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2 FELIPE CUCKER AND STEVE SMALEparticular this includes Gregorio Malajovich, Massimiliano Pontil, Yuan Yao, andespecially Ding-Xuan Zhou.(2)We now describe some cases of learning where we have simpli�ed to the extreme.Case 1. A classical example of learning is that of learning a physical law by curve�tting to data. Assume that the law at hand, an unknown function f : R! R, has aspeci�c form and that the space of all functions having this form can be parameter-ized by N real numbers. For instance, if f is assumed to be a polynomial of degreed, then N = d+1 and the parameters are the unknown coe�cients w0; : : : ; wd of f .In this case, �nding the best �t by the least squares method estimates the unknownf from a set of pairs (x1; y1); : : : ; (xm; ym). If the measurements generating this setwere exact, then f(xi) would be equal to yi. But in general one expects the valuesyi to be a�ected by noise. One computes the vector of coe�cients w such that thevalue mXi=1(fw(xi)� yi)2; with fw(x) = dXj=0wjxjis minimized where, typically,m > N . In general, the value above is not minimizedat 0. The least squares technique, going back to Gauss and Legendre, which is com-putationally e�cient and relies on numerical linear algebra, solves this minimizationproblem.In some contexts the xi, rather than being chosen, are also generated by aprobability measure. Thus, one might take as a starting point, instead of theunknown f , a probability measure on R varying with x 2 R. Then yi is a samplefor a given xi. The starting point could be even a single measure on R�R fromwhich the pairs (xi; yi) are randomly drawn. The latter is the point of view takenhere.A more general form of the functions in our approximating class could be givenby fw(x) = NXi=1 wi�i(x)where the �i are part of a \preconditioning step". This is reminiscent of neuralnets where the wi are the weights to be adjusted by \training".Case 2. A standard example of pattern recognition is that of recognizing hand-written characters. Consider the problem of classifying handwritten letters of theEnglish alphabet. Here, elements in our space X could be matrices with entries inthe interval [0; 1] |each entry representing a pixel in a certain grey scale of a photoof the handwritten letter or some features extracted from the letters. We may takeY to be Y = (y 2 R26 j y = 26Xi=1 �iei s.t. 26Xi=1 �i = 1) :Here ei is the ith coordinate vector in R26 (each coordinate corresponding to aletter). If � � Y is the set of points y as above such that 0 � �i � 1, fori = 1; : : : ; 26, one can interpret a point in � as a probability measure on the setfA,B,C,: : :,X,Y,Zg. The problem is to learn the ideal function f : X ! Y whichassociates, to a given handwritten letter x, the point fProbfx =Ag, Probfx =Bg,: : : ;Probfx =Zgg. Non-ambiguous letters are mapped into a coordinate vector, and in



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 3the (pure) classi�cation problem f takes values on these ei. \Learning f" meansto �nd a su�ciently good approximation of f within a given prescribed class.The approximation of f is constructed from a set of samples of handwrittenletters, each of them with a label in Y . The set f(x1; y1); : : : ; (xm; ym)g of thesem samples is randomly drawn from X � Y according to a measure � on X � Y ,and the function f to be learned is the regression function f� of �. That is, f�(x)is the average of the y values of fxg � Y (we will be more precise about � and theregression function in Section 1 in the next chapter).Case 3 (Monte Carlo integration). An early instance of randomization used in al-gorithms is for computing integrals. Let f : [0; 1]n ! R. A way of approximat-ing the integral Rx2[0;1]n f(x)dx consists of randomly drawing points x1; : : : ; xm 2[0; 1]n and computing Im(f) = 1m mXi=1 f(xi):Under mild conditions on f , Im(f) ! R f with probability 1; i.e., for all " > 0,limm!1 Probx1;::: ;xm�����Im(f) � Z f���� > "�! 0:We �nd again the theme of learning an object (here a single real number, al-though de�ned in a non-trivial way through f) from a sample. In this case themeasure governing the sample is known (the measure in [0; 1]n inherited from thestandard Lebesgue measure on Rn), but the same idea can be used for an unknownmeasure. If �X is a probability measure on X � Rn, a domain or manifold, Im(f)will approximate Rx2X f(x)d�X , for large m with high probability, as long as thepoints x1; : : : ; xm are drawn from X according to the measure �X .Case 4. The approximation of characteristic (or indicator) functions of sets isknown as PAC learning (from Probably Approximately Correct). Let T (the targetconcept) be a subset of Rn and �X be a probability measure on Rn which we as-sume is not known in advance. Intuitively, a set S � Rn approximates T when thesymmetric di�erence S�T = (S � T ) [ (T � S) is small, i.e. has a small measure.Note that if fS and fT denote the characteristic functions of S and T respectively,this measure, called the error of S, is RRn(fS � fT )2d�X .Let C be a class of subsets of Rn and assume that T 2 C. A strategy to con-struct an approximation of T is the following. First, draw points x1; : : : ; xm 2 Rnaccording to �X and label each of them with 1 or 0 according to whether or notthey belong to T . Secondly, compute any function fS : Rn! f0; 1g, fS 2 C, whichcoincides with the labeling above over fx1; : : : ; xmg. Such a function will providea good approximation S of T as long as m is large enough and C is not too wild.Thus the measure �X is used in both capacities, governing the sample drawing andmeasuring the error set S�T .A major goal in PAC learning is to estimate as a function of " and � how largem needs to be to obtain an " approximation of T with probability at least 1� �.A common characteristic of the cases above is the existence of both an \un-known" function f : X ! Y and a probability measure allowing one to randomlydraw points in X � Y . That measure can be on X (Cases 3 and 4), on Y varyingwith x 2 X (Case 1), or on the product X �Y (Case 2). It can be known (Case 3)



4 FELIPE CUCKER AND STEVE SMALEor unknown. The only requirement it satis�es is that, if for x 2 X a point y 2 Ycan be randomly drawn, then the expected value of y is f(x).The development in this paper, for reasons of unity and generality, will be basedupon a single measure on X � Y . Yet, one should keep in mind the distinctionbetween \inputs" x 2 X and \outputs" y 2 Y .In the sequel, we will try to give a rigorous development of what we have foundto be the central ideas of learning theory. However, learning theory in its variousforms is vast, and we don't even touch on important parts such as \unsupervisedlearning", relations with dynamics, with neural nets, and so on. \Classi�cation" isnot covered directly. However, this report could be of use in further foundationalstudies in these areas.Since the readers will have diverse mathematical backgrounds, we sketch theproofs of some standard theorems, with references to the literature for fuller ac-counts. When the result is new, we are more complete.Practical results are not the goal of this paper. Understanding is. We try to writein the spirit of H. Weyl and J. von Neumann's contributions to the foundations ofquantum mechanics. Chapter I: Sample Error1. A formal setting: The probability measure on the product spaceand the errorSince we want to study learning from random sampling, the primary object inour development is a probability measure � governing the sampling and which isnot known in advance (however, the goal is not to reveal �).Let X be a compact domain or a manifold in Euclidean space and Y = Rk. Forconvenience we will take k = 1 for the time being. Let � be a Borel probabilitymeasure on Z = X � Y whose regularity properties will be assumed as needed. Inthe following we try to utilize concepts formed naturally and solely from X;Y and�. Throughout this paper, if � is a random variable, i.e. a real valued function ona probability space Z, we will use E(�) to denote the expected value (or average,or mean) of � and �2(�) to denote its variance. ThusE(�) = ZZ � d� and �2(�) = E((� � E(�))2) = E(�2)� (E(�))2:A main concept is the error (or least squares error) of f de�ned byE(f) = E�(f) = ZZ(f(x) � y)2 for f : X ! Y .For each input x 2 X and output y 2 Y , (f(x) � y)2 is the error su�ered from theuse of f as a model for the process producing y from x. By integrating over X �Y(w.r.t. �, of course) we average out the error over all pairs (x; y). Hence the word\error" for E(f).The problem is posed: What is the f which minimizes the error E(f)?The error E(f) naturally decomposes as a sum. Let us see how.For every x 2 X, let �(yjx) be the conditional (w.r.t. x) probability measure onY and �X be the marginal probability measure on X, i.e. the measure on X de�nedby �X (S) = �(��1(S)) where � : X � Y ! X is the projection. Notice that �,



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 5�(yjx) and �X are related as follows. For every integrable function ' : X � Y ! Ra version of Fubini's Theorem states thatZX�Y '(x; y) d� = ZX �ZY '(x; y) d�(yjx)� d�X :This \breaking" of � into the measures �(yjx) and �X corresponds to looking at Zas a product of an input domain X and an output set Y . In what follows, unlessotherwise speci�ed, integrals are to be understood over �, �(yjx) or �X .De�ne f� : X ! Y by f�(x) = ZY y d�(yjx):The function f� is called the regression function of �. For each x 2 X, f�(x) is theaverage of the y coordinate of fxg � Y (in topological terms, the average of y onthe �ber of x). Regularity hypotheses on � will induce regularity properties on f�.We will assume throughout this paper that f� is bounded.Fix x 2 X and consider the function from Y to Rmapping y into (y � f�(x)).Since the expected value of this function is 0, its variance is�2(x) = ZY (y � f�(x))2d�(yjx):Averaging over X, de�ne �2� = ZX �2(x) d�X = E(f�):The number �2� is a measure of how well conditioned � is, analogous to the notionof condition number in numerical linear algebra.Remark 1. (a) It is important to note that, while � and f� are mainly \unknown",�X is known in some situations and can even be the Lebesgue measure on Xinherited from Euclidean space (as in Case 1 above).(b) In the rest of this paper, if formulas do not make sense or 1 appears, thenthe assertions where these formulas occur should be considered vacuous.Proposition 1. For every f : X ! Y ,E(f) = ZX(f(x) � f�(x))2 + �2�:Proposition 1 has the following consequence:The �rst term in the right-hand side of Proposition 1 provides an average (overX) of the error su�ered from the use of f as a model for f�. In addition, since �2�is independent of f , Proposition 1 implies that f� has the smallest possible erroramong all functions f : X ! Y . Thus �2� represents a lower bound on the error E ,and it is due solely to our primary object, the measure �.Thus, Proposition 1 supports:The goal is to \learn" (i.e. to �nd a good approximation of) f� fromrandom samples on Z.



6 FELIPE CUCKER AND STEVE SMALEProof of Proposition 1. We haveE(f) = ZZ(f(x) � f�(x) + f�(x)� y)2= ZX (f(x) � f�(x))2 + ZX ZY (f�(x)� y)2+2 ZX ZY (f(x) � f�(x))(f�(x)� y)= ZX (f(x) � f�(x))2 + �2�:We now consider the sampling. Letz 2 Zm; z = ((x1; y1); : : : ; (xm; ym))be a sample in Zm, i.e. m examples independently drawn according to �. HereZm denotes the m-fold Cartesian product of Z. We de�ne the empirical error of f(w.r.t. z) to be Ez(f) = 1m mXi=1(f(xi)� yi)2:If � is a random variable on Z, we denote the empirical mean of � (w.r.t. z) byEz(�). Thus, Ez(�) = 1m mXi=1 �(zi):For any function f : X ! Y we denote by fY the functionfY : X � Y ! Y(x; y) 7! f(x) � y:With these notations we may write E(f) = E(f2Y ) and Ez(f) = Ez(f2Y ). We alreadyremarked that the expected value of f�Y is 0; we now remark that its variance is�2�.Remark 2. Consider the setting of PAC learning discussed in Case 4 where X = Rn.The measure �X described there can be extended to a measure � on Z by de�ning,for A � Z, �(A) = �X (fx 2 X j (x; fT (x)) 2 Ag):The marginal measure on X of � is our original �X . In addition, �2� = 0, theerror above specializes to the error mentioned in that discussion, and the regressionfunction f� of � coincides with fT except for a set of measure zero in X.2. Convergence in probabilityToward the proof of our main Theorems B and C we recall some basic inequalitiesin probability theory. The �rst one, Chebyshev's inequality, is classical. For a proofof the second one, which is an exponential extension of Chebyshev's inequality forbounded random variables, see [32].



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 7Proposition 2. Let � be a random variable on a probability space Z with meanE(�) = � and variance �2(�) = �2.[Chebyshev] For all " > 0Probz2Zm(����� 1m mXi=1 �(zi)� ������ � ") � �2m"2 :[Bernstein] If j�(z)� E(�)j �M for almost all z 2 Z, then, for all " > 0,Probz2Zm(����� 1m mXi=1 �(zi)� ������ � ") � 2e� m"22(�2+ 13M") :Remark 3. (i) The inequalities in Proposition 2 can be seen as quantitative ver-sions of the law of large numbers.(ii) Bernstein's inequality without the absolute value provides a bound withoutthe �rst 2, i.e. e� m"22(�2+ 13M") (see [32]).(iii) Another exponential version of Chebyshev's inequality, due to Hoe�ding, isoften used in the learning literature. With the notations used in the statementof Proposition 2, Hoe�ding's inequality readsProbz2Zm (����� 1m mXi=1 �(zi)� ������ � ") � 2e�m"22M2 :Notice that when we replace �2 by its obvious bound M2, the exponent inBernstein's inequality becomes� m"22M2 + 23M"which is slightly worse than Hoe�ding's. Since we may assume " � M (oth-erwise the probability in the statement is zero) we have 2M2 + 23M" �2M2(1 + 1=3). It follows that this exponent is multiplied by a factor ofat most 3=4. However, in the other extreme, when �2 = 0, the exponent inBernstein's inequality becomes �3m"2Mwhich is much better than the exponent in Hoe�ding's inequality.We also note that Chebyshev's inequality yields a better bound than bothBernstein's and Hoe�ding's for small m.Let f : X ! Y . The defect function of f isLz(f) = L�;z(f) = E(f) � Ez(f):Notice that the theoretical error E(f) cannot be measured directly while Ez(f) can.A bound on Lz(f) becomes useful since it allows one to bound the actual errorfrom an observed quantity.Our �rst main result, Theorem A, states bounds for ProbfjLz(f)j � "g for asingle function f : X ! Y . This bound follows from Proposition 2 by taking� = f2Y .



