
AMD5K86™ Processor

Technical Reference Manual

© 1996 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any representations or warranties
of any kind, including but not limited to any implied warranty of merchant-
ability or fitness for a particular purpose.

AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication or the information contained
herein, and reserves the right to make changes at any time, without notice.
AMD disclaims responsibility for any consequences resulting from the use of
the information included herein.

Trademarks:

AMD, the AMD logo and combinations thereof, AMD5K86, and K86 are trademarks, and Am386 and Am486 are
registered trademarks of Advanced Micro Devices, Inc.

Microsoft and Windows are registered trademarks and Windows NT is a trademark of Microsoft.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

iii

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Contents

1 Overview 1-1

1.1 Features . 1-2

2 Internal Architecture 2-1

2.1 Prefetch and Predecode . 2-3

2.2 Execution Pipeline . 2-4
2.2.1 Fetch . 2-6
2.2.2 Decode . 2-7
2.2.3 Execute . 2-8

Integer/Shift Units . 2-9
Floating-Point Unit . 2-10
Load/Store Units . 2-10
Branch Unit . 2-10

2.2.4 Result . 2-11
2.2.5 Retire . 2-12

2.3 Cache Organization and Management 2-13
2.3.1 Instruction Cache . 2-14
2.3.2 Data Cache . 2-15
2.3.3 Cache Tags . 2-16
2.3.4 Cache-Line Fills . 2-17
2.3.5 Cache Coherency . 2-18
2.3.6 Snooping . 2-21

Inquire Cycles . 2-21
Internal Snooping . 2-22

2.3.7 Buffers . 2-23
Line-Fill Buffers . 2-23
Prefetch Cache . 2-24
Store Buffer . 2-24
Replacement and Invalidation Writeback Buffer 2-25
Snoop Writeback Buffer . 2-26

2.4 Memory Management Unit (MMU) . 2-26
2.4.1 Storage Model . 2-26
2.4.2 Read/Write Reordering . 2-27
2.4.3 Segmentation . 2-27
2.4.4 Paging and the TLBs . 2-28

iv

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3 Software Environment and Extensions 3-1

3.1 Control Register 4 (CR4) Extensions . 3-2
3.1.1 Machine-Check Exceptions . 3-4
3.1.2 4-Mbyte Pages . 3-5
3.1.3 Global Pages . 3-9
3.1.4 Virtual-8086 Mode Extensions (VME) 3-12

Interrupt Redirection in Virtual-8086 Mode Without
VME Extensions . 3-12
Hardware Interrupts and the VIF and VIP Extensions 3-13
Software Interrupts and the Interrupt Redirection
Bitmap (IRB) Extension . 3-21

3.1.5 Protected Virtual Interrupt (PVI) Extensions 3-24

3.2 Model-Specific Registers (MSRs) . 3-25
3.2.1 Machine-Check Address Register (MCAR) 3-25
3.2.2 Machine-Check Type Register (MCTR) 3-26
3.2.3 Time Stamp Counter (TSC) . 3-27
3.2.4 Array Access Register (AAR) . 3-27
3.2.5 Hardware Configuration Register (HWCR) 3-28

3.3 New Instructions . 3-28
3.3.1 CPUID . 3-29
3.3.2 CMPXCHG8B . 3-32
3.3.3 MOV to and from CR4 . 3-33
3.3.4 RDTSC . 3-34
3.3.5 RDMSR and WRMSR . 3-35
3.3.6 RSM . 3-37
3.3.7 Illegal Instruction (Reserved Opcode) 3-38

4 Performance 4-1

4.1 Code Optimization . 4-1
4.1.1 General Superscalar Techniques . 4-1
4.1.2 Techniques Specific to the AMD5K86 Processor 4-3

4.2 Dispatch and Execution Timing . 4-5
4.2.1 Notation . 4-5
4.2.2 Integer Instructions . 4-8
4.2.3 Integer Dot Product Example . 4-17
4.2.4 Floating-Point Instructions . 4-19

v

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5 Bus Interface 5-1

5.1 Signal Overview . 5-2
5.1.1 Signal Characteristics . 5-4
5.1.2 Conditions for Driving and Sampling Signals 5-8
5.1.3 External Interrupts . 5-14
5.1.4 Bus Signal Compatibility with Pentium Processor 5-18

5.2 Signal Descriptions . 5-18
5.2.1 A20M (Address Bit 20 Mask) . 5-19
5.2.2 A31–A3 (Address Bus) . 5-21
5.2.3 ADS (Address Strobe) . 5-25
5.2.4 ADSC (Address Strobe Copy) . 5-28
5.2.5 AHOLD (Address Hold) . 5-29
5.2.6 AP (Address Parity) . 5-32
5.2.7 APCHK (Address Parity Check) . 5-33
5.2.8 BE7–BE0 (Byte Enables) . 5-34
5.2.9 BF (Bus Frequency) . 5-37
5.2.10 BOFF (Backoff) . 5-38
5.2.11 BRDY (Burst Ready) . 5-42
5.2.12 RDYC (Burst Ready) . 5-45
5.2.13 BREQ (Bus Request) . 5-46
5.2.14 BUSCHK (Bus Check) . 5-47
5.2.15 CACHE (Cacheable Access) . 5-50
5.2.16 CLK (Bus Clock) . 5-53
5.2.17 D/C (Data or Code) . 5-54
5.2.18 D63–D0 (Data Bus) . 5-56
5.2.19 DP7–DP0 (Data Parity) . 5-58
5.2.20 EADS (External Address Strobe) . 5-59
5.2.21 EWBE (External Write Buffer Empty) 5-63
5.2.22 FERR (Floating-Point Error) . 5-65
5.2.23 FLUSH (Cache Flush) . 5-67
5.2.24 FRCMC (Functional-Redundancy Check Master/Checker) 5-70
5.2.25 HIT (Inquire-Cycle Hit) . 5-72
5.2.26 HITM (Inquire Cycle Hit To Modified Line) 5-74
5.2.27 HLDA (Bus-Hold Acknowledge) . 5-76
5.2.28 HOLD (Bus-Hold Request) . 5-78
5.2.29 IERR (Internal Error) . 5-80
5.2.30 IGNNE (Ignore Numeric Error) . 5-81
5.2.31 INIT (Initialization) . 5-82
5.2.32 INTR (Maskable Interrupt) . 5-85
5.2.33 INV (Invalidate Cache Line) . 5-89
5.2.34 KEN (External Cache Enable) . 5-90
5.2.35 LOCK (Bus Lock) . 5-92
5.2.36 M/IO (Memory or I/O) . 5-96
5.2.37 NA (Next Address) . 5-97
5.2.38 NMI (Non-Maskable Interrupt) . 5-98
5.2.39 PCD (Page Cache Disable) . 5-100

