly overhead, the expression in

part (a) holds.

(c) What is the largest aberration angle (the tilt of the telescope) due to the Earth’s rota-
tion alone for an observer a) at the North Pole, b) at the equator, and c¢) at latitutde
45° north.

The largest aberration angle is when the telescope moves in a direction
perpendicular to the direction of the starlight and is given by

a = (0.32cos 0)"”

as derived in part (a).

North Pole (A =90°): «a=0.
Equator (A =0°): «a=~0.32".
0 =45°: a~0.238".

19. Relativity of simultaneity (5 points)

A plane flies overhead an observer on the Earth. Treat both the Earth and the plane as
inertial frames for this problem. The speed of the plane is v. When the plane is overhead a
light signal is emitted from the center of the plane. Subsequently it is detected by observer
A in the front of the plane and observer B in the rear of the plane. Both observers measure
their distance from the center of the plane to be d.

(a) Assume the speed of light is ¢ as measured by the observers in the plane. Explain
why observers A and B agree that the light signal reaches them simultaneously. How
much time does the light take to reach them?

The time the light takes to reach each of A and B is t=d/c.
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(b) Assuming that the speed of light is also ¢ as measured by an observer on the Earth,
explain why the Earth-bound observer would say that the arrival of the light signal
at A and at B were not simultaneous events.
A is moving towards the light source, and hence sees the light signal at
time t4 given by solving cty =d—wvty. Point B is moving away from the
light source, and hence sees the light signal at time t{p given by solving
ctg =d+vtg. We find ty4 <t -- the events are not simultaneous in the
frame of the observer at rest on the Earth.

20. A feeling for the Lorentz factor (5 points)

1
\/1—v2/c?
usual consequences of relativity (time dilation and length contraction, for example). What
must an object’s velocity be relative to you, the observer, for it’s Lorentz factor to be:

(a) 1.001, (b) 1.2, (c) 20, (d) 1000, (e) 10° ?

The “Lorentz factor”, v = determines the magnitude of many of the most un-

1 -1
S S
Nz 3
(a)
v =1.001 = [ = 0.0446879
(b)
v =1.2= [ = 05527708
(c)
v =20 = [ = 0.9987492
(@
v = 1000 = B = 0.9999995
(e)

v =10° = 4 = 1.0000000
where the answers are given to 7 decimal places.

21. Inverse Lorentz transformation

Suppose two inertial frames are related by a Lorentz transformation:

¥ = ~(x—ot)

y =

7 = z

t = At —wvz/?)

Solve for z,y, z,t in terms of z’, 4/, z’,t' and show that the transformation is identical ex-
cept for v — —uv.

This is straightforward algebra.
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22. Lorentz transformation in an arbitrary direction (6 points)

Suppose two inertial frames, ¥ and ¥/ move such that their coordinate axes are parallel,
their origins coincide at t = ¢’ = 0, and the origin of ¥’ is observed to move with velocity
¥ in 3. Starting from the form of the Lorentz transformation when the relative motion is
along a coordinate axis, derive the Lorentz transformation relating z’,vy’, 2/, t' to z,y, 2, t.
[Hint: it will be useful to decompose & into &) = 9(0 - ¥) and ¥, =7 — Z.]

The parallel component of & will transform and contribute to the the time transformation:

= 7(#—%@0
- (-5en)
~ 5 (t- 56-0)
oy = vz —vt)

The perpendicular component of # will remain Lorentz-invariant:

7 o= I
=7 —z0 = T
=7 = f—}—:cl‘v—xﬂv
= f—&—v(mu—vt)@—x”ﬁ
I all Y
= I+ —5— (V- D)V -yt

L.

t = ’y(?ﬁ—CQ(v-x)),
-1

7= it (V- Z)T — vyt

It is easy to check that for ¥ =i, the above equations reduce to the usual
Lorentz transformation equations when the relative motion is along a coordinate
axis.