8 FELIPE CUCKER AND STEVE SMALETheorem A. Let M > 0 and f : X ! Y be such that jf(x) � yj � M almosteverywhere. Then, for all " > 0,Probz2ZmfjLz(f)j � "g � 1� 2e� m"22(�2+ 13M2")where �2 is the variance of f2Y .Remark 4. (1) Note that the con�dence (i.e. the right hand side in the inequal-ity above) is positive when m is larger than 2(�2+ 13M2")"2 and approaches 1exponentially fast with m.(2) A case implying the condition jf(x) � yj �M a.e. is the following. De�neM� = inf �M � 0 j f(x; y) 2 Z j jy � f�(x)j �Mg has measure zero	 :Then take M = P +M� where P � kf � f�k1 = supx2X jf(x) � f�(x)j.3. Hypothesis spaces and target functionsLearning processes do not take place in a vacuum. Some structure needs to bepresent at the beginning of the process. The nature of this structure in the instanceof language acquisition mentioned in the introduction is a subject of debate amonglinguists. In our formal development, we will assume that this structure takes theform of a class of functions. The goal of the learning process will thus be to �ndthe best approximation of f� within this class. Therefore, we now move the focusfrom a function f : X ! Y to a family H of such functions.Let C(X) be the Banach space of continuous functions on X with the normkfk1 = supx2X jf(x)j:We consider a compact subset H of C(X) |in the sequel called hypothesis space|where algorithms will work to �nd, as well as possible, the best approximation forf�. A main choice in our paper is a compact, in�nite dimensional, subset of C(X),but we will also consider closed balls in �nite dimensional subspaces of C(X). It isimportant for us to choose H in this way so that the existence of fH and fz (seebelow) is guaranteed, Proposition 3 below can be proved, and covering numbers are�nite (see Section 4).If f� 2 H, simpli�cations will occur. But in general, we will not even assumethat f� 2 C(X), and we will have to consider a target function fH in H.Let fH be a function minimizing the error E(f) over f 2 H, i.e. an optimizer ofminf2H ZZ(f(x) � y)2:Notice that, since E(f) = RX(f � f�)2 + �2�, fH is also an optimizer ofminf2H ZX(f � f�)2:The existence of fH follows from the compactness of H and the continuity ofE : C(X) ! R (see Remark 7 below). It is not necessarily unique. However, we willsee a uniqueness result in Section 7 when H is convex.



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 9Let z 2 Zm be a sample. We de�ne the empirical target function fH;z = fz tobe a function minimizing the empirical error Ez(f) over f 2 H, i.e. an optimizer ofminf2H 1m mXi=1(f(xi)� yi)2:Note that while fz is not produced by an algorithm, it is close to algorithmic. It is\empirical" from its dependence on the sample z. The existence of fz follows fromthe compactness of H and the continuity of Ez where the use of k k1 is now crucial(again, see Remark 7 below). Observe that fz does not depend on �. Note alsothat E(fz) and Ez(f) are di�erent objects, as are E(fH) and EH(f) below.For a given hypothesis space H, the error in H of a function f 2 H is thenormalized error EH(f) = E(f)� E(fH):Note that EH(f) � 0 for all f 2 H and that EH(fH) = 0.Continuing the discussion after Proposition 1, note that it follows from our def-initions and that proposition thatE(fz) = EH(fz) + E(fH) = ZX (fz � f�)2 + �2�:(1)Consider the sum EH(fz) + E(fH). The second term in this sum depends on thechoice of H but is independent of sampling. We will call it the approximation error.The �rst term, EH(fz), is called the sample error.1Equation (1) thus breaks our goal |to estimate RX(fz � f�)2 or, equivalently,E(fz)| into two di�erent problems corresponding to �nding estimates for the sam-ple and approximation errors. Note that the �rst problem is posed on the spaceH and the second is independent of the sample z. For �xed H the sample errordecreases when the number m of examples increases (as we will see in Theorem C).Fix m instead. Then, typically, the approximation error will decrease when en-larging H, but the sample error will increase. This latter feature is sometimescalled the bias-variance trade-o� (see e.g. [6] and page 41 in [28]). The \bias" isthe approximation error and the \variance" is the sample error. This suggests theproblem of how to choose dimH (or another measure of the size of H) when m is�xed. We will examine this problem in the next chapter. The focus of this chapteris on estimating the sample error. We want to estimate how close one may expectfz and fH to be, depending on the size of the sample and with a given con�dence.Or, equivalently,How many examples do we need to draw to assert, with a con�dencegreater than 1� �, that RX(fz � fH)2 is not more than "?There have been many results in recent years doing this (cf. [18], [42]). Our mainresults in this chapter, Theorems C and C* below, give such estimates in a generaland sharp setting.We now describe some examples of hypothesis spaces. Our development in thisand the next chapter will be accompanied by the development of these examples.Example 1 (Homogeneous polynomials). Let Hd = Hd(Rn+1) be the linear spaceof homogeneous polynomials of degree d in x0; x1; : : : ; xn. Let X = S(Rn+1), the1The sample error is often called estimation error in the literature.



10 FELIPE CUCKER AND STEVE SMALEn-dimensional unit sphere. An element in Hd de�nes a function from X to R andcan be written as f = Xj�j=dw�x�:Here, � = (�0; : : : ; �n) 2 Nn is a \multi-index", j�j = �0 + � � �+ �n, and x� =x�00 � � �x�nn . Thus, Hd is a vector space of dimensionN = � n+ dn � :We may consider H = ff 2 Hd j kfk1 � 1g as a hypothesis space. Because of thescaling f(�x) = �df(x), taking the bound kfk1 � 1 causes no loss. The numberN is exponential in n and d. We notice however that in some situations one mayconsider a linear space of polynomials with a given monomial structure, i.e. inwhich only a prespeci�ed set of monomials may appear.Example 2 (Finite dimensional function spaces). This generalizes the previousexample. Let �1; : : : ; �N 2 C(X) and E be the linear subspace of C(X) spanned byf�1; : : : ; �Ng. Here we may take H = ff 2 E j kfk1 � Rg for some R > 0.The next two examples deal with in�nite dimensional linear spaces. In both ofthem, the space L2�(X) of square integrable functions is central.Let � be a Borel measure on X and L be the linear space of functions f : X ! Ysuch that the integral ZX f2(x) d�exists. The space L2�(X) is de�ned to be the quotient of L under the equivalencerelation � given by f � g () ZX (f(x) � g(x))2 d� = 0:This is a Hilbert space with the scalar producthf; gi� = ZX f(x)g(x) d�:We will denote by k k� the norm induced by this inner product. In case � = �X wewill write k k� instead of the more cumbersome k k�X .A linear map J : E ! F between the Banach spaces E and F is called compact ifthe closure J(B) of J(B) is compact for any bounded set B � E.Example 3 (Sobolev spaces). Let X be a compact domain in Rn with smoothboundary. Then, the space C1(X) of in�nitely di�erentiable functions on X iswell-de�ned. For every s 2 N we can de�ne an inner product in C1(X) byhf; gis = ZX Xj�j�sD�fD�g:Here, � 2 Nn, D�f is the partial derivative @�f@x�11 :::@x�nn , and we are integratingwith respect to the Lebesgue measure � on X inherited from Euclidean space. Wewill denote by k ks the norm induced by h ; is. Notice that when s = 0, the innerproduct above coincides with that of L2�(X). In particular, k k0 = k k�. We de�ne



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 11the Sobolev space Hs(X) to be the completion of C1(X) with respect to the normk ks. The Sobolev Embedding Theorem asserts that, for s > n=2, the inclusionJs : Hs(X) ,! C(X)is well-de�ned and bounded. FromRellich's Theorem it follows that this embeddingis actually compact. The de�nition of Hs(X) can be extended to s 2 R, s � 0,by using a Fourier transform argument (see also [38]). A reference for the aboveis [39].Thus, if BR denotes the closed ball of radius R in Hs(X), we may take HR;s =H = Js(BR).Example 4 (Spaces associated to a kernel). Let K : X � X ! R be continuousand symmetric. Assume that, in addition, K is positive de�nite, i.e. that for all�nite sets fx1; : : : ; xkg � X the k � k matrix K[x] whose (i; j) entry is K(xi; xj)is positive de�nite. We will call such function a Mercer kernel. Let � be any Borelmeasure on X. Let LK : L2�(X) ! C(X) be the linear operator given by(LKf)(x) = Z K(x; t)f(t)dt:Then LK is well-de�ned, positive, and compact (cf. Section 1 of Chapter III).In Section 3 of Chapter III it is proved that there exists a Hilbert space HK ofcontinuous functions onX (called reproducing kernel Hilbert space, RKHS for short)associated to K and X and independent of � such that the linear map L1=2K is aHilbert isomorphism between L2�(X) and HK . Here L1=2K denotes the square rootof LK , i.e. the only linear operator satisfying L1=2K �L1=2K = LK . Thus, we have thefollowing diagram: L2�(X) L1=2K;C //�L1=2K $$H

H

H

H

H

H

H

H

H

C(X)HKIKOOwhere we write LK;C to emphasize that the target is C(X) and IK denotes theinclusion. In Section 5 of Chapter III we will prove that if K is C1, then IK iscompact. For a C1 Mercer kernel K we may thus consider IK (BR) as a hypothesisspace. This choice will occupy us in Chapter III, where, in particular, Mercerkernels are shown to exist.Remark 5. The examples above �t into a general setting which we will refer to inthe sequel. Let E be a Banach space of functions on X and JE : E ! C(X) acompact embedding. We then de�ne, for R > 0,H = HR = HE;R = JE(BR)where BR denotes the closed ball of radius R in E. Of course our de�nition ofhypothesis space includes some which do not �t into the general setting.4. Uniform estimates on the defectOur second main result, Theorem B, extends Theorem A to families of functions.While Theorem A is an immediate application of Bernstein's inequality, Theorem B



12 FELIPE CUCKER AND STEVE SMALEis a version of the main uniformity estimate in Statistical Learning Theory as de-veloped by Vapnik (see e.g. [18], [42]). The topology on the family of functionsH, in particular via supposing that H � C(X) and that H is compact as in Sec-tion 3, enables our statement and proof of the uniformity estimates to become quiteeconomical.Let S be a metric space and s > 0. We de�ne the covering number N (S; s) tobe the minimal ` 2 N such that there exist ` disks in S with radius s covering S.When S is compact, as in our case, this number is �nite.Theorem B. Let H be a compact subset of C(X). Assume that, for all f 2 H,jf(x)� yj �M almost everywhere. Then, for all " > 0,Probz2Zm(supf2H jLz(f)j � ") � 1� N �H; "8M � 2e� m"24(2�2+ 13M2") :Here �2 = �2(H) = supf2H �2(f2Y ):Notice the resemblance to Theorem A. The only essential di�erence is the inclu-sion of the covering number, which takes into account the extension from a singlef to the family H. This has the e�ect of requiring the sample size m to increaseaccordingly to achieve the con�dence level of Theorem A.Let f1; f2 2 C(X). We �rst estimate the quantityjLz(f1) � Lz(f2)jlinearly by kf1 � f2k1 for almost all z 2 Zm (a Lipshitz estimate).Proposition 3. If jfj(x) � yj � M on a set U � Z of full measure for j = 1; 2,then for z 2 Um jLz(f1)� Lz(f2)j � 4Mkf1 � f2k1:Proof. First note that since(f1(x)� y)2 � (f2(x)� y)2 = (f1(x)� f2(x))(f1(x) + f2(x)� 2y)we have jE(f1) � E(f2)j = ����Z (f1(x) � f2(x))(f1(x) + f2(x)� 2y)����� kf1 � f2k1 Z j(f1(x)� y) + (f2(x)� y)j� kf1 � f2k12M:Also, for z 2 Um, we havejEz(f1) � Ez(f2)j = 1m ����� mXi=1(f1(xi)� f2(xi))(f1(xi) + f2(xi) � 2yi)������ kf1 � f2k1 1m mXi=1 j(f1(xi)� y) + (f2(xi) � yi)j� kf1 � f2k12M:Thus jLz(f1)� Lz(f2)j = jE(f1)� Ez(f1)� E(f2) + Ez(f2)j � kf1 � f2k14M:



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 13Remark 6. Notice that for bounding jEz(f1)� Ez(f2)j in the proof above |in con-trast with the bound for jE(f1)� E(f2)j| one crucially needs the use of the k k1norm. Nothing less would do.Remark 7. Let H � C(X) such that, for all f 2 H, jf(x) � yj � M almost every-where. Then the bounds jE(f1)� E(f2)j � 2Mkf1 � f2k1 and jEz(f1) � Ez(f2)j �2Mkf1 � f2k1 imply that E ; Ez : H ! R are continuous.Lemma 1. Let H = S1 [ : : :[ S` and " > 0. ThenProbz2Zm(supf2H jLz(f)j � ") � X̀j=1 Probz2Zm( supf2Sj jLz(f)j � ") :Proof. It follows from the equivalencesupf2H jLz(f)j � " () 9j � ` s.t. supf2Sj jLz(f)j � "and the fact that the probability of a union of events is bounded by the sum of theprobabilities of these events.Proof of Theorem B. Let ` = N �H; "4M � and consider f1; : : : ; f` such that thedisks Dj centered at fj and with radius "4M cover H. Let U be a full measure seton which jf(x) � yj �M . By Proposition 3, for all z 2 Um and all f 2 Dj ,jLz(f) � Lz(fj)j � 4Mkf � fjk1 � 4M "4M = ":Since this holds for all z 2 Um and all f 2 Dj we getsupf2Dj jLz(f)j � 2") jLz(fj)j � ":We conclude that, for j = 1; : : : ; `,Probz2Zm( supf2Dj jLz(f)j � 2") � Probz2Zm fjLz(fj)j � "g � 2e� m"22(�2(f2jY )+ 13M2")with the last estimate using Theorem A. The statement now follows from Lemma 1by replacing " by "=2.Remark 8. We noted in Remark 3 that Bernstein's inequality can be seen as aquantitative instance of the law of large numbers. An \abstract" uniform versionof this law can be extracted from the proof of Theorem B.Proposition 4. Let F be a family of functions from a probability space Z to Randd a distance on F . Let U � Z be of full measure such that(a) j�(z)j � B for all � 2 F and all z 2 U , and(b) jLz(�1) � Lz(�2)j � L d(�1; �2), for all �1; �2 2 F and all z 2 Umwhere Lz(f) = ZZ �(f; z) � 1m mXi=1 �(f; zi). Then, for all " > 0,Probz2Zm(sup�2F jLz(�)j � ") � 1� N �F ; "2L�2e� m"24(2�2+ 13B") :Here �2 = �2(F) = sup�2F �2(�):