vi

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.40 PCHK (Parity Status) . 5-102
5.2.41 PEN (Parity Enable) . 5-103
5.2.42 PRDY (Probe Ready) . 5-104
5.2.43 PWT (Page Writethrough) . 5-106
5.2.44 R/S (Run or Stop) . 5-108
5.2.45 RESET (Reset) . 5-110
5.2.46 SCYC (Split Cycle) . 5-115
5.2.47 SMI (System Management Interrupt) 5-117
5.2.48 SMIACT (System Management Interrupt Active) 5-122
5.2.49 STPCLK (Stop Clock) . 5-123
5.2.50 TCK (Test Clock) . 5-128
5.2.51 TDI (Test Data Input) . 5-129
5.2.52 TDO (Test Data Output) . 5-130
5.2.53 TMS (Test Mode Select) . 5-131
5.2.54 TRST (Test Reset) . 5-132
5.2.55 W/R (Write or Read) . 5-133
5.2.56 WB/WT (Writeback or Writethrough) 5-134

5.3 Bus Cycle Overview . 5-137
5.3.1 Cycle Definitions . 5-137
5.3.2 Addressing . 5-138
5.3.3 Alignment . 5-139
5.3.4 Bus Speed and Typical DRAM Timing 5-140
5.3.5 Bus-Cycle Priorities . 5-140

5.4 Bus Cycle Timing . 5-141
5.4.1 Timing Diagrams . 5-141
5.4.2 Single-Transfer Reads and Writes . 5-142

Single-Transfer Memory Read and Write 5-142
Single-Transfer Memory Write Delayed by EWBE Signal 5-145
I/O Read and Write . 5-147
Single-Transfer Misaligned Memory and I/O Transfers . . 5-148

5.4.3 Burst Cycles . 5-150
Burst Read . 5-150
Burst Writeback . 5-154

5.4.4 Bus Arbitration and Inquire Cycles 5-157
AHOLD-Initiated Inquire Miss . 5-158
AHOLD-Initiated Inquire Hit to Shared or Exclusive Line 5-160
AHOLD-Initiated Inquire Hit to Modified Line 5-161
Bus Backoff (BOFF) . 5-163
BOFF-Initiated Inquire Hit to Modified Line 5-165
HOLD-Initiated Inquire Hit to Shared or Exclusive Line . 5-167
HOLD-Initiated Inquire Hit to Modified Line 5-169

5.4.5 Locked Cycles . 5-170
Basic Locked Operation . 5-170
TLB Miss (4-Kbyte Page) . 5-172
Locked Operation with BOFF Intervention 5-174

vii

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Interrupt Acknowledge Operation 5-176
5.4.6 Special Bus Cycles . 5-181

Basic Special Bus Cycle . 5-182
Shutdown Cycle . 5-183
FLUSH-Acknowledge Cycle . 5-184
Cache-Invalidation Cycle (INVD Instruction) 5-185
Cache-Writeback and Invalidation Cycle
(WBINVD Instruction) . 5-186
Branch-Trace Message Cycles . 5-188

5.4.7 Mode Transitions, Reset, and Testing 5-190
Transition from Normal Execution to SMM 5-190
Stop-Grant and Stop-Clock States . 5-193
INIT-Initiated Transition from Protected Mode to
Real Mode . 5-196

6 System Design 6-1

6.1 Memory . 6-1
6.1.1 Memory Map . 6-2
6.1.2 Memory-Decoder Aliasing of Boot ROM Space 6-4
6.1.3 Cacheable and Noncacheable Address Spaces 6-4
6.1.4 SMM Memory Space and Cacheability 6-5

6.2 Cache . 6-8
6.2.1 L2 Cache . 6-9
6.2.2 Cacheability and Cache-State Control 6-9
6.2.3 Writethrough vs. Writeback Coherency States 6-10
6.2.4 Inquire Cycles . 6-12
6.2.5 Bus Arbitration for Inquire Cycles . 6-14

BOFF Arbitration . 6-15
AHOLD Arbitration . 6-17
HOLD Arbitration . 6-19

6.2.6 Write-Once Protocol . 6-19
6.2.7 Cache Invalidations . 6-22
6.2.8 A20M Masking of Cache Accesses . 6-22

6.3 System Management Mode (SMM) . 6-23
6.3.1 Operating Mode and Default Register Values 6-24
6.3.2 SMM State-Save Area . 6-25
6.3.3 SMM Revision Identifier . 6-28
6.3.4 SMM Base Address . 6-28
6.3.5 Halt Restart Slot . 6-30
6.3.6 I/O Trap Dword . 6-31
6.3.7 I/O Trap Restart Slot . 6-31
6.3.8 Exceptions and Interrupts in SMM . 6-32
6.3.9 SMM Compatibility with Pentium Processor 6-33

viii

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.4 Clock Control . 6-33
6.4.1 State Transitions . 6-34
6.4.2 Halt State . 6-34
6.4.3 Stop Grant State . 6-37
6.4.4 Stop Grant Inquire State . 6-37
6.4.5 Stop Clock State . 6-38
6.4.6 Clock Control Compatibility with Pentium Processor 6-38