14 FELIPE CUCKER AND STEVE SMALE5. Estimating the sample errorHow good can we expect fz to be as an approximation of fH? Or, in otherwords, how small can we expect the sample error EH(fz) to be? The third mainresult in this chapter, Theorem C below, gives an answer.Lemma 2. Let H be a compact subset of C(X). Let " > 0 and 0 < � < 1 such thatProbz2Zm(supf2H jLz(f)j � ") � 1� �:Then Probz2Zm fEH(fz) � 2"g � 1� �:Proof. By hypothesis we have, with probability at least 1� �,E(fz) � Ez(fz) + "and Ez(fH) � E(fH) + ":Moreover, since fz minimizes Ez on H we haveEz(fz) � Ez(fH):Therefore, with probability at least 1� �,E(fz) � Ez(fz) + " � Ez(fH) + " � E(fH) + 2"and thus, EH(fz) � 2".Replacing " by "=2 in Lemma 2 and using Theorem B, one obtains the following.Theorem C. Let H be a compact subset of C(X). Assume that, for all f 2 H,jf(x)� yj �M almost everywhere. Let�2 = �2(H) = supf2H �2(f2Y )where �2(f2Y ) is the variance of f2Y . Then, for all " > 0,Probz2Zm fEH(fz) � "g � 1�N �H; "16M � 2e� m"28(4�2+ 13M2") :In case H is convex Theorem C* in Section 7 improves the dependence on ". ItsCorollary 5 estimates directly kfz � fHk� as well.Remark 9. Theorem C helps to deal with the question posed in Section 3. Given"; � > 0, to ensure that Probz2Zm fEH(fz) � "g � 1� �it is su�cient that the number m of examples satis�esm � 8 �4�2 + 13M2"�"2 �ln�2N �H; "16M ��+ ln�1��� :(2)To prove this, take � = N �H; "16M � 2e� m"28(4�2+ 13M2") and solve for m. But notefurther that (2) gives a relation between the three basic variables "; � and m.



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 156. Estimation of covering numbersAs we have seen, the estimates in Theorems B and C have as a factor the coveringnumbers N (H; �). Here we give estimates for this factor in our series of examples.Our �rst result estimates the covering number of balls in �nite dimensionalBanach spaces. Let E be such a space and denote by BR the closed ball of radiusR centered at the origin, i.e.,BR = fx 2 E j kxk � Rg:Proposition 5. Let N = dimE. Then lnN (BR; �) � N ln�4R� �.Proposition 5 allows one to bound the covering numbers appearing in Example 2.The proof we next give is essentially taken from [9]. We �rst introduce somenumbers occurring in functional analysis.Let S be a metric space. For k � 1 de�ne"k(S) = inff" > 0 j 9 closed balls D1; : : : ; Dk with radius " covering Sg:Note that "k(S) � � () N (S; �) � k(3)since both inequalities are equivalent to the existence of a covering of S by kballs of radius �. Also, note that "k scales well in the sense that, for all R > 0,"k(RS) = R"k(S). Here RS = fRx j x 2 Sg.Also, for k � 1, de�ne'k(S) = supf� > 0 j 9x1; : : : ; xk+1 2 S s.t. for i 6= j, d(xi; xj) > 2�g:Lemma 3. (i) For all k � 1, 'k(S) � "k(S) � 2'k(S).(ii) Let E be a Banach space of dimension N and B1 the unit ball in E. For allk � 1, k� 1N � "k(B1) � 4(k + 1)� 1N .Proof. Part (i) is easy to prove. For part (ii), �rst note that 'k(B1) � 1 for allk 2 N. Let � < 'k(B1). Then there exist x1; : : : ; xk+1 such that d(xi; xj) > 2� for1 � i 6= j � k + 1. Let Dj = xj + �B1, j = 1; : : : ; k + 1. Clearly, Di \Dj = ; ifi 6= j. In addition, for all x 2 Dj , kxk � kx� xjk+ kxjk � � + 1 < 2. Therefore,Dj � B2.As a vector space, E is isomorphic to RN. Any such isomorphism induces on Ea measure � which is invariant under translations and is homogeneous of degree Nwith respect to homotheties (i.e. �(�B) = �N�(B) for every measurable set B).Using this measure we getk+1Xi=1 �(Di) � �(B2)) k+1Xi=1 �N�(B1) � 2N�(B1)) (k + 1)�N � 2N ) � � 2(k + 1)� 1N :From here it follows that "k(B1) � 4(k + 1)� 1N .For the other inequality in (ii) consider any " > "k(B1). Then there exist closedballs D1; : : : ; Dk of radius " covering B1, and consequently �(B1) � k"N�(B1)which implies k� 1N � ".Let x 2 R. We denote by dxe the largest integer smaller than or equal to x.



16 FELIPE CUCKER AND STEVE SMALEProof of Proposition 5. Let k = &�4R� �N � 1'. Then k + 1 � �4R� �N and4(k + 1)� 1N � �R ) "k(B1) � �R () "k(BR) � � () N (BR; �) � k:From here the statement follows since k � (4R� )N .To deal with Examples 3 and 4 we introduce a logarithmic version of "k(S). Fork � 1 de�ne the kth entropy number of a metric space S to be2ek(S) = inf f" > 0 j 9 closed balls D1; : : : ; D2k�1 with radius " covering Sg :If E and F are Banach spaces and T : E ! F is a linear map, then we de�neek(T ) = ek(T (B1)):Lemma 4. (a) ek(T ) � � () N (T (B1); �) � 2k � 1, and(b) ek(T (BR)) = Rek(T ).Proof. For (a) note that, using (3),ek(T ) � � () "2k�1(T (B1)) � � () N (T (B1); �) � 2k � 1:Part (b) is clear.Example 3 (continued). Recall that Hs(X) is a Sobolev space and we are as-suming that s > n=2 from which it follows that the inclusionJs : Hs(X) ,! C(X)is a compact embedding. Let BR be the closed ball of radius R centered at theorigin in Hs(X) and H = Js(BR) be its image in C(X).A main result |of a kind going back to the work of Birman and Solomyak [5]|concerning entropy numbers of Sobolev spaces states that, if X � Rn is a compactdomain with smooth (C1) boundary and s > n=2, then, for all k � 1,ek(Js) � C �1k�s=n :(4)For a proof, take s1 = s; s2 = 0; p1 = 2; p2 = 1 in a very general theorem ofEdmunds and Triebel ([16], page 105). Here C is a \constant" independent ofk (which depends though on X and s). It would be useful to see this constantbounded explicitly.Remark 10. In general in this paper, we have tried to estimate the value of theconstants occurring in our bounds. In some cases, however, as with the constant Cabove, we have lost control.Proposition 6. Let BR be the closed ball of radius R centered at the origin inHs(X) and H = Js(BR) be its image in C(X). Then, for all " > 0,lnN (H; ") � �RC" �n=s + 1:2Sometimes in the literature (e.g. [9]) "k(S) and 'k(S) are called inner and outer entropynumbers respectively. Following [16] we reserve the expression entropy number for ek(S).



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 17Proof. Let � = R" and k = &�C� �n=s'. Then � � C�1k�s=n. By inequality (4)we thus have ek(Js) � � and therefore, N (Js(B1); �) � 2k � 1. Hence,lnN (Js(BR); R�) = lnN (Js(B1); �) < k < �RC" �n=s + 1:In the use of Proposition 6 we may and will delete the constant 1 by supposingC is slightly enlarged. Proposition 6 can be generalized to other function spacesvia the mentioned result in [16].Example 4 (continued). Recall that K : X �X ! R is a C1 Mercer kernel andIK : HK ! C(X)is the compact embedding de�ned by K. The following result will be proved inSection 5 of Chapter III. Let BR be the ball of radius R in HK . Then, for allh > n, � > 0, and R > 0, lnN �IK (BR); �� � �RCh� �2nhwhere Ch is a constant independent of � and R.As a consequence the sample error satis�es that given "; � > 0, in order to haveProbz2Zm fEH(fz) � "g � 1� �it is enough that the number m of examples satis�esm � 8 �4�2 + 13M2"�"2 "�16MRCh" �2nh + 1 + ln�1��# :Remark 11. In the examples above, seen as particular cases of the general setting,with JE : E ! C(X), we obtain estimates of the entropy numbers for JE of the formek(JE) � CE�1k�`E for some positive constants CE and `E. Actually this estimateis always true if we allow `E to be zero, so, in what follows, we will assume theestimate as a part of the general setting.Note we thus have, for H = HE;R, that lnN (H; ") � �RCE" �1=`E .We close this section by noting that the use of entropy numbers in learning theoryhas been discussed in [46]. On the other hand, entropy numbers have a stronghistory in related contexts (see [21], [44], [24], [41]). See also [45] for contributionsto these matters coming from statistics.7. Convex hypothesis spacesA simple computation shows that in the noise-free case, i.e. when �2� = 0, onehas that, for all f 2 L2�(X), �2(f2Y ) = 0. It follows that �2H = 0 and the exponent inthe bound in Theorem C becomes 3m"8M2 . Thus the dependency on " of this exponentpasses from quadratic to linear. In several situations, notably in those covered inthe general setting described in Remark 5, the hypothesis space H is convex. Inthis case, in Theorem C* below, at the cost of worsening the constant 3=8 above,



18 FELIPE CUCKER AND STEVE SMALEwe are able to obtain such a linear dependency on " without assuming �2� = 0. Ina related context, [3], [22] have shown a similar passage from "2 to ".Theorem C*. Let H be a compact and convex subset of C(X). Assume that, forall f 2 H, jf(x)� yj �M almost everywhere. Then, for all " > 0,Probz2Zm fEH(fz) � "g � 1� N �H; "24M � e� m"288M2 :Theorem C* applies to Examples 1 to 4. Before proceeding with the proof ofTheorem C* we revisit these examples.Example 2 (continued). Let �1; : : : ; �N 2 C(X), E be the subspace of C(X)spanned by f�1; : : : ; �Ng and H = ff 2 E j kfk1 � Rg for some R > 0. As inRemark 9, given "; � > 0, to haveProbz2Zm fEH(fz) � "g � 1� �;it is su�cient that the number m of examples satis�esm � 288M2" �N ln�96RM" �+ ln�1��� :This follows from Theorem C* together with Proposition 5.Example 3 (continued). Recall that Hs(X) is a Sobolev space and that we areassuming that s > n=2, from which it follows that the inclusionJs : Hs(X) ,! C(X)is a compact embedding. Let BR be the closed ball of radius R centered at theorigin in Hs(X) and H = Js(BR) be its image in C(X).As above, using Proposition 6, given "; � > 0, to haveProbz2Zm fEH(fz) � "g � 1� �it is su�cient that the number m of examples satis�esm � 288M2" "�24CRM" �n=s + ln�1��# :(5)Here C is the constant of (4).Example 4 (continued). Recall that IK : HK ! C(X) is a compact embeddingde�ned by a C1 Mercer kernel K : X �X ! R, BR is the ball of radius R in HKand H = IK (BR). As above, given "; � > 0, to haveProbz2Zm fEH(fz) � "g � 1� �it is enough that the number m of examples satis�esm � 288M2" "�24MRCh" � 2nh + ln�1��# :Here h > n and Ch are as in Section 6.Remark 12. Note that in the bounds in Examples 3 and 4 there is no dependencyon the dimension of H (which is now in�nite), in contrast with the bound shownin Example 2. These results may be said to be \dimension-free". The parameterR in Examples 3 and 4 determines the size of the hypothesis space and is ourreplacement for the VC dimension (which is in�nite in these examples).



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 19Toward the proof of Theorem C* we show an additional property of convexhypothesis spaces.From the discussion in Section 3 it follows that fH is a function in H whosedistance in L2�(X) to f� is minimal. We next prove that, if H is convex, it isunique.Lemma 5. Let H be a convex subset of C(X) such that fH exists. Then fH isunique as an element in L2�(X) and, for all f 2 H,ZX(fH � f)2 � EH(f):Proof. Let s = fHf be the line segment with extremities fH and f .
Since H is convex, s � H. And, since fH minimizes the distance in L2�(X) to f�over H, we have that, for all g 2 s, kfH � f�)k� � kg� f�k�. This implies that theangle \f�fHf is obtuse, and that implies (note that the squares are crucial)kfH � fk2� � kf � f�k2� � kfH � f�k2�;i.e. ZX(fH � f)2 � E(f) � E(fH):This proves the desired inequality. The uniqueness of fH follows by considering theline segment joining two minimizers f 0H and f 00H. Reasoning as above, one shows thatboth angles \f�f 0Hf 00H and \f�f 00Hf 0H are obtuse. This is only possible if f 00H = f 0H.Corollary 1. With the hypotheses of Theorem C*, for all " > 0,Probz2Zm �Z (fz � fH)2 � "� � 1� N �H; "24M � e� m"288M2 :Now, in addition to convexity, assume thatH is a compact subset of C(X) so thatthe covering numbers N (H; �) make sense and are �nite. Also, assume that thereexists M > 0 such that, for all f 2 H, jf(x)� yj �M a.e. The following analogueof Theorem B is the main steppingstone towards the proof of Theorem C*.3For a sample z 2 Zm, the empirical error in H of f 2 H is EH;z(f) = Ez(f) �Ez(fH). Note that EH;z(fz) � 0.3The writing of the rest of this section bene�tted greatly from discussions with Partha Niyogiand a remark by Peter Bartlett.



20 FELIPE CUCKER AND STEVE SMALEProposition 7. For all " > 0 and 0 < � < 1,Probz2Zm (supf2H EH(f) � EH;z(f)EH(f) + " � 3�) � N �H; �"4M � e��2m"8M2 :Before proving Proposition 7 we show how Theorem C* follows from it.Proof of Theorem C*. Put � = 1=6 in Proposition 7. By this proposition, withprobability at least 1�N �H; "24M � e� m"288M2we have supf2H EH(f) � EH;z(f)EH(f) + " < 12 ;and therefore, for all f 2 H, 12EH(f) < EH;z(f) + 12". Take f = fz. Then,multiplying by 2, EH(fz) < 2EH;z(fz) + ";but EH;z(fz) � 0 by de�nition of fz from which EH(fz) < " and the theoremfollows.We now proceed with the proof of Proposition 7. Let `(f) : Z ! Y be de�nedby f2Y � f2H;Y . Thus, E`(f) = E(f) � E(fH) = EH(f) and, for z 2 Zm, Ez`(f) =Ez(f)�Ez(fH) = EH;z(f). In addition, we note that for all f 2 H, j`(f)(x; y)j �M2a.e.Convexity plays a major role in the following result. Let �2 = �2(`(f)) denotethe variance of `(f).Lemma 6. For all f 2 H, �2 � 4M2EH(f).Proof. Because�2 � E`(f)2 = E[(fH � f)2(y � f + y � fH)2] � 4M2E[(fH � f)2];it is enough to prove that E[(fH � f)2] � EH(f). This is exactly Lemma 5.Our next result is a form of Theorem A for the random variable `(f).Lemma 7. Let f 2 H. For all "; � > 0, � � 1,Probz2Zm�EH(f) � EH;z(f)EH(f) + " � �� � e� �2m"8M2 :Proof. Let � = EH(f). Using the one-sided Bernstein's inequality (see Remark 3)applied to `(f) and the fact that j`(f)(z)j �M2 a.e., we getProbz2Zm�EH(f) � EH;z(f)�+ " � �� � e� (�(�+"))2m2(�2+ 13M2�(�+")) :We only need to show that "8M2 � (�+ ")22 ��2 + 13M2�(�+ ")�() "4M2 ��2 + 13M2�(�+ ")� � (� + ")2() "�24M2 + "��12 + "2�12 � (�+ ")2:



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 21The second and third terms on the left are respectively bounded by �" and "2 since� � 1. The �rst one is smaller than "� since, by Lemma 6, �2 is bounded by 4M2�.The result follows since 2�"+ "2 � (�+ ")2.Lemma 8. Let 0 < � < 1, " > 0, and f 2 H such thatEH(f) � EH;z(f)EH(f) + " < �:For all g 2 H such that kf � gk1 � �"4M we haveEH(g)� EH;z(g)EH(g) + " < 3�:Proof.EH(g)� EH;z(g)EH(g) + " = E(g)� E(fH) � Ez(g) + Ez(fH)EH(g) + " = Lz(g) � Lz(fH)EH(g) + "= Lz(g) � Lz(f) + Lz(f) � Lz(fH)EH(g) + "= Lz(g) � Lz(f)EH(g) + " + Lz(f) � Lz(fH)EH(g) + " :If the �rst term above is negative, then it is certainly smaller than �. Otherwisewe have Lz(g)� Lz(f)EH(g) + " � Lz(g) � Lz(f)" � 4M�"4M" = �;where the last inequality follows from using kf � gk1 � �"4M in Proposition 3. Forthe second term, note that, using the �rst part in the proof of Proposition 3,E(f) � E(g) � 2Mkf � gk1 � 2M �"4M < "since � < 1. This implies thatEH(f) � EH(g) = E(f) � E(g) � " � EH(g) + "or, equivalently, that EH(f)+"EH(g)+" � 2. But thenLz(f) � Lz(fH)EH(g) + " = EH(f) � EH;z(f)EH(g) + " � �EH(f) + "EH(g) + " � 2�:Proposition 7 follows from Lemma 8 by applying the same argument used toprove Theorem B from Proposition 3.Remark 13. Note that, to obtain Theorem C*, we only used convexity to proveLemma5. But the inequality proved in this lemmamay hold true in other situationsas well. A case which stands out is when f� 2 H. In this case fH = f� and theinequality in Lemma 5 is trivial.



22 FELIPE CUCKER AND STEVE SMALE8. Final remarksRemark 14. In this chapter we have assumed that Y = R. They can, however, beextended to Y , a �nite dimensional inner product space.Remark 15. The least squares error function E(f) above is only one of the manyused in the learning theory literature. Our view is that it is the central notionbecause of mathematical tradition and algorithmic simplicity. However, the leastsquares error has its limitations and problems. It would be interesting to analyzesome other error functions in the framework of our paper. See e.g. [11].Remark 16. Let us compare what we have done with the more traditional approachin learning theory, especially inspired by Vapnik, with the use of VC (Vapnik-Chervonenkis) dimension and its variants (see e.g. [18], [42]). As we have remarked,the hypothesis space H plays a central role in the learning process. The earlierchoice of hypothesis space is a space of functions on X which carries no topology.The development proceeds with a more combinatorial 
avor to achieve results whichcannot be compared directly with our Theorems B, C, and C*. In that setting,covering numbers usually depend on the sample, and the sample error estimate willdepend on the VC dimension.Our approach, with its function space H � C(X), leads quickly to classicalfunctional analysis. The VC dimension is replaced by the radius R of a ball whichde�nes the hypothesis space in a Sobolev space or in a reproducing kernel Hilbertspace.Moreover we emphasize the continuous (regression) perspective and are led tothe approximation questions of the next chapter.Chapter II: Approximation ErrorFor a given hypothesis space H, the error E(fz) of the empirical target fz decom-poses as E(fz) = EH(fz) + E(fH):The �rst term in this sum, the sample error, has been the focus of Chapter I.The second term, the approximation error, will be the focus of this chapter. Theapproximation error depends only on H and � and, by Proposition 1, is equal toRX (fH � f�)2 + �2�. Note that �2� does not depend on the choice of H. Therefore,when studying the approximation error we will examine the integral RX(fH � f�)2.Since f� is not known and we have made no assumptions on it besides beingbounded, there are limits on how much one can say about the approximation error.We note that if f� 2 H, then fH = f� and the integral above is zero. This chapteris devoted to estimates of the integral for various H and to the implications for thebias-variance problem.1. Fourier series and the approximation errorIn this section we give an example of a �nite dimensional hypothesis space (Ex-ample 5 below) and an estimate for the corresponding approximation error. Toget this estimate, we will need to estimate the growth of the eigenvalues of a givenoperator. Growth of eigenvalues, or the highly related growth of entropy numbers,is a recurring theme in our report.On one hand, Fourier series give a link from our problem in learning theory to themathematical analysis known to many scientists. On the other hand, the interested
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Figure 1. Shape of �� for � large, n = 1.reader will be able to discover the relations (via Greens' functions) to our integraloperators and to entropy numbers (see Appendix A of Chapter III) as well as ouruse of Sobolev spaces, which were originally developed to better understand ellipticoperators.Let S1 be the circle, say, described by a real number t mod 2�, and X = (S1)nthe n-dimensional torus. For each � = (�1; : : : ; �n) 2 Zn consider the complexvalued function on X, ��, given by ��(x) = (2�)�n=2ei(��x). Here i = p�1. Bytaking the real part from de Moivre's formula one can obtain a real valued functionon X. Thus we may deal with complex valued functions on X.Let L2�(X) be the space of square integrable functions on X with respect to theLebesgue measure induced on X as a quotient of Rn. Recall that a sequence f�kgin a Hilbert space H is said to be a complete orthonormal system (or a Hilbert basis)if the following conditions hold:1. for all k; q � 1, h�k; �qi = 0;2. for all k � 1, k�kk = 1; and3. for all f 2 H, f = 1Xk=1hf; �ki�k.The set f��g�2Zn forms a Hilbert basis of L2�(X) with respect to the inner producthf; gi = R fg, g the complex conjugate of g. Thus, every function f 2 L2�(X) canbe written as f = X�2Zn c���:But if k�k is large, the function �a oscillates with high frequency, and thus each ofthese terms gives a �ne structure, beyond sensitivity of measurement devices. SeeFigure 1.This heuristic indicates how, for purposes of the hypothesis space of Section 3in Chapter I, it makes sense to consider the subspace HN � L2�(X) spanned bythe set f��gk�k2�B for some B with the induced structure of Hilbert space. Thedimension N = N (B) of this space is the number of integer lattice points in theball of radius B of Rn. Thus, a crude bound is N (B) � (2B)n=2. The ball HN;R ofradius R with respect to the norm k k1 inHN is a candidate for the H of Chapter I.



24 FELIPE CUCKER AND STEVE SMALERemark 1. Let � : C1(X) ! C1(X) be the Laplace operator,�(f) = nXi=1 @2f@x2i :It is immediate to check that, for all � 2Zn, �(��) = �k�k2��. Therefore, �� isan eigenvector of �� with eigenvalue k�k2.Since the n-dimensional torus is not a very suitable space for most examples oflearning theory, we extend the setting as suggested by Remark 1.Example 5. Consider now a bounded domain X in Rn with smooth boundary@X, and a Hilbert basis f�kgk�1 of C1 functions in L2�(X) satisfying� ���k = �k�k in X, for all k � 1�k = 0 on @X, for all k � 1with 0 < �1 � �2 � �3 : : : " 1:Here � is the Lebesgue measure on X inherited from Rn. The existence off�kgk�1; f�kgk�1 as above uses a main theorem in the theory of elliptic di�erentialequations.For N 2 N consider HN , the subspace of L2�(X) generated by f�1; : : : ; �Ng. Thehigher frequency justi�cation for the cuto� in the case of Fourier series still applies.This comes from the Courant Nodal Theorem or the many variables Morse IndexTheorem (see [36] for a formal account). Also, as above, let H = HN;R be the ballof radius R with respect to the norm k k1 in HN and let fH be the correspondingtarget function.Recall we have assumed that f� is bounded on X. Then, f� 2 L2�(X) andf� 2 L2�(X). Suppose in addition that R � kf�k1. Then R � kf�k� and fH is theorthogonal projection of f� on HN w.r.t. the inner product in L2�(X). The mainresult of this section bounds the approximation error E(fH).Let D�� denote the operator norm kJk where J is the identity functionL2�(X) J! L2�(X):We will call D�� the distortion of � (with respect to �). It measures how much �distorts the ambient measure �. It is often reasonable to suppose that the distortionD�� is �nite.Since � is not known, then D�� is not known in general as well. But our estimatein Theorem 1 below gives a relation between the approximation error and D��.Moreover, the context could lead to some information about D��. An importantcase is the one in which, in spite of � not being known, we do know �X . In thiscase D�� may be derived.For f =P1k=1 ck�k, let kfkK denote 1Xk=1 c2k�k!1=2 :The set of f such that this series is convergent is a linear subspace of L2�(X) onwhich k kK is a norm. Motivation for this norm is given in the next section, inwhich a similar construction is described for an integral operator given by a Mercerkernel K (hence the notation).



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 25Theorem 1. Let H and fH be as above. The approximation error satis�esE(fH) � D2�� �Vol(X)N + 1 �2=n kf�k2K + �2�:Towards the proof of Theorem 1 �rst note thatkf� � fHk� = d�(f�;HN ) � kJkd�(f�;HN ):Recall that `2 is the linear space of all square summable sequences (ak)k�1. Itis a Hilbert space with the inner producth(ak); (bk)i =Xk�1akbk:Since f� 2 L2�(X), there exists a sequence fakgk�1 2 `2 such that f� =P ak�k.Then d�(f�;HN )2 = 




 1Xk=N+1 ak�k




2�= 1Xk=N+1 a2k = 1Xk=N+1 a2k�k 1�k� 1�N+1 kf�k2K:The next lemma deals with the growth of the eigenvalues �k.Lemma 1. For k � 1, �k � � kVol(X)�2=n :Proof. Under the hypothesis described at the beginning of this example, a versionof a result of H. Weyl by Li and Yau [23] (pointed out to us by Roderick Wong)states that, for all k � 1,�k � nn+ 24�2� kBnVol(X)�2=n(6)where Bn is the volume of the unit ball in Rn and Vol(X) the volume of X.Stirling's inequality, p2�uu�12 e�u � �(u) (see [1], Chapter 5, Section 2.5, Exer-cise 2), implies that �(n=2) � p2� �n2�n�12 e�n2and, consequently, since Bn = 1n (2�)n=2�(n=2) , thatBn � 1n (2�)n2 en2p2� �n2 �n�12 = (4�)n�12 en2nn+12 :



26 FELIPE CUCKER AND STEVE SMALEPlacing this bound in inequality (6) we obtain, for all k 2 N,�k � nn+ 24�2 knn+12Vol(X)(4�)n�12 en2 !2=n= nn+ 2�� kVol(X)�2=n (4�) 1nnn+1ne= n2+ 1nn + 2 �e � kVol(X)�2=n (4�) 1n � � kVol(X)�2=nsince n2+ 1nn+2 �e (4�) 1n � 1 for all n 2 N.Proof of Theorem 1. Using Lemma 1 we obtaind�(f�;HN )2 � D2��d�(f�;HN )2� D2�� 1�N+1 kf�k2K� D2�� �Vol(X)N + 1 �2=n kf�k2K :We already remarked that our goal is to minimize E(fz) which equals the sumEH(fz) + Z (fH � f�)2 + �2�:A form of the bias-variance problem is to minimize this sum over N 2 N assumingR;m and � are �xed. So, �x m, R = kf�k1, and � > 0. From Section 7 in Chapter Iit follows that, if m � 288M2" �N ln�96RM" �+ 1 + ln�1��� ;then, with probability at least 1� �, the sample error is bounded by ". From thisequation it follows that, for given m; �;R;M and N , with probability at least 1� �,the sample error is bounded by any quantity " satisfying"� 288M2m �N ln�96RM" �+ 1 + ln�1��� � 0:The equation obtained by taking the equality in this inequality has exactly onepositive solution. This is due to the form f(t) = 0 for this equation with f(t) =t+ c ln(t)� d, c; d > 0. Thus f(0) = �1, f(+1) = +1, and f 0(t) = 1+ ct , whichis always positive, showing that f monotonically increases in (0;+1). We denotethis solution by "(N ), thus emphasizing the functional dependency of "(N ) withrespect to N .From Theorem 1, we know that the approximation error is bounded byA(N ) = D2�� �Vol(X)N + 1 �2=n kf�k2K + �2�:The integer N minimizingA(N )+ "(N ) will thus be a solution of the bias-varianceproblem above. While we have no explicit form for the solution of this minimization