6.5 Power and Ground Design . 6-38

6.6 Clock Design . 6-40
6.6.1 Noise Reduction . 6-43

6.7 Thermal Design . 6-44

6.8 Design Support and Peripheral Products 6-45

7 Test and Debug 7-1

7.1 Hardware Configuration Register (HWCR) 7-3

7.2 Built-In Self Test (BIST) . 7-5
7.2.1 Normal BIST . 7-5
7.2.2 Test Access Port (TAP) BIST . 7-6

7.3 Output-Float Test . 7-7

7.4 Cache and TLB Testing . 7-7
7.4.1 Array Access Register (AAR) . 7-8
7.4.2 Array Pointer . 7-9
7.4.3 Array Test Data . 7-10

7.5 Debug Registers . 7-16
7.5.1 Standard Debug Functions . 7-16
7.5.2 I/O Breakpoint Extension . 7-16
7.5.3 Debug Compatibility with Pentium Processor 7-17

7.6 Branch Tracing . 7-17

7.7 Functional-Redundancy Checking . 7-18

7.8 Boundary-Scan Test Access Port (TAP) 7-19
7.8.1 Device Identification Register . 7-21
7.8.2 Public Instructions . 7-22

7.9 Hardware Debug Tool (HDT) . 7-23

ix

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Appendix A Compatibility With the Pentium and 486 Processors A-1

A.1 Bus Signals . A-2
A.1.1 Signal Comparison . A-2

A.2 Bus Interface . A-5
A.2.1 Updates to Descriptor Accessed and TSS Busy Bits A-5
A.2.2 Locked and Unlocked CMPXCHG8B Operation A-5
A.2.3 Bus Cycle Order of Misaligned Memory and I/O Cycles A-6
A.2.4 Halt Cycle after FLUSH . A-6
A.2.5 Selectable Drive Strengths on Output Driver A-6

Comments . A-7

A.3 Bus Mastering Operations (including Snooping) A-8
A.3.1 AHOLD Snoop to Linefill Buffer Prior to or Coincident

with the Establishment of the Cacheability of the Line A-8
Comments . A-8

A.3.2 BOFF Asserted before Snoop to Linefill Buffer and
after the Cacheability of the Line is Established A-8
Comments . A-9

A.3.3 Snoop Before Write Hit to ICACHE Appears on Bus A-9
A.3.4 Invalidations during a FLUSH/WBINVD A-9
A.3.5 Cache Line Ownership . A-9
A.3.6 Write Hit to a Shared Line in the DCACHE A-10

A.4 Memory Management . A-11
A.4.1 Speculative TLB Refills . A-11
A.4.2 Page Fault Encountered by a Load/Store Type

of Instruction . A-11

A.5 Power Saving Features . A-12
A.5.1 STPCLK in Halt State . A-12
A.5.2 STPCLK Pulse does not Guarantee That One

Instruction Executes . A-12
A.5.3 Simultaneous I/O SMI Trap and Debug Breakpoint Trap . . A-12
A.5.4 SMM Save Area . A-12
A.5.5 NMI Recognition during SMM . A-13

Comment . A-13

A.6 Exceptions . A-14
A.6.1 Limit Faults on an Invalid Instruction A-14
A.6.2 Task Switch . A-14

A.7 Debug . A-15
A.7.1 Proprietary Branch Trace Messages A-15
A.7.2 Multiple Debug Breakpoint Matches A-15
A.7.3 Simultaneous Debug Trap and Debug Fault A-15

x

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

xi

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

List of Figures

FIGURE 2-1. Internal Architecture, with Pipeline Stage 2-2
FIGURE 2-2. Pipeline Stage Functions . 2-5
FIGURE 3-1. Control Register 4 (CR4) . 3-2
FIGURE 3-2. 4-Kbyte Paging Mechanism . 3-5
FIGURE 3-3. 4-Mbyte Paging Mechanism . 3-6
FIGURE 3-4. Page-Directory Entry (PDE). 3-7
FIGURE 3-5. Page-Table Entry (PTE) . 3-10
FIGURE 3-6. EFLAGS Register . 3-15
FIGURE 3-7. Task State Segment (TSS) . 3-22
FIGURE 3-8. Machine-Check Address Register (MCAR) 3-25
FIGURE 3-9. Machine-Check Type Register (MCTR) 3-26
FIGURE 5-1. Signal Groups. 5-3
FIGURE 5-2. Single-Transfer Memory Read and Write. 5-144
FIGURE 5-3. Single-Transfer Memory Write Delayed by

EWBE Signal . 5-146
FIGURE 5-4. I/O Read and Write . 5-147
FIGURE 5-5. Single-Transfer Misaligned Memory and

 I/O Transfers . 5-149
FIGURE 5-6. Burst Reads . 5-152
FIGURE 5-7. Burst Read (NA Sampled) . 5-153
FIGURE 5-8. Burst Writeback Due To Cache-Line Replacement . . . 5-156
FIGURE 5-9. AHOLD-Initiated Inquire Miss 5-159
FIGURE 5-10. AHOLD-Initiated Inquire Hit to Shared or