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 27problem, it is easy to numerically deal with it. One may also derive some qualitativeinformation about N .This development is valid for the case of any compact submanifoldX of Euclideanspace. A general reference for the material in this section is [33].2. Abstract approximation errorA linear operator L : H ! H on a Hilbert space H is said to be self-adjoint if,for all f; g 2 H, hLf; gi = hf; Lgi. It is said to be positive (resp. strictly positive) ifit is self-adjoint and, for all non-trivial f 2 H, hLf; fi � 0 (resp. hLf; fi > 0).The next result, the Spectral Theorem for compact operators (see Section 4.10of [12] for a proof), will be useful in this and the next chapter.Theorem 2. Let L be a compact linear operator on an in�nite dimensional Hilbertspace H. Then there exists in H a complete orthonormal system f�1; �2; : : :g con-sisting of the eigenvectors of L. If �k is the eigenvalue corresponding to �k, then theset f�kg is either �nite or �k ! 0 when k !1. In addition, maxk�1 j�kj = kLk.The eigenvalues are real if L is self-adjoint. If, in addition, L is positive, then�k � 0 for all k � 1, and if L is strictly positive, then �k > 0 for all k � 1.If L is a strictly positive operator, then L� is de�ned, for all � � 0, byL� �X ak�k� =X��kak�k:If � < 0, L� is de�ned by the same formula on the subspaceS� = nX ak�k jX (ak��k)2 is convergento :For � < 0, the expression kL�ak must be understood as 1 if a 62 S� .Theorems 3 and 5 in this and the next section are taken from [38], where onecan �nd a more substantial development of the approximation error.Theorem 3. Let H be a Hilbert space and A a self-adjoint, strictly positive compactoperator on H. Let s; r 2 R such that s > r > 0.(1) Let 
 > 0. Then, for all a 2 Hminb2H �kb� ak2 + 
kA�sbk2� � 
rkA�srak2:(2) Let R > 0. Then, for all a 2 Hminb s:t: kA�sbk�R kb� ak � � 1R� rs�r kA�rak ss�r :In both cases the minimizer b̂ exists and is unique. In addition, in part (1), b̂ =(Id+
A�2s)�1a.Proof. First note that by replacing A by As we can reduce the problem in bothparts (1) and (2) to the case s = 1.Now, for part (1), consider'(b) = kb� ak2 + 
kA�1bk2:If a point b̂ minimizes ', then it must be a zero of the derivative D'. That is,b̂ satis�es (Id +
A�2)b̂ = a, which implies b̂ = (Id+
A�2)�1a. Note that theoperator Id+
A�2 is invertible since it is the sum of the identity and a positiveoperator.



28 FELIPE CUCKER AND STEVE SMALEIf �1 � �2 � : : : > 0 denotes the eigenvalues of A,'(b̂) = k((Id+
A�2)�1 � Id)ak2 + 
kA�1(Id+
A�2)�1ak2= 1Xk=1(� 11 + 
��2k � 1�2 + 
 1Xk=1� 1�k(1 + 
��2k )�2) a2k= 1Xk=1� 
2��4k + 
��2k(��2k (�2k + 
))2� a2k = 
 1Xk=1� 1�2k + 
� a2k= 
 1Xk=1� �2rk�2k + 
���2rk a2k � 
 � supt2R+ trt+ 
� kA�rak2:Let  (t) = trt+
 . Then 0(t) = rtr�1t + 
 � tr(t+ 
)2 = 0 i� t = t̂ =r 
r1� r :Thus  (t̂) = 
r�1rr(1� r)1�r � 
r�1:We conclude that'(b̂) = minb2H kb� ak2 + 
kA�1bk2 � 
rkA�rak2and hence (1).For part (2) �rst note that if kA�1ak � R, then the minimum in the statementis zero and the theorem is obviously true. Assume from now on that this is not thecase. Then we notice that the point b̂ minimizing ka� bk in the subset of H givenby kA�1bk � R is in the boundary of this subset, i.e. kA�1b̂k = R.Now, a well known result in constrained optimization states that there exists
 � 0 (the Lagrange multiplier) such that the point b̂ is a zero of the LagrangianD(kb� ak2) + 
D(kA�1bk2):But this Lagrangian coincides with D' of part (1), and we proved in this part that'(b̂) � 
rkA�rak2. From this inequality we deduce �rstly that
R2 � 
rkA�rak2and secondly, since 
 � 0, thatkb̂� ak2 � 
rkA�rak2:From the �rst of these two inequalities it follows that
 � � 1R� 21�r kA�rak 21�r :Replacing this bound for 
 in the second inequality, one gets the statement in part(2).Remark 2. In Example 3,A = (��+Id)�1=2 and s = � as in the proof of Theorem 5below. In Example 4, A = L1=2K , s = 1.



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 29Remark 3. The quantityK(a; 
) = minb2H �kb� ak2 + 
kA�sbk2�is a modi�cation of the K-functional of interpolation theory [4]. Moreover,I(a;R) = minb s.t. kA�sbk�Rkb� akis an object of study also in [4]). The proof of Theorem 3 shows that K(a; 
) =
k(A2s + 
 Id)�1=2ak2, and, for 
 > 0 and R = R(
) = kA�sb̂
k, I(a;R) =K(a; 
) � 
R2.Remark 4. We now introduce a general setting in Hilbert space. Let � be a Borelmeasure on X and A : L2�(X) ! L2�(X) a compact strictly positive operator. Fixs > 0 and de�ne E = fg 2 L2�(X) j kA�sgk� < 1g. We can make E a Hilbertspace with the inner producthg; hiE= hA�sg;A�shi� :Thus, A�s : L2�(X) ! E is a Hilbert isomorphism. The general setting in Hilbertspace is the setting above together with the assumption that the inclusion E ,!L2�(X) factors E JE !!D

D

D

D

D

D

D

D

D

// L2�(X)C(X)OOwith JE compact. Therefore the hypothesis space H = HE;R is JE(BR) where BRis the ball of radius R in E. Note that the target fH is the b̂ of Theorem 3 (2), forH = L2�(X), and we may consider the corresponding approximation error.As in Section 1 we consider D��, the distortion of � with respect to �, i.e. theoperator norm of L2�(X) J! L2�(X):Theorem 4. In the general setting in Hilbert space, for 0 < r < s, the approxima-tion error satis�esE(fH) = kfH � f�k2� + �2� � D2��� 1R� 2rs�r kA�rf�k 2ss�r� + �2�:Proof.kf� � fHk� = ming2BR kf� � gk� � D�� ming2BR kf� � gk� � D��� 1R� rs�r kA�rf�k ss�r�with the last inequality from Theorem 3 (2) with H = L2�(X) and a = f�.While in Example 3 we always take � = �, the Lebesgue measure, in our mostinteresting example (Example 4) we will usually suppose � = � so D�� = 1.



30 FELIPE CUCKER AND STEVE SMALE3. Approximation error in Sobolev spaces and RKHSWe continue our discussion of Example 3 in the context of the approximationerror. In this section X � Rn is a compact domain with smooth boundary.Theorem 5. Let s > n=2 and r such that 0 < r < s. Consider R > 0, BR the ballof radius R in Hs(X) and H = Js(BR). Then the approximation error satis�esE(fH) � D2��C� 1R� 2rs�r (kf�kr) 2ss�r + �2�where C is a constant which depends only on s; r and X.Proof. Let � : H2(X) ! L2�(X) denote the Laplacian and A = (��+Id)�1=2. Forall � � 0, A� : L2�(X) ! H� (X) is a compact linear map with bounded inverse.There exist C0; C1 > 0 such that, for all g 2 H� (X),C0kgk� � kA��gk� � C1kgk� :(7)By composing with the inclusion H1(X) ,! L2�(X) and slightly abusing notationwe may assume A : L2�(X) ! L2�(X) and consider the general setting in Hilbertspace.Let E be the space de�ned in this setting with A = A and s = � . Then theball BRC0 (E) of radius RC0 in E is included in the ball BR(Hs(X)) in Hs(X) andconsequentlyE(fH) = ming2BR(Hs(X)) kf� � gk2� + �2� � ming2BRC0 (E)kf� � gk2� + �2�:Now, apply Theorem 4 to obtainming2BRC0 (E)kf� � gk2� + �2� � D2��� 1RC0� 2rs�r kA�rf�k 2ss�r� + �2�:Apply �nally (7) with � = r to getkA�rf�k� � C1kf�kr:The result follows by taking C = C �2rs�r0 C 2ss�r1 .For the facts about Sobolev spaces mentioned in this proof see [39].Remark 5. (i) In Theorem 5 we have some freedom to choose r. For example iff� is a characteristic function and 0 < r < 1=2, then kf�kr < 1 (see [38])and we obtain information in the classi�cation problem of learning theory.(ii) The essence of Theorem 5, for the case n = 1, appears in [14].It is also possible to use Theorem 4 to derive bounds for the approximation errorin Example 4.Theorem 6. Let K be a Mercer kernel, � a Borel measure on X, R > 0, andH = IK(BR). The approximation error satis�es, for 0 < r < 1,E(fH) � D2��� 1R� 2r1�r kL�r=2K f�k 21�r� + �2�:Proof. Take A = L1=2K and s = 1 in Theorem 4. Then, we will see in Section 3 inChapter III that for all f 2 L2�(X), kfkK = kA�1fk� , which implies that E is thereproducing kernel Hilbert space of Example 4. Now apply Theorem 4.



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 314. The bias-variance problemConsider the general setting in Hilbert space described in Remark 4. Fix asample size m and a con�dence 1� � with 0 < � < 1. For each R > 0 a hypothesisspace H = HE;R is determined, and we can consider fH and, for z 2 Zm, fz.The bias-variance problem in the general setting consists of �nding the value of Rwhich minimizes a natural bound for the error E(fz) (with con�dence 1� �). Thisvalue of R determines a particular hypothesis space in the family of such spacesparametrized by R, or, using a terminology common in the learning literature, itselects a model.Theorem 7. For all m 2 N and � 2 R, 0 < � < 1, and all r with 0 < r < s, thereexists a unique solution R� of the bias-variance problem in the general setting.Proof. We �rst describe the natural bound we are going to minimize. Recall thatE(fz) equals the sum EH(fz)+ E(fH) of the sample and approximation error. The-orem 4 bounds the approximation error, for 0 < r < s, by an expression�(R) = D2��� 1R� 2rs�r kA�rf�k 2ss�r� + �2�:We now want to bound the sample error. To do so letM =M (R) = kJEkR+M� + kf�k1:Then, almost everywhere, jf(x) � yj �M sincejf(x) � yj � jf(x)j+ jyj � jf(x)j+ jy � f�(x)j+ jf�(x)j � kJEkR+M� + kf�k1:By Theorem C*, the sample error " with con�dence 1� � satis�esN �H; "24M � e� m"288M2 � �;i.e. m"288M2 � ln�1��� ln�N �H; "24M �� � 0:Then, as in Remark 11 of Chapter I,m"288M2 � ln�1��� �24M2CEkJEk" �1=`E � 0where we have also used that RkJEk � M . Write v = "M2 . Then the inequalityabove takes the form c0v � c1 � c2v�d � 0(8)where c0 = m288, c1 = ln �1� �, c2 = �24CEkJEk �1=`E , and d = 1=`E.If we take the equality in (8) we obtain an equation which, it is easy to see, hasexactly one positive solution for v. Let v�(m; �) be this solution. Then, "(R) =M2v�(m; �) is the best bound we can obtain from Theorem C* for the sample error.We will therefore minimize �(R) + "(R).For a point R > 0 to be a minimum of �(R) + "(R) it is necessary that "0(R) =��0(R). Taking derivatives, we get�0(R) = �CA �2rs� rR�(s+r)s�r and �00(R) = CA2r(s + r)(s � r)2 R�2ss�r



32 FELIPE CUCKER AND STEVE SMALE
where CA = D2��kA�rf�k 2ss�r� , and"0(R) = 2Mv�(m; �) and "00(R) = 2v�(m; �):Since CA � 0 we deduce that ��0(R) is a positive function monotonicallydecreasingon (0;+1). On the other hand, since v�(m; �) > 0, it follows that "0(R) is a positivefunction strictly increasing on (0;+1). Since "0(+1) = +1, ��0(+1) = 0,"0(0) < +1 and ��0(0) = +1, we deduce the existence of a unique R� such that"0(R�) = ��0(R�).For di�erent instances of the general setting the value of R� may be numericallycomputed.Remark 6. In this section we considered a form of the bias-variance problem whichoptimized the parameter R �xing all the others. One may consider other formsof the bias-variance problem by optimizing other parameters. For instance, inExample 4, one may consider the degree of smoothness of the kernel K. Thesmoother K is, the smaller HK is. Therefore, the sample error decreases and theapproximation error increases with a parameter re
ecting this smoothness.Chapter III: Algorithms1. Operators defined by a kernelRecall that X is a compact domain or manifold in Euclidean space with dimX =n. However, for much of this chapter it is su�cient to takeX to be a compact metricspace. Let � be a Borel measure on X and L2�(X) be the Hilbert space of squareintegrable functions on X. Note that � can be any Borel measure. Signi�cantparticular cases are Lebesgue measure or the marginal measure �X of Chapter I.Let K : X �X ! R be a continuous function. Then the linear mapLK : L2�(X)! C(X)given by the following integral transform(LKf)(x) = Z K(x; t)f(t)d�(t)



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 33is well-de�ned. Composition with the inclusion C(X) ,! L2�(X) yields a linearoperator LK : L2�(X) ! L2�(X) which, abusing notation, we will also denote byLK .The function K is said to be the kernel of LK and several properties of LK followfrom properties of K. Let CK = supx;t2X jK(x; t)j:Also, for x 2 X, let Kx : X ! R be given by Kx(t) = K(x; t).Proposition 1. If K is continuous, then LK is well-de�ned and compact. In ad-dition, kLKk �p�(X)CK . Here �(X) denotes the measure of X.Proof. To see that LK is well de�ned we need to show that LKf is continuous forevery f 2 L2�(X). To do so, consider f 2 L2�(X) and x1; x2 2 X. Thenj(LKf)(x1)� (LKf)(x2)j = ����Z (K(x1; t)�K(x2; t))f(t)����� kKx1 �Kx2kkfk by Cauchy-Schwartz� p�(X)maxt2X jK(x1; t)�K(x2; t)jkfk:Since K is continuous and X is compact, K is uniformly continuous. This impliesthe continuity of LKf .The assertion kLKk �p�(X)CK follows from the inequalityj(LKf)(x)j �p�(X) supt2X jK(x; t)jkfkwhich is proved as above.Finally, to see that LK is compact, let (fn) be a bounded sequence in L2�(X).Since kLKfk1 � CKkfk we have that (LKfn) is uniformly bounded. And, sincej(LKfn)(x1)�(LKfn)(x2)j �p�(X)maxt2X jK(x1; t)�K(x2; t)jkfnk for all n � 1,we have that the sequence (LKfn) is equicontinuous. By Arzela's Theorem (see e.g.x11.4 of [20]), (LKfn) contains a uniformly convergent subsequence.Two more important properties of LK follow from properties of K. Recall thatwe say that K is positive de�nite if for all �nite sets fx1; : : : ; xkg � X the k � kmatrix K[x] whose (i; j) entry is K(xi; xj) is positive de�nite.Proposition 2. (a) If K is symmetric, then LK : L2�(X) ! L2�(X) is self-adjoint.(b) If, in addition, K is positive de�nite, then LK is positive.Proof. Part (a) follows easily from Fubini's Theorem and the symmetry of K. For(b), just note thatZ Z K(x; t)f(x)f(t) = limk!1 �(X)k2 kXi;j=1K(xi; xj)f(xi)f(xj)= limk!1 �(X)k2 fTxK[x]fxwhere, for all k � 1, x1; : : : ; xk 2 X is a set of points conveniently chosen, fx =(f(x1); : : : ; f(xk)) and K[x] is the k � k matrix whose (i; j) entry is K(xi; xj).Since this matrix is positive de�nite the result follows.



34 FELIPE CUCKER AND STEVE SMALEIn the sequel we will consider a Mercer kernel K (i.e. a function K : X�X ! Rwhich is continuous, symmetric and positive de�nite). Then LK : L2�(X) ! L2�(X)is a self-adjoint, positive, compact operator and the Spectral Theorem (Theorem 2of Chapter II) applies. Let �k, k � 1, denote the eigenvalues of LK and �k thecorresponding eigenfunctions.Corollary 2. For k � 1, if �k 6= 0, then �k is continuous on X.Proof. Use that �k = 1�kLK(�k).In the sequel we will assume, without loss of generality, that �k � �k+1 for allk � 1. 2. Mercer's TheoremIf f 2 L2�(X) and f�1; �2; : : :g is a Hilbert basis of L2�(X), f can be uniquelywritten as f =P1k=1 ak�k and the partial sumsPNk=1 ak�k converge to f in L2�(X).If this convergence also holds in C(X), we say that the series uniformly convergesto f . Also, we say that a series P ak converges absolutely if the series P jakj isconvergent.Theorem 1. Let X be a compact domain or a manifold, � a Borel measure onX, and K : X � X ! R a Mercer kernel. Let �k be the kth eigenvalue ofLK and f�kgk�1 the corresponding eigenvectors. For all x; t 2 X, K(x; t) =1Xk=1�k�k(x)�k(t) where the convergence is absolute (for each x; y 2 X � X) anduniform (on X �X).The proof of Theorem 1 is given in [19] forX = [0; 1] and � the measure inheritedby the Lebesgue measure on R, but the proof there is valid in the generality of ourstatement.Corollary 3. The sum P�k is convergent and1Xk=1�k = ZX K(x; x) � �(X)CK :Therefore, for all k � 1, �k � ��(X)CKk �.Proof. By taking x = t in Theorem 1 we get K(x; x) = 1Xk=1�k�k(x)2. Integratingon both sides of this equality, we get1Xk=1�k ZX �k(x)2 = ZX K(x; x) � �(X)CK :But since f�1; �2; : : :g is a Hilbert basis, R �2k = 1 for all k � 1 and the �rststatement follows. The second statement follows from the assumption �k � �j forj > k.



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 353. Reproducing kernel Hilbert spacesIn this section we �x a compact domain or a manifold X, a Borel measure � onX, and a Mercer kernel K : X �X ! R. The two main results of this section arethe following.Theorem 2. There exists a unique Hilbert space HK of functions on X satisfyingthe following conditions:(i) for all x 2 X, Kx 2 HK ;(ii) the span of the set fKx j x 2 Xg is dense in HK ; and(iii) for all f 2 HK , f(x) = hKx; fiK .Moreover, HK consists of continuous functions, and the inclusion IK : HK ! C(X)is bounded with kIKk � C1=2K .Theorem 3. The map � : X ! `2x 7! (p�k�k(x))k2Nis well-de�ned, continuous, and satis�esK(x; t) = h�(x);�(t)i:Corollary 4. For all x; t 2 X, jK(x; t)j � K(x; x)1=2K(t; t)1=2.Proof. This is a consequence of the Cauchy-Schwartz inequality and the last state-ment in Theorem 3.Remark 1. (i) Note that the space HK of Theorem 2 depends only on X and K.It is independent of any measure considered on X.(ii) In the learning context, the space `2 in Theorem 3 is often called the featurespace and the function � the feature map.(iii) The Hilbert space HK in Theorem 2 is said to be a reproducing kernel Hilbertspace (or, for short, a RKHS). This terminology is of common use in thelearning literature.(iv) A substantial amount of the theory of reproducing kernel Hilbert spaces wasdeveloped by N. Aronszajn [2]. On page 344 of this reference, Theorem 2, inessence, is attributed to E.H. Moore.Proof of Theorem 2. Let H0 be the span of the set fKx j x 2 Xg. We de�ne aninner product in H0 as follows. If f =Psi=1 �iKxi and g =Prj=1 �iKtj , thenhf; gi = X1�i�s1�j�r�i�jK(xi; tj):Let HK be the completion of H0 with the associated norm. It is easy to check thatHK satis�es the three conditions in the statement. We only need to prove that itis unique. So, assume H is another Hilbert space of functions on X satisfying thenoted conditions. We want to show thatH = HK and h ; iH = h ; iHK :(9)We �rst observe that H0 � H. Also, for any x; t 2 X, hKx;KtiH = K(x; t) =hKx;KtiHK . By linearity, for every f; g 2 H0, hf; giH = hf; giHK . Since both Hand HK are completions of H0, (9) follows from the uniqueness of the completion.



36 FELIPE CUCKER AND STEVE SMALETo see the remaining assertion consider f 2 HK and x 2 X. Thenjf(x)j = jhKx; fij � kfkkKxk = kfkpK(x; x):This implies kfk1 � pCKkfkHK and thus kIKk � pCK . Therefore, convergencein k kHK implies convergence in k k1, and this shows that f is continuous since fis the limit of elements in H0 which are continuous.Proof of Theorem 3. For every x 2 X, by Mercer's Theorem,P�k�2k(x) convergesto K(x; x). This shows that �(x) 2 `2.Also by Mercer's Theorem, for every x; t 2 X,K(x; t) = 1Xk=1�k�k(x)�k(t) = h�(x);�(t)i:It only remains to prove that � : X ! `2 is continuous. But for any x; t 2 X,k�(x)� �(t)k = h�(x);�(x)i+ h�(t);�(t)i � 2h�(x);�(t)i= K(x; x) +K(t; t) � 2K(x; t)which by the continuity of K tends to zero when x tends to t.We next characterize HK through the eigenvalues �k of LK . Theorem 2 ofChapter II guarantees that �k � 0 for all k � 1. In the rest of this section weassume that, in addition, �k > 0 for all k � 1. There is no loss of generality indoing so (see Remark 3 below).Let HK = (f 2 L2�(X) j f = 1Xk=1 ak�k with � akp�k� 2 `2) :We can make HK a Hilbert space with the inner producthf; giK = 1Xk=1 akbk�kfor f =P ak�k and g =P bk�k. Note that the mapL1=2K : L2�(X) ! HKX ak�k 7! X akp�k�kde�nes an isomorphism of Hilbert spaces. In addition, considered as an operatoron L2�(X), it is the square root of Lk in the sense that LK = L1=2K � L1=2K .Proposition 3. The elements of HK are continuous functions on X. In addition,for f 2 HK , if f =P ak�k, then this series converges absolutely and uniformly tof .Proof. Let g 2 HK , g =P gk�k, and x 2 X. Thenjg(x)j = ����� 1Xk=1 gk�k(x)����� = ����� 1Xk=1 gkp�kp�k�k(x)����� � kgkKk�(x)k = kgkKK(x; x)1=2;the inequality by Cauchy-Schwartz and the last equality by Theorem 1. Thus,kgk1 � pCKkgkK. Therefore, convergence in k kK implies convergence in k k1



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 37which, applied to the series gN = f �PNk=1 ak�k, proves the statement about uni-form convergence. The continuity of f now follows from that of the �k (Corol-lary 2). The absolute convergence follows from the inequality P jgk�k(x)j �kgkKk�(x)k.Lemma 1. Let x 2 X. The function 'x : X ! R de�ned by 'x(t) = h�(x);�(t)ibelongs to HK.Proof. Use Theorem 3.Proposition 4. For all f 2 HK and all x 2 X, f(x) = hf;KxiK .Proof. For f 2 HK, f =Pwk�k,hf;KxiK = 1Xk=1wkh�k;KxiK = 1Xk=1 wk�k h�k;Kxi= 1Xk=1 wk�k Z �k(t)K(x; t) = 1Xk=1 wk�k (LK�k)(x) = 1Xk=1 wk�k �k�k(x)= f(x):Theorem 4. The Hilbert spaces HK and HK are the same space of functions onX with the same inner product.Proof. For any x 2 X, the function Kx coincides, by Theorem 3, with the function'x in the statement of Lemma 1. And this result shows precisely that 'x 2 HK . Inaddition, Proposition 4 shows that for all f 2 HK and all x 2 X, f(x) = hf;KxiK.We now show that the span of fKx j x 2 Xg is dense in HK .To do so, assume that for f 2 HK, hf;KtiK = 0 for all t 2 X. Then, sincehf;KtiK = f(t), we have f = 0 on X. This implies the desired density.The statement now follows from Theorem 2.Remark 2. A consequence of Theorem 4 is the fact that the Hilbert space HK ,although being de�ned through the integral operator LK and its associated spectrawhich depend on the measure �, is actually independent of �. This follows fromRemark 1.Remark 3. The properties of HK and � have been exposed under the assumptionthat all eigenvalues of LK are strictly positive. If the eigenvalues might be zeroas well, let H be the linear subspace of L2�(X) spanned by the eigenvectors corre-sponding to non-zero eigenvalues. If H is in�nite dimensional, all the results in thissection remain true if one replaces L2�(X) by H . If H is �nite dimensional, this isso if, in addition, we replace `2 by RN where N = dimH.4. Mercer kernels existGiven a kernel K, it is in general straightforward to check its symmetry andcontinuity. It is more involved to check that it is positive de�nite. The next result,Proposition 5 below, will be helpful to prove positivity of several kernels. It wasoriginally proved forRn by Schoenberg [34] (together with a more di�cult converse),but it follows for subsets of Rn by restricting to such a subset a kernel de�ned onRn.