Exclusive Line . 5-160
FIGURE 5-11. AHOLD-Initiated Inquire Hit to Modified Line. 5-162
FIGURE 5-12. Basic BOFF Operation . 5-164
FIGURE 5-13. BOFF-Initiated Inquire Hit to Modified Line. 5-166
FIGURE 5-14. HOLD-Initiated Inquire Hit to Shared or

Exclusive Line . 5-168
FIGURE 5-15. HOLD-Initiated Inquire Hit to Modified Line 5-169
FIGURE 5-16. Basic Locked Operation . 5-171
FIGURE 5-17. TLB Miss (4-Kbyte Page) . 5-173
FIGURE 5-18. Locked Operation with BOFF Intervention 5-175
FIGURE 5-19A. Interrupt Acknowledge Operation Part 1. 5-178
FIGURE 5-19B. Interrupt Acknowledge Operation Part 2. 5-179
FIGURE 5-19C. Interrupt Acknowledge Operation Part 3. 5-180
FIGURE 5-20. Basic Special Bus Cycle (Halt Cycle) 5-182
FIGURE 5-21. Shutdown Cycle . 5-183
FIGURE 5-22. FLUSH-Acknowledge Cycle . 5-184
FIGURE 5-23. Cache-Invalidation Cycle (INVD Instruction) 5-185
FIGURE 5-24A. Cache-Writeback and Invalidation Cycle

(WBINVD Instruction) Part 1. 5-186

xii

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-24B. Cache-Writeback and Invalidation Cycle
(WBINVD Instruction) Part 2. 5-187

FIGURE 5-25. Branch-Trace Message Cycle . 5-189
FIGURE 5-26A. Transition from Normal Execution to SMM Part 1 . . . 5-191
FIGURE 5-26B. Transition from Normal Execution to SMM Part 2 . . . 5-192
FIGURE 5-27A. Stop-Grant and Stop-Clock Modes Part 1 5-194
FIGURE 5-27B. Stop-Grant and Stop-Clock Modes Part 2 5-195
FIGURE 5-28. INIT-Initiated Transition from Protected

Mode to Real Mode . 5-197
FIGURE 6-1. Typical Desktop-System BIOS Memory Map 6-3
FIGURE 6-2. Default SMM Memory Map . 6-7
FIGURE 6-3. BOFF Example. 6-16
FIGURE 6-4. AHOLD and BOFF Example . 6-18
FIGURE 6-5. Write-Once Protocol . 6-21
FIGURE 6-6. Clock Control State Transitions. 6-36
FIGURE 6-7. Vcc and CLK. 6-40
FIGURE 6-8. CLK Delay Function . 6-41
FIGURE 6-9. CLK Synthesizer with Output Enable 6-42
FIGURE 6-10. CPUCLK Clamping Circuit . 6-42
FIGURE 7-1. Hardware Configuration Register (HWCR) 7-3
FIGURE 7-2. Array Access Register (AAR) . 7-8
FIGURE 7-3. Test Formats: Data-Cache Tags . 7-10
FIGURE 7-4. Test Formats: Data-Cache Data . 7-11
FIGURE 7-5. Test Formats: Instruction-Cache Tags. 7-12
FIGURE 7-6. Test Formats: Instruction-Cache Instructions 7-13
FIGURE 7-7. Test Formats: 4-Kbyte TLB. 7-14
FIGURE 7-8. Test Formats: 4-Mbyte TLB . 7-15

xiii

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

List of Tables

TABLE 2-1. ALU Instruction Classes . 2-9
TABLE 2-2. Cache States for Read and Write Accesses 2-19
TABLE 2-3. Cache States for Snoops, Invalidation, and Replacements 2-20
TABLE 2-4. Snoop Action . 2-22
TABLE 3-1. Control Register 4 (CR4) Fields . 3-3
TABLE 3-2. Page-Directory Entry (PDE) Fields . 3-8
TABLE 3-3. Page-Table Entry (PTE) Fields . 3-11
TABLE 3-4. Virtual-Interrupt Additions to EFLAGS Register 3-15
TABLE 3-5. Instructions that Modify the IF or VIF Flags 3-16
TABLE 3-6. Interrupt Behavior and Interrupt-Table Access. 3-23
TABLE 3-7. Machine-Check Type Register (MCTR) Fields 3-27
TABLE 4-1. Integer Instructions. 4-8
TABLE 4-2. Integer Dot Product Internal Operations Timing 4-18
TABLE 4-3. Floating-Point Instructions. 4-19
TABLE 5-1. Summary of Signal Characteristics . 5-4
TABLE 5-2. Conditions for Driving and Sampling Signals 5-9
TABLE 5-3. Summary of Interrupts and Exceptions 5-17
TABLE 5-4. Address-Generation Sequence During Bursts 5-22
TABLE 5-5. Relation Of BE7–BE0 To Other Signals 5-35
TABLE 5-6. Encodings For Special Bus Cycles . 5-36
TABLE 5-7. Processor-to-Bus Clock Ratios . 5-37
TABLE 5-8. Outputs Floated When BOFF is Asserted. 5-39
TABLE 5-9. MESI-State Transitions for Reads . 5-52
TABLE 5-10. Relation Between D63–D0, BE7–BE0, and DP7–DP0 5-57
TABLE 5-11. MESI-State Transitions for Inquire Cycles 5-73
TABLE 5-12. Outputs Floated When HLDA is Asserted 5-76
TABLE 5-13. Interrupt Acknowledge Operation Definition 5-86
TABLE 5-14. PWT, Writeback/Writethrough, and MESI 5-106
TABLE 5-15. Register State After RESET or INIT. 5-111
TABLE 5-16. Outputs at RESET . 5-113
TABLE 5-17. MESI-State Transitions for Reads 5-135
TABLE 5-18. MESI-State Transitions for Writes 5-136
TABLE 5-19. Bus Cycle Definitions . 5-137
TABLE 5-20. Bus-Cycle Order During Misaligned Transfers. 5-148
TABLE 5-21. Address-Generation Sequence During Bursts 5-151
TABLE 5-22. Interrupt Acknowledge Operation Definition 5-176
TABLE 5-23. Encodings For Special Bus Cycles 5-181
TABLE 5-24. Branch-Trace Message Special Bus Cycle Fields 5-188
TABLE 6-1. Initial State of Registers in SMM . 6-25
TABLE 6-2. SMM State-Save Area Map. 6-26
TABLE 7-1. Hardware Configuration Register (HWCR) Fields 7-4
TABLE 7-2. BIST Error Bit Definition in EAX Register 7-6
TABLE 7-3. Array IDs in Array Pointers . 7-9