38 FELIPE CUCKER AND STEVE SMALEA function f : (0;1)! R is completely monotonic if it is C1 and, for all r > 0and k � 0, (�1)kf (k)(r) � 0. Here f (k) denotes the kth derivative of f .Proposition 5. Let X � Rn, f : (0;1)! R and K : X � X ! R be de�ned byK(x; t) = f(kx�tk2). If f is completely monotonic, then K is positive de�nite.Corollary 5. Let c 6= 0. The following kernels, de�ned on a compact domainX � Rn, are Mercer kernels.(a) [Gaussian] K(x; t) = e� kx�tk2c2 .(b) K(x; t) = (c2 + kx� tk2)�� with � > 0.Proof. Clearly, both kernels are continuous and symmetric. In (a) K is positivede�nite by Proposition 5 with f(r) = e� rc2 . The same for (b) taking f(r) =(c2 + r)��.Remark 4. The kernels of (a) and (b) in Corollary 5 satisfyCK = 1 andCK = c�2�respectively.The following is a key example of �nite dimensional RKHS induced by a Mercerkernel. In contrast with the Mercer kernels of Corollary 5 we will not use Proposi-tion 5 to show positivity.Example 1 (continued). Let Hd = Hd(Rn+1) be the linear space of homoge-neous polynomials of degree d in x0; x1; : : : ; xn. Thus, we recall, elements f 2 Hdhave the form f = Xj�j=dw�x� with � = (�0; �1; : : : ; �n) 2 Nn+1. It follows thatthe dimension of Hd is N = � n+ dn � :We can make Hd an inner product space by takinghf; gi = Xj�j=dw�v�(Cd�)�1for f; g 2 Hd, f =Pw�x�, g =Pv�x�. HereCd� = d!�0! � � ��n!is the multinomial coe�cient associated to the pair (d; �). This inner product,which we call the Weyl inner product, is natural and has important properties suchas group invariance. If kfk denotes the norm induced by this inner product, thenone has jf(x)j � kfkkxkdwhere kxk is the standard norm of x 2 Rn+1 (cf. Lemma 7 of Chapter 14 of [8];this reference gives more background to this discussion).Let X = S(Rn+1) and K : X �X ! R(x; t) 7! hx; tidwhere h ; i denotes the Euclidean inner product in Rn+1. Let also� : X ! RNx 7! �x�(Cd�)1=2� :



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 39Then, for x; t 2 X, we haveh�(x);�(t)i = Xj�j=dx�t�Cd� = hx; tid = K(x; t):This equality enables us to prove that K is positive de�nite since it implies that, fort1; : : : ; tk 2 X, the entry in row i and column j of K[t] is h�(ti);�(tj)i. Therefore,ifM denotes the matrix whose jth column is �(tj), we have thatK[t] =MTM fromwhich the positivity of K[t] follows. Since K is clearly continuous and symmetric,we conclude that K is a Mercer kernel.Which is the RKHS associated to K?Proposition 6. Hd = HK as function spaces and inner product spaces.Proof. We know from the proof of Theorem 2 that HK is the completion of H0,the span of fKx j x 2 Xg. Since H0 � Hd and Hd has �nite dimension, the sameholds for H0. But then H0 is complete and we deduceHK = H0 � Hd:The map V : Rn+1 ! RN de�ned by V(x) = (x�)j�j=d is a well-known objectin algebraic geometry, where it receives the name of Veronese embedding. We notehere that the feature map � de�ned above is related to V since for every x 2 X,�(x) = DV(x) where D is the diagonal matrix with entries (Cd�)1=2. The image ofRn+1 by the Veronese embedding is an algebraic variety called the Veronese variety,which is known (cf. x4.4 of [35]) to be non-degenerate, i.e. to span all of RN. Thisimplies that HK = Hd as vector spaces. We will now see that they are actually thesame inner product space.By de�nition of the inner product in H0, for all x; t 2 X,hKx;KtiH0 = K(x; t) = Xj�j=dCd�x�t�:On the other hand, since Kx(w) = Pj�j=d Cd�x�w�, we have that the Weyl innerproduct of Kx and Kt satis�eshKx;KtiHd = Xj�j=d(Cd�)�1Cd�x�Cd�t� = Xj�j=dCd�x�t�:We conclude that, since the polynomials Kx span all of H0, the inner product inHK = H0 is the Weyl inner product.The discussion above extends to arbitrary, i.e. not necessarily homogeneous,polynomials. Let Pd = Pd(Rn) be the linear space of polynomials of degree d inx1; : : : ; xn. A natural isomorphism between Pd and Hd is the \homogenization"Pd ! HdXj�j�dw�x� 7! Xj�j�dw�xd�j�j0 x�:Here, � = (�1; : : : ; �n) 2 Nn is a \multi-index" and x� = x�11 � � �x�nn . The inverseof the homogenization is obtained by setting x0 = 1. Through this isomorphism wecan endow Pd as well with the Weyl inner product.



40 FELIPE CUCKER AND STEVE SMALELet K : Rn�Rn ! R(x; t) 7! (1 + hx; ti)dand � : Rn ! RN given by �(x) = �1; x�(Cd�)1=2�. Then, one has h�(x);�(t)i =K(x; t).Remark 5. Note again that the reproducing kernel Hilbert structure on Hd forK(x; t) = hx; tid is precisely the Weyl one.5. Covering numbers on reproducing kernel Hilbert spacesThe goal of this section is to estimate the covering number N (IK(BR); �) forR; � > 0 as promised.Theorem D. Let K : X � X ! R be a C1 Mercer kernel and HK its corre-sponding RKHS. Then the inclusion IK : HK ,! C(X) is compact and its entropynumbers satisfy ek(IK) � C 0hk�h=2n, for all h > n, where C 0h is independent of k.Consequently, for h > n, � > 0, and R > 0,lnN �IK (BR); �� � �RCh� �2nhwhere Ch is a constant slightly larger than C 0h.Lemma 2. Let 0 < r < s and a 2 L2�(X). Suppose there exists C > 0 such that,for all R > 0, minb s:t:kbks�R kb� ak � C� 1R� rs�r :Then, for all � > 0, kakr�� � c�C s�rs .Proof. See e.g. Theorem 2 in [38] (take E = L2�(X), H = Hs(X) and � = r=s). Iffor all R > 0 minb s.t. kbks�R kb� ak � C� 1R� rs�r ;then kakr=s;1 � 2C s�rs where k kr=s;1 denotes a norm in an interpolation spacewhose precise de�nition will not be needed here. Actually, in [4], pages 46 and 55,equation (1x), it is proved that, for all � > 0, there exists a constant C� such that,for all a in this interpolation space,kakr�� � C�kakr=s;1:The proof now follows by taking c� = 2C�.Lemma 3. Let K be a C1 Mercer kernel. Then, the image of LK is included inH� (X) for all � � 0. Considered as a linear map from L2�(X) to H� (X), LK isbounded.



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 41Proof. For f 2 L2�(X),kLKfk2� = Zx2X Xj�j�� (D�(LKf)(x))2 = Zx2X Xj�j�� �Zt2X D�xKt(x)f(t)�2� Zx2X Xj�j�� Zt2X(D�xKt(x))2 Zt2X f(t)2� kfk20�(X) Xj�j�� supx;t2X(D�xKt(x))2where the �rst inequality follows from the Cauchy-Schwartz inequality.Proof of Theorem D. Let f 2 HK and R > 0. By Theorem 3 (2) in Chapter IIwith A = LK , s = 1, r = 1=2 and a = f , we haveming s.t. kL�1K gk�R kg � fk � 1RkL�1=2K fk2 = 1Rkfk2K :Let � > 0 and c� = kLKk for LK : L2�(X)! H� (X). By Lemma 3 above,ming s.t. kgk�� Rc� kg � fk � 1Rkfk2Kor replacing R=c� by R, ming s.t. kgk��R kg � fk � c�R kfk2K :Since this inequality holds for all R > 0 we can apply Lemma 2. We do so withs = � = 3h=2, r = 3h=4, � = h=4, and C = c�kfk2K to obtainkfkh=2 � C 0kfkK(10)where C 0 = c�pc3h=2.Inequality (10) proves the existence of a bounded embedding HK ,! Hh=2.Also, since h > n, the Sobolev Embedding Theorem and Rellich's Theorem applyto yield a compact embedding Hh=2 ,! C(X). From this we deduce the followingfactorization HK J ""E

E

E

E

E

E

E

E

E

IK // C(X)Hh=2Jh=2OOwhich shows that IK is compact.In addition, by Edmunds and Triebel's bound (inequality (4) in Chapter I), wehave ek(Jh=2) � C �1k�h=2n for a constant C independent of k. Thereforeek(IK) = ek(Jh=2J ) � ek(Jh=2)kJ k � C 0C �1k�h=2n ;which proves the �rst statement in the theorem by taking C 0h = C 0C.The second statement follows by using that N (IK (BR); �) � 2k � 1 if and onlyif ek(IK) � �=R and solving for k.



42 FELIPE CUCKER AND STEVE SMALE6. On the minimizer of Ez(f) + 
kfk2KLet X;L2�(X);K; k kK and HK be as in Section 1. We now abandon the settingof a compact hypothesis space adopted in Chapter I and slightly change the per-spective. In what follows, we take H = HK , i.e. H is a whole linear space, and weconsider the regularized error E
 de�ned byE
(f) = ZZ(f(x) � y)2 + 
kfk2Kfor a �xed 
 � 0. For a sample z, the regularized empirical error E
;z is de�ned inProposition 8 below. One may consider a target function f
 minimizing E
 (f) overH. But since H is no longer compact, the existence of such a target function is notimmediate. Our next result proves that f
 exists and is unique.Proposition 7. For all 
 > 0 the function f
 = (Id+
L�1K )�1f� is the uniqueminimizer of E
 over H.Proof. Apply Theorem 3 (1) of Chapter II with H = L2�(X), s = 1, A = L1=2K ,and a = f�. Since for all f 2 HK , kfkK = kL�1=2K fk� , the expression kb � ak2 +
kA�sbk2 is in our case E
(b). Thus, f
 is the b̂ in Theorem 3 and the propositionfollows.For the following result we have followed [17] and its references. See also theearlier paper [10].Proposition 8. Let z 2 Zm and 
 2 R, 
 > 0. The empirical target, i.e. thefunction f
;z = fz minimizing the regularized empirical error1m mXi=1(yi � f(xi))2 + 
kfk2Kover f 2 HK , may be expressed asfz(x) = mXi=1 aiK(x; xi)where a = (a1; : : : ; am) is the unique solution of the well-posed linear system in Rm(
m Id+K[x])a = y:Here, we recall, K[x] is the m � m matrix whose (i; j) entry is K(xi; xj), x =(x1; : : : ; xm) 2 Xm, and y = (y1; : : : ; ym) 2 Y m such that z = ((x1; y1); : : : ;(xm; ym)).Proof. Let H(f) = 1m mXi=1(yi � f(xi))2 + 
kfk2K and write, for any f 2 HK , f =1Xk=1 ck�k. Recall that kfk2K = 1Xk=1 c2k�k .For every k � 1, @H@ck = 1m mXi=1�2(yi � f(xi))�k(xi) + 2
 ck�k . If f is a minimumof H, then, for each k, we must have @H@ck = 0 or, solving for ck,ck = �k mXi=1 ai�k(xi)



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 43where ai = yi�f(xi)
m . Thus,f(x) = 1Xk=1 ck�k(x) = 1Xk=1�k mXi=1 ai�k(xi)�k(x)= mXi=1 ai 1Xk=1�k�k(xi)�k(x) = mXi=1 aiK(xi; x):Replacing f(x) in the de�nition of ai above, we obtainai = yi �Pmi=1 aiK(xi; x)
m :Multiplying both sides by 
m and writing the result in matrix form, we obtain(
m Id+K[x])a = y. And this system is well-posed since K[x] is positive and theaddition of a positive matrix and the identity is strictly positive.Proposition 8 yields an algorithm which outputs an approximation of the targetfunction, working in the in�nite dimensional function space HK . We won't pur-sue the implications of that result here, but see [17] and its references for someindications. Moreover, we have not given a bias-variance estimate based on the pa-rameter 
. That would be useful since a good choice of 
 is important in choosingan algorithm. The framework developed here suggests approaches to this problem.But it is time for us to end this modest contribution to the foundations.Appendix A: Entropy numbers and eigenvaluesThe entropy numbers of a compact operator T : E ! E are closely related to theeigenvalues of T . If j�1j � j�2j � : : : are these eigenvalues, then j�kj � p2ek(T ).This inequality is due to B. Carl and is proved, for instance, on page 512 of [24].An inequality in the opposite direction is proved in Proposition 9 below. Relatedmaterial can be found in [29].4Proposition 9. Let �1 � �2 � : : : � �n � : : : � 0 be a sequence of real numbers.Consider the diagonal linear operator de�ned byL : `2 ! `2(wn) 7! (�nwn):If �k � Ck�` for some C; ` and all k � 1, then"k(L) � CL(ln k)�`; and, if k � 2, ek(L) � 2CLk�`:Here CL = 6C``.4Many of the analysis references used for our paper deal with the case dimX = 1 and that caseis not useful in learning theory. Thus some care must be taken in depending on the literature. Itis useful to quote Pietsch ([29], page 252) in this respect:[ : : : ] Moreover the situation is even worse, since these authors have very oftenomitted proofs claiming that they can be adapted step by step from the scalar-valued setting. Thus [ : : : ] we are not in a position to recommend any rigorousreference. On the other hand, it would be beyond the scope of this book to provideall necessary details. This section is therefore in striking contrast to the rest of thebook. It presents the most beautiful applications of the abstract theory of eigenvaluedistributions to integral operators, but requires a lot of blind con�dence on the partof the reader. Nevertheless, I bet my mathematical reputation (but not my car!)that all the statements are correct.



44 FELIPE CUCKER AND STEVE SMALEProof. By Lemma 4 below,"k(L) � 6 supn2Nk� 1n (�1�2 : : : �n) 1n� 6C supn2Nk1=n� 1n!�`=n � 6C supn2Nk1=n � en�`= 6Ce` supn2Nk1=n� 1n�` ;the last by Stirling's inequality. Letting x = n�` and looking at the zero of thederivative of f(x) = xk�x1=` , we see that the maximum of f is reached whenx = (`= lnk)`. Therefore, the supremum of the expression above is bounded by itsvalue at n = ln k=`, i.e.,"k(L) � 6Ce`k� `ln k � `lnk�` = 6C� `lnk�` :Moreover ek(L) = "2k�1(L) � 6C� `ln(2k � 1)�` � (12C``)k�`:The following result is taken from [9] (see Proposition 1.3.2 there).Lemma 4. In hypothsesis of Proposition 9, for every k � 1,supn2Nk� 1n (�1�2 : : : �n) 1n � "k(L) � 6 supn2Nk� 1n (�1�2 : : : �n) 1n :Appendix B: The least squares algorithmRecall that fz is the function minimizing inH the empirical error Ez. In Chapter Iwe focused on the con�dence of having a small sample error EH(fz). The problemof actually computing fz was however ignored. We now shift our attention to that,for the case of H a �nite dimensional full linear space.Let �1; : : : ; �N be a basis of H. Then, each function f 2 H can be written in aunique way as f = NXi=1 wi�iwith wi 2 R for i = 1; : : : ; N .For a sample z 2 Zm, z = ((x1; y1); : : : ; (xm; ym)), to minimize the empiricalerror Ez means to �nd f 2 H minimizingmXj=1(f(xj) � yj)2where we suppose m > N . Thus one �nds w 2 RN minimizingmXj=1 NXi=1(wi�i(xj)) � yj!2 :