xiv

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

TABLE 7-4. Branch-Trace Message Special Bus Cycle Fields 7-18
TABLE 7-5. Test Access Port (TAP) ID Code . 7-21
TABLE 7-6. Public TAP Instructions . 7-22

xv

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Preface

This manual describes the technical features of the AMD5K86™ processor, and its
differences from the Pentium processor, at a level of detail suitable for a hardware
designer or system-software developer to implement system boards, core system
logic, and system software. Specifically, the manual describes the following aspects
of the processor

■ Internal architecture

■ Software differences from the 486 and Pentium processors

■ Performance parameters

■ Bus signals functions

■ Bus cycle timing

■ Design issues for system-board designs

■ Test and debugging features

A full description of the x86 programming environment is beyond the scope of this
manual. Instead, the software sections describe differences from the 486 processor’s
programming environment. A list of commercial books that describe the x86 pro-
gramming environment and other subjects of potential interest appears at the end of
this preface.

In addition to descriptions of the AMD5K86 processor’s unique internal architecture,
the manual incorporates details about the behavior of bus signals and bus cycles that
are standard to the x86 processors but that are not fully documented in other x86
manuals.

Notation

The following notation is used in this manual:

b—Binary

d—Decimal

h—Hexadecimal

Set—Written with a value of 1

Clear—Written with a value of 0

GP (0)—General-protection exception (13 decimal) with an error value of 0

xvi

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

EFLAGS.IF—The IF bit in the EFLAGS register

CS:EIP—A logical address, expressed as a segment selector (CS) and offset (EIP)

000F_FFF0h—A physical-memory address using hexadecimal notation

Terminology

The following definitions apply throughout this document:

■ Pin and Signal—A pin is a piece of metal on the processor’s package. A signal is
the information about logical states that a pin carries. Pins have pin numbers; sig-
nals have signal names. On processors that multiplex signals, pins can carry more
than one signal; the AMD5K86 processor, however, does not multiplex signals in
this manner.

■ Assert and Negate—A signal that is driven or sampled active is asserted. A signal
that is inactive is negated. In general, asserted means sampled asserted either by
the processor or target logic. Signals that are active in a Low-voltage state, such as
BRDY, are shown with an overbar. Signals that are active in a High-voltage state,
such as INTR, are shown without an overbar. Dual-state signals, such as R/S and
WB/WT, have two states of assertion and, therefore, the term asserted has no
meaning; such dual-state signals are driven High or Low.

■ Drive and Sample—A single-state signal is driven when it is asserted or negated by
a logic device; it is sampled when its driven state is detected by another device.

■ Cycle and Clock—This term commonly refers to at least four different things:

• Bus-clock period: The cycle time of the CLK signal.

• Processor-clock period: The cycle time of the processor’s internal clock, which
has a frequency relative to CLK that is determined by the state of the BF sig-
nal during RESET. Whenever this cycle is meant, such as in the Chapter 4 de-
scription of pipeline timing and the instruction latency, the full name,
processor-clock cycle, is used.

• Bus cycle: A signal protocol on the processor’s bus, such as a single-transfer
read cycle or a special bus cycle.

• Sequence of bus cycles: One or more contiguous bus cycles. For example, the two
bus cycles that constitute an interrupt acknowledgment are called a bus opera-
tion, so that the constituent bus cycles can be distinguished from the entire op-
eration.

xvii

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

■ Writeback—This term refers to two related concepts:

• Bus Cycle—A 32-byte burst write cycle to a memory block that has been cached
in the modified state. Writebacks can be caused by inquire cycles, internal
snoops, writeback and invalidate operations (such as FLUSH or the WBINVD
instruction), cache-line replacements, or locked operations on cached loca-
tions. It is sometimes called a copyback.

• Cache-Line State—A cache line in the modified or exclusive MESI state (modi-
fied, exclusive, shared, invalid).

■ Writethrough—This term refers to two related concepts:

• Bus Cycle—A 1-to-8-byte, single-transfer write cycle caused by write misses or
write hits to lines in the shared or exclusive MESI state.

• Cache-Line State—A cache line in the shared MESI state.

■ Flush—This term commonly refers to at least four things and is usually avoided in
favor of the following specific terms:

• Pipeline Invalidation: A pipeline-flush operation invalidates instructions in the
pipeline that have not been retired (and, depending on the type of pipeline in-
validation, entries in the reorder buffer, entries in the TLB, and/or branch-pre-
diction bits) without writing their state to any storage resource.

• Cache Invalidation: The INVD instruction invalidates the contents of the in-
struction and data caches, without writing modified data back to memory.

• Cache Writeback and Invalidation: The WBINVD instruction writes modified
lines in the data cache back to memory while invalidating each line in the in-
struction and data caches.

• FLUSH Operation: The FLUSH input signal executes the same microcode rou-
tine as the WBINVD instruction to write modified lines in the data cache back
to memory while invalidating each line in the instruction and data caches.

■ Flush Acknowledge Cycle—This term commonly refers to different types of special
bus cycles driven by the processor, and is therefore avoided in favor of the follow-
ing specific terms:

• FLUSH Acknowledge: A special bus cycle driven after the FLUSH operation
completes.

• INVD Acknowledge: A special bus cycle driven after the INVD cache invalida-
tion completes.

• WBINVD Acknowledge: A sequence of two special bus cycles driven after the
WBINVD cache writeback and invalidation completes.

■ Snoop—This term commonly refers to at least three different actions and is there-
fore avoided in favor of the following specific terms:

• Inquire Cycles: These are bus cycles driven by system logic. They cause the pro-
cessor to compare the inquire-cycle address with the processor’s physical

xviii

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

cache tags. The AMD5K86 and Pentium processors both support inquire cycles.

• Internal Snooping: These snoops are initiated by the processor (rather than sys-
tem logic) during certain types of cache accesses. Both the AMD5K86 and Pen-
tium microprocessors support this type of internal snooping for the purpose of
detecting self-modifying code. See page 2-22 for details.

• Bus Watch: Some caching devices watch their address and data bus continu-
ously while they are held off the bus. They compare every address driven by
another bus master with their internal cache tags, and they may also be able to
update their cached lines during writebacks to memory by another bus master.
Neither the AMD5K86 nor Pentium microprocessors support bus watching.

■ Cold and Warm Reset—The terms cold or hard reset and warm or soft reset are
commonly used to mean three related but different things, and the terms are
therefore avoided. A cold or hard reset typically refers to the assertion of RESET
at power-up, but warm or soft reset can refer either to the assertion of RESET
after power-up or to the assertion of INIT.

■ System Logic—Any logic outside the processor, including a core-logic chipset,
another bus master, or separate controllers for L2 cache, memory, interrupts,
DMA, communications, video, bus bridging, bus arbitration, or any other system
function.

References
Abel, Peter. IBM PC Assembly Language and Programming. Englewood Cliffs: Prentice

Hall, 1995.

Abramovici, Miron; Melvin A. Breuer; and Arthur D. Friedman. Digital Systems Test-
ing and Testable Design. New York: IEEE Press, 1990.

Agarwal, Rakesh. 80x86 Architecture & Programming. Vols. I and II. Englewood Cliffs:
Prentice-Hall, 1991.

Alexandridis, Nikitas. Design of Microprocessor-Based Systems. Englewood Cliffs: Pren-
tice-Hall, 1993.

Anderson, Don, and Tom Shanley. Pentium Processor System Architecture. Reading:
Addison-Wesley, 1995.

Barkakati, Nabajyoti, and Randall Hyde. Microsoft Macro Assembler Bible. Carmel:
Sams, 1992.

Brey, Barry B. The Intel 32-Bit Microprocessors. Englewood Cliffs: Prentice Hall, 1995.

Brown, Ralf, and Jim Kyle. PC Interrupts, A Programmer’s Reference to BIOS, DOS, and
Third-Party Calls. Reading: Addison-Wesley, 1994. For an updated version on the
Internet, ftp to OAK�OAKLAND�EDU and get file �PUB�MSDOS�INFO�INTER���ZIP.

xix

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Brumm, Penn, and Don Brumm. 80386/80486 Assembly Language Programming. Wind-
crest: McGraw-Hill, 1993.

Chappell, Geoff. DOS Internals. Reading: Addison-Wesley, 1994.

Crawford, John H., and Patrick P. Gelsinger. Programming the 80386. San Francisco:
Sybex, 1987.

Giles, William B. Assembly Language Programming for the Intel 80xxx Family. New
York: Macmillan, 1991.

Handy, Jim. The Cache Memory Book. San Diego: Academic Press, 1993.

Hennessy, John L., and David A. Patterson. Computer Architecture, A Quantitative
Approach. 2d Ed. San Francisco: Morgan Kaufmann Publishers, 1996.

Hogan, Thom. The Programmer’s PC Sourcebook. Redmond: Microsoft Press, 1991.

Hwang, Kai. Advanced Computer Architecture. New York: McGraw-Hill, 1993.

Institute of Electrical and Electronics Engineers. IEEE Standard for Binary Floating-
Point Arithmetic. ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers. IEEE Standard for Radix-Indepen-
dent Floating-Point Arithmetic. ANSI/IEEE Std 854-1987.

Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Mathe-
matics of Computing Terminology. ANSI/IEEE Std 1084-1986. Out of print.

Johnson, Mike. Superscalar Microprocessor Design. Englewood Cliffs: Prentice-Hall,
1991.

Katz, Randy H. Contemporary Logic Design. Redwood City: Benjamin Cummings,
1994.

Morse, Stephen P.; Eric J. Isaacson; and Douglas J. Albert. The 80386/387 Architec-
ture. New York: John Wiley & Sons, 1987.

Norton, Peter; Peter Aitken; and Richard Wilton. PC Programmer’s Bible. Redmond:
Microsoft Press, 1993.

Parker, Kenneth P. The Boundary-Scan Handbook. Boston: Kluiver, 1992.

Patterson, David A., and John L. Hennessy. Computer Organization and Design: The
Hardware/Software Interface. San Francisco: Morgan Kaufmann Publishers, 1994.

Phoenix Technical Reference Series. System BIOS for IBM PCs, Compatibles, and EISA
Computers. Reading: Addison-Wesley, 1991.

xx

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Pietrek, Matt. Windows Internals. Reading: Addison Wesley, 1993.