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 45Let aij = �i(xj) and A be the m�N matrix with entries aij. Our problem|in thesequel the least squares problem|now becomes that of, given A and y, minimizingover w 2W = RN:mXj=1 NXi=1 aijwi � yj!2 = mXj=1 ((Aw)j � yj)2 = kAw � yk2:Note that in our situation, since m > N , the system Aw = y is likely to have nosolutions. A point w minimizing kAw � yk2 is called a least squares solution.The idea to \solve" an overdetermined system of equations Aw = y by �ndinga point minimizing kAw� yk2 goes back to Gauss and Legendre.5 The motivationwas to �nd a function �tting a certain amount of astronomical data. The y valuesof these data were obtained by measurements and thus contaminated with smallerrors. Laplace had suggested minimizingPmj=1 j(Aw)j � yj j with the additionalrestriction Pmj=1((Aw)j � yj) = 0, and he had proved that the solution w thusfound satis�ed n of the m equalities in Aw = y. But Gauss argued that such asolution was not consistent with the laws of probability since greater or smallererrors are equally probable in all of the m equations. Additionally, Gauss provedthat, contrary to Laplace's suggestion, the least squares solution enjoys remarkablestatistical properties (cf. Theorem 6 below).Let's now discuss how to �nd a w minimizing kAw � yk2. By abuse of notationlet's denote also by A the linear map from RN to Rm whose matrix is A. LetIm(A) � Rm be the image of A, and c 2 Im(A) be the point whose distance to y isminimal. Then S = fw 2 RN j Aw = cgis an a�ne subspace of RN of dimension N � dim(ker(A)). In particular, the leastsquares problem has a unique solution w 2 RN if and only if A is injective. Thenext result is immediate.Proposition 10. Let A : RN ! Rm be injective and y 2 Rm. Then the solutionof the least squares problem is given by w = Ayy where Ay = (Aj Im(A))�1�. Here� : Rm! Im(A) is the orthogonal projection onto Im(A).Recall that the orthogonal complement to Im(A) in Rm is ker(A�) where A�denotes the adjoint of A. Thus, for every w 2 RN,w = Ayy () Aw = �y () Aw � �y 2 Im(A)?() A�(Aw � y) = 0 () w = (A�A)�1A�y:The map Ay = (A�A)�1A� is called the Moore-Penrose inverse of the injectivemap A. So, we have shown that w = Ayy. In particular, w is a linear function ofy. For the rest of this section, assume A is injective.To compute w the main algorithmic step is to solve the linear system Sw = bwith S = A�A and b = A�y. The �eld of Numerical Linear Algebra provides uswith an important collection of algorithms for doing so as well as results about theircomplexity and stability properties.5In Nouvelle m�ethodes pour la determination des orbites des com�etes, published in 1805,Legendre writes \Of all the principles that can be proposed [ : : : ], I think that there is none moregeneral, more exact, and more easy to apply, than that consisting of minimizing the sum of thesquares of the errors."



46 FELIPE CUCKER AND STEVE SMALEPerturbation results for least squares follow from perturbation theory for linearequation solving. Recall that the condition number of A is de�ned to be �(A) =kAkkAyk. A proof of the following can be found in [7].Theorem 5. Let A be an injective m � N matrix, y 2 Rm and w = Ayy. Let �Abe an m �N matrix such that rank(A+ �A) = rank(A) and let �y 2 Rm. Suppose"A; "y � 0 such that k�AkkAk � "A and k�ykkyk � "y:(11)De�ne �w = (A + �A)y(y + �y) �w.If �(A)"A < 1, thenk�wk � �(A)1� �(A)"A �"Akwk+ "y kykkAk + "A�(A)ky � AwkkAk �+ "A�(A)kwk:(12)Thus, Theorem 5 says that if A and y have relative errors bounded as in (11),then the error in the solution of the least squares problem is given by (12). Wenote the role of the condition number of A in this estimate.If A is not injective, one can �nd a solution w 2 S by considering a maximalrank restriction of A and solving the problem for this restriction.Before �nishing this section we state Gauss' result on a statistical property ofleast squares. First some de�nitions.De�nition 1. Let Y be a probability space and y = (y1; : : : ; ym) : Y ! Rm bea random vector. A function g : Rm ! RN is an unbiased estimate of a vectorv 2 RN if E(g(y)) = v.We say that g� is aminimum variance estimate (in a class C of functions fromRmto RN) of v if E(g(y)) = v and PNi=1 �2(gi(y)) is minimized over all the functionsg 2 C.Theorem 6 (Gauss). Let A 2 Rm�N be injective, y� 2 Rm, and w� 2 RN suchthat Aw� = y�. Consider the random vector y such that, for j = 1; : : : ;m, yj =y�j + " where " is a random variable with mean 0 and variance �2. The minimumvariance estimate of w� in the class of all unbiased linear estimators is w = Ayy,i.e. the least squares solution of Aw = y.In our case, Gauss' Theorem would say that if for every x 2 X the probabilitymeasures �(yjx) are identical, then the following holds. Let w� 2 RN such thatfH = NXi=1 w�i�i:For all samples z 2 Zm, the least squares solution w ofmXj=1(fw(xj)� yj)2is the one minimizing the variance (in the sense of De�nition 1) among all linearmaps g : Rm! RN such that, for i = 1; : : : ; N ,Zy2Ym gi(y) = w�i :



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 47Generalizations of Gauss' Theorem (among many other results on least squares)can be found in [7]. See also [13].Remark 6. This paper can be thought of as a contribution to the solution of Prob-lem 18 in [37]. Indexd e, 15 covering number, 12k kK , 24, 36 defect function, 7k ks, 10 distortion, 24C(X), 8 entropy number, 16C1(X), 10 error, 4CK , 33 approximation, 9, 22D��, 24 empirical, 6E , 4 empirical in H, 19E
 , 42 in H, 9E
;z, 42 regularized, 42EH, 9 regularized empirical, 42EH;z, 19 sample, 9"k, 15 featureek, 16 map, 35Ez, 6 space, 35f
 , 42 general setting, 11fH, 8 and approximation error, 29f�, 3, 5 and bias-variance problem, 31fY , 6 in Hilbert space, 29fz, 9 Hoe�ding's inequality, 7HK , 35 homogeneous polynomials, 9, 38Hs(X), 11 hypothesis space, 8`2, 25 convex, 17LK , 11, 32 kernel, 33L2�(X), 10, 11 least squares, 2, 45Lz, 7 Mercer kernel, 11, 17, 18N , 12 model selection, 31�, 4 noise-free, 17�X , 4 regression function, 3, 5�(yjx), 4 reproducing kernel Hilbert space, 11, 35�2�, 5 sample, 6X, 4 SobolevY , 4 Embedding Theorem, 11Z, 4 space, 11, 16, 18, 30Zm, 6 Stirling's inequality, 25Bernstein's inequality, 7 target function, 8best �t, 2 empirical, 9bias-variance trade-o�, 9 VeroneseChebyshev's inequality, 7 embedding, 39compact operator, 10 variety, 39con�dence, 8 Weyl inner product, 38



48 FELIPE CUCKER AND STEVE SMALEReferences[1] L.V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill, 1978. MR 80c:30001[2] N. Aronszajn, Theory of reproducing kernels, Transactions of the Amer. Math. Soc.68 (1950),337{404. MR 14:479c[3] A.R. Barron, Complexity regularization with applications to arti�cial neural networks, Non-parametric Functional Estimation (G. Roussa, ed.), Kluwer, Dordrecht, 1990, pp. 561{576.MR 93b:62052[4] J. Bergh and J. L�ofstr�om, Interpolation spaces. an introduction, Springer-Verlag, 1976. MR58:2349[5] M.S. Birman and M.Z. Solomyak, Piecewise polynomial approximations of functions of theclasses W�p , Mat. Sb. 73 (1967), 331{355; English translation in Math. USSR Sb. (1967),295{317. MR 36:576[6] C.M. Bishop, Neural networks for pattern recognition, Cambridge University Press, 1995.MR 97m:68172[7] A. Bj�orck, Numerical methods for least squares problems, SIAM, 1996. MR 97g:65004[8] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer-Verlag, 1998. MR 99a:68070[9] B. Carl and I. Stephani, Entropy, compactness and the approximation of operators, Cam-bridge University Press, 1990. MR 92e:47002[10] P. Craven and G. Wahba, Smoothing noisy data with spline functions: estimating the correctdegree of smoothing by the method of generalized cross-validation, Numer. Math. 31 (1979),377{403. MR 81g:65018[11] C. Darken, M. Donahue, L. Gurvits, and E. Sontag, Rates of convex approximation in non-Hilbert spaces, Construct. Approx. 13 (1997), 187{220. MR 98c:41051[12] L. Debnath and P. Mikusi�nski, Introduction to Hilbert spaces with applications, 2nd ed.,Academic Press, 1999. MR 99k:46001[13] J.-P. Dedieu and M. Shub, Newton's method for overdetermined systems of equations, Math-ematics of Computation 69 (2000), 1099{1115. MR 2000j:65133[14] R.A. DeVore and G.G. Lorentz, Constructive approximation, Grundlehren der mathematis-chen Wissenschaften, vol. 303, Springer-Verlag, 1993. MR 95f:41001[15] J. Duchon, Spline minimizing rotation-invariant semi-norms in Sobolev spaces, Constructivetheory of functions on several variables (W. Schempp and K. Zeller, eds.), Lecture Notes inMath. 571, Springer-Verlag, Berlin, 1977. MR 58:12146[16] D.E. Edmunds and H. Triebel, Function spaces, entropy numbers, di�erential operators,Cambridge University Press, 1996. MR 97h:46045[17] T. Evgeniou, M. Pontil, and T. Poggio, Regularization Networks and Support Vector Ma-chines, Advances in Computational Mathematics 13 (2000), 1{50. MR 2001f:68053[18] D. Haussler, Decision theoretic generalizations of the PAC model for neural net and otherlearning applications, Information and Computation 100 (1992), 78{150. MR 93i:68149[19] H. Hochstadt, Integral equations, John Wiley & Sons, 1973. MR 52:11503[20] A.N. Kolmogorov and S.V. Fomin, Introductory real analysis, Dover Publications Inc., 1975.MR 51:13617[21] A.N. Kolmogorov and V.M. Tikhomirov, "-entropy and "-capacity of sets in function spaces,Uspecki 14 (1959), 3{86. MR 22:2890[22] W.-S. Lee, P. Bartlett, and R. Williamson, The importance of convexity in learningwith squared loss, IEEE Transactions on Information Theory 44 (1998), 1974{1980. MR99k:68160[23] P. Li and S.-T. Yau, On the parabolic kernel of the Schr�odinger operator, Acta Math. 156(1986), 153{201. MR 87f:58156[24] G.G. Lorentz, M. Golitschek, and Y. Makovoz, Constructive approximation; advanced prob-lems, Springer-Verlag, 1996. MR 97k:41002[25] W.S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity,Bulletin of Mathematical Biophysics 5 (1943), 115{133. MR 6:12a[26] J. Meinguet,Multivariate interpolation at arbitrary points made simple, J. Appl. Math. Phys.30 (1979), 292{304. MR 81e:41014[27] M.L. Minsky and S.A. Papert, Perceptrons, MIT Press, 1969.[28] P. Niyogi, The informational complexity of learning, Kluwer Academic Publishers, 1998.[29] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, 1987. MR 88j:47022b



ON THE MATHEMATICAL FOUNDATIONS OF LEARNING 49[30] A. Pinkus, N -widths in approximation theory, Springer-Verlag, New York, 1986. MR86k:41001[31] T. Poggio and C.R. Shelton,Machine learning, machine vision, and the brain, AI Magazine20 (1999), 37{55.[32] D. Pollard, Convergence of stochastic processes, Springer-Verlag, 1984. MR 86i:60074[33] G.V. Rozenblum, M.A. Shubin, and M.Z. Solomyak, Partial di�erential equations vii:Spectral theory of di�erential operators, Encyclopaedia of Mathematical Sciences, vol. 64,Springer-Verlag, 1994. MR 95j:35156[34] I.J. Schoenberg,Metric spaces and completely monotone functions, Ann. of Math. 39 (1938),811{841.[35] I.R. Shafarevich, Basic algebraic geometry, 2nd ed., vol. 1: Varieties in Projective Space,Springer-Verlag, 1994. MR 95m:14001[36] S. Smale, On the Morse index theorem, J. Math. and Mech. 14 (1965), 1049{1056, With aCorrigendum in J. Math. and Mech. 16, 1069{1070, (1967). MR 31:6251; MR 34:5108[37] , Mathematical problems for the next century, Mathematics: Frontiers and Perspec-tives (V. Arnold, M. Atiyah, P. Lax, and B. Mazur, eds.), AMS, 2000, pp. 271{294. CMP2000:13[38] S. Smale and D.-X. Zhou, Estimating the approximation error in learning theory, Preprint,2001.[39] M.E. Taylor, Partial di�erential equations i: Basic theory, Applied Mathematical Sciences,vol. 115, Springer-Verlag, 1996. MR 98b:35002b[40] L.G. Valiant, A theory of the learnable, Communications of the ACM27 (1984), 1134{1142.[41] S. van de Geer, Empirical processes in m-estimation, Cambridge University Press, 2000.[42] V. Vapnik, Statistical learning theory, John Wiley & Sons, 1998. MR 99h:62052[43] P. Venuvinod, Intelligent production machines: bene�ting from synergy amongst modelling,sensing and learning, IntelligentProductionMachines: Myths and Realities, CRC Press LLC,2000, pp. 215{252.[44] A.G. Vitushkin, Estimation of the complexity of the tabulation problem, Nauka (in Russian),1959, English Translation appeared as Theory of the Transmission and Processing of theInformation, Pergamon Press, 1961.[45] G. Wahba, Spline models for observational data, SIAM, 1990. MR 91g:62028[46] R. Williamson, A. Smola, and B. Sch�olkopf, Generalization performance of regularizationnetworks and support vector machines via entropy numbers of compact operators, Tech. Re-port NC2-TR-1998-019, NeuroCOLT2, 1998.Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue,Kowloon, Hong KongE-mail address: macucker@math.cityu.edu.hkDepartment of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue,Kowloon, Hong KongCurrent address, S. Smale: Department of Mathematics, University of California, Berkeley,California 94720E-mail address: masmale@math.cityu.edu.hk, smale@math.berkeley.edu