Richter, Jeffrey. Advanced Windows NT. Redmond: Microsoft Press, 1994.

Ro, Sen-Cuo, and Sheau-Chuen Her. i386/i486 Advanced Programming. New York:
Van Nostrand Reinhold, 1993.

Slater, Michael. Microprocessor-Based Design. Englewood Cliffs: Prentice-Hall, 1989.

Stallings, William. Operating Systems. New York: Macmillan, 1992.

Van Gilluwe, Frank. The Undocumented PC. Reading: Addison-Wesley, 1994.

Wakerly, John F. Digital Design Principles and Practices. Englewood Cliffs: Prentice-
Hall, 1994.

Wharton, John. The Complete x86. Sebastopol, CA: MicroDesign Resources, 1994.

1-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

1
Overview

The AMD5K86™ processor brings superscalar RISC perfor-
mance to desktop systems running industry-standard x86 soft-
ware. The processor implements advanced design techniques
like instruction pre-decoding, single-cycle internal RISC opera-
tions, parallel execution units, out-of-order issue and comple-
tion, register renaming, data forwarding, and dynamic branch
prediction. The processor’s many test and debug features sup-
port fast, reliable designs for x86 desktop systems.

AMD’s development and support of the popular Am386® and
Am486® processors has given it a broad foundation of experi-
ence in the x86 architecture. The AMD5K86 processor’s binary
compatibility with DOS and Windows®-compatible software
running on the Pentium processor and all previous x86 proces-
sors has been established in extensive testing, using industry-
standard test tools. Compatibility and qualification testing has
also been provided by leading desktop-system manufacturers,
chip-set manufacturers, and the independent XXCAL testing
laboratory.

The result can be seen in the AMD5K86 processor’s perfor-
mance. This performance plus its compatibility with an
immense library of existing x86 software make the AMD5K86
processor a leading-edge solution for desktop systems.

1-2 Overview

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

1.1 Features
■ Pentium-Processor Standard

• Compatible with the Pentium (735\90, 815\100)
processor 296-pin socket

• Compatible with existing Pentium (735\90, 815\100)
processor support infrastructure and system designs

• Compatible with Pentium, 486, and 386 processor soft-
ware

• Compatible with x86 DOS, Microsoft® Windows® operat-
ing system, and the large installed base of x86 software

• Compatible with IEEE 854 floating-point standard

• Selectable bus frequencies

• Support for multiprocessing

■ High-Performance Execution

• Six execution units (two ALUs, two load/store, one
branch, one floating-point)

• Up to four instructions issued per processor clock

• Out-of-order issue and completion

• Speculative execution along three predicted branches

• Register renaming

• Data forwarding

• Predecoder converts x86 instructions to single-cycle
RISC operations (ROPs)

• Fast integer multiply (4-cycle, fully pipelined)

• Five-stage pipeline

• Single-cycle cache access

• Zero-delay branching, 3-clock misprediction penalty (of-
ten hidden)

• No mixed-operand-size penalty

• No prefix penalty

• Single-cycle misalignment penalty

• No instruction-pairing requirements for parallel issue

• No pipeline invalidation on segment loads

• Efficient support for 16- and 32-bit code, with mixed op-
erand sizes

Features 1-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

■ High-Performance Cache and TLBs

• 16-Kbyte instruction cache supports split-line access

• 8-Kbyte, dual-ported data cache with MESI cache coher-
ency protocol

• Dual-tagged (both linear and physical tags)

• Inquire cycles run in parallel with program cache access

• 4-Kbyte TLB (128 entries) and 4-Mbyte TLB (4 entries)

■ Extended Features

• Control Register 4 (CR4)

• CMPXCHG8B instruction

• CPUID instruction

• Time stamp counter (TSC)

• Machine-Specific Registers (MSRs)

• 4-Mbyte page size

• Global pages held in TLB during flushes

■ Low Power

• Static, 3.3-V design

• System Management Mode (SMM) with I/O trapping

• Low-power halt and stop-clock states

• Compatible with U.S. Department of Energy’s Energy
Star program

• Compatible with Microsoft Advanced Power Manage-
ment specification

■ Extensive Test and Debug Features

• Two built-in self-test (BIST) modes

• Output-Float Test mode

• Cache and TLB testing (tags and data)

• Debug registers, with I/O breakpoint extension

• Branch tracing

• Functional-redundancy checking

• IEEE 1149.1-1990 Test Access Port (TAP) and JTAG
boundary-scan testing

• Hardware Debug Tool (HDT)

1-4 Overview

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

2-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

2
Internal Architecture

The RISC design techniques used in the processor’s internal
architecture account, in large part, for its high performance.
The following sections summarize the processor’s execution
pipeline behavior, the hardware aspects of the internal instruc-
tion cache and data cache, and the hardware aspects of mem-
ory management.

Figure 2-1 shows the major logic blocks that make up the inter-
nal architecture. The blocks are organized in the figure by
stages of the processor’s execution pipeline, which are listed
vertically on the right side of the figure. The blocks are
explained throughout the section that follows.

In this chapter, the terms clock and cycle refer to processor-
clock cycles. If bus-clock cycles or bus cycles are discussed,
they are explicitly named. Processor-clock cycles occur at a
multiple of bus-clock (CLK) cycles, as determined by the BF
input signal and processor model number.

2-2 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 2-1. Internal Architecture, with Pipeline Stage

1

5

2 3

4

Fetch

Decode

Load
Store

Execute

8 Ports

64

Result

Retire

Fastpath Hardware ROPs
M Code Microcode ROPs
R.S. Reservation Station
Port 41 bits

Address
Data

32

8 Ports

4 Ports

5 Ports 2
Po

rts

Load
Store

Prefetch & Predecode

Branch Prediction

Instruction
Cache

Linear Tags

Byte
Queue

Fast
Path

M
Code

Fast
Path

M
Code

Fast
Path

M
Code

Fast
Path

M
Code

R.S.R.S.

ALU

R.S.

ALU

R.S.

Branch

R.S.

FPU

Load
Store

Load
Store

Reorder Buffer
(ROB)

Register File
(x86 GPRs, FPRs)

Memory Management Unit
(TLBs and Physical Tags)

Bus Interface Unit

Data
Cache

Linear Tags

Store
Buffer

4 Ports

Prefetch and Predecode 2-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

2.1 Prefetch and Predecode

Figure 2-1 (top-left corner) shows the processor’s prefetch and
predecode logic being fed with data from the external bus via
the memory management unit. Prefetching attempts to keep
the instruction cache and prefetch cache filled ahead of the
execution pipeline’s fetch requirements. The processor only
prefetches during fetch-stage misses in the instruction cache,
which typically occur during taken branches.

When a miss occurs, the prefetcher initiates a 32-byte burst
memory read cycle on the bus to fill a prefetch cache. For cache-
able accesses, the prefetch cache also fills 32-byte lines in the
instruction cache. For non-cacheable accesses, the prefetch
cache provides instructions directly to the execution pipeline.

The instruction cache contains a copy of certain fields in the
current code-segment descriptor. During a taken branch, the
fetch logic adds the code-segment base to the effective address
and places the resulting linear address in the prefetch program
counter, which then increments as a linear address along a
sequential stream. All branches during prefetching are
assumed to be not taken.

The processor predecodes its x86-instruction stream in the
same clock in which x86 instructions come out of the prefetch
cache. An x86 instruction can be from 1 to 15 bytes long. Prede-
coding annotates each instruction byte with information that
later enables the decode stage of the pipeline to perform more
efficiently. The predecode information identifies whether the
byte is the start and/or end of an x86 instruction, whether it is
an opcode byte, and the number of internal RISC operations
(ROPs) it will require at the decode stage. The predecode
information is stored in the instruction cache with each x86
instruction byte. It is passed during instruction fetching to the
decode stage, where it allows multiple x86 instructions to be
decoded in parallel. This avoids delaying the decode of one
instruction until the decode of the prior instruction has deter-
mined its ending byte.

2-4 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

2.2 Execution Pipeline

Figure 2-1 shows the relation between the internal logic and
the stages of the execution pipeline. Figure 2-2 shows the func-
tions of the pipeline stages. The first five stages—Fetch,
Decode 1, Decode 2, Execute, and Result—affect throughput
performance. The sixth stage, Retire, may occur at a variable
number of clocks after the Result stage, but the Retire stage
does not affect throughput performance when the processor
operates in a non-serialized mode, which is typical of most pro-
cessing. Thus, the pipeline effectively has five stages. Because
the pipeline is moderately shallow, penalties associated with
mispredicting a branch (three clocks) or clearing the pipeline
(variable clocks) are relatively small compared with processors
that have deeper pipelines (more pipeline stages).

Execution Pipeline 2-5

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 2-2. Pipeline Stage Functions

Fetch
a) Calculate Address
b) Fetch instruction

Predict branch

1 2 3 4 5

Decode 1
a) Merge into byte queue
b) Generate ROPs

Decode 2
a) Merge register tags and immediates
b) Access registers or ROB

Execute
a) Dispatch ROPs to execution units

Calculate operand linear address1

b) Execute
Arbitrate for result bus
Access operands in data cache1

Check protection and segment limit1

Result
Forward to execution units
Write to ROB
Correct branch prediction
Drive write cycle on bus1

Retire
Write to real-state registers
Forward from ROB

Notes:
1. Load/store instructions only.
2. The Retire stage may occur one or more clocks after completion, but it does not affect throughput.

Fetch Decode 1 Decode 2 Execute Result Retire2

2-6 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

2.2.1 Fetch

The processor can fetch up to 16 bytes per clock out of the
instruction cache. Fetching begins with the calculation of the
linear address for the next instruction along a predicted
branch of the x86 instruction stream. The address accesses the
instruction cache or, during a miss, the prefetch cache. Fetch-
ing can occur along a single execution stream with up to three
taken branches. Fetches that miss both the instruction cache
and prefetch cache are driven to the prefetcher.

In addition to fetching instructions, the fetch logic handles
branch predictions and detects conditions requiring pipeline
invalidation and restarting, such as context switches or
branches into cache lines that do not contain the correct prede-
code state. Branches are dynamically predicted on a cache-line
basis using a 1-bit algorithm. Each of the 1024 instruction-
cache lines has a tag that predicts the last byte in the cache
line to be executed, whether or not the branch will be taken,
and the cache index of the branch target (called the successor
index). When the caches are invalidated, all branch predictions
are cleared.

During prefetch all branch instructions are predicted as not-
taken. Later, if the execution of a branch instruction reveals a
misprediction, the fetch unit backs out of the branch by invali-
dating all speculative states in the prefetch cache, reorder
buffer, load/store reservation station, and store buffer. Then,
for cacheable instructions, the branch prediction stored in the
instruction cache is updated while the correct branch target is
fetched. Prediction updates are disabled when the branch
instruction is non-cacheable, because no prediction informa-
tion is saved for non-cacheable instructions.

In typical x86 desktop programs, a branch occurs about once
every seven x86 instructions. Without branch prediction,
branch targets remain unresolved until the execution phase,
which creates pipeline delays. The processor’s branch-predic-
tion mechanism accurately predicts 70% to 85% of branches
(depending on program behavior) and has a misprediction pen-
alty of only three processor clocks.

Execution Pipeline 2-7

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

2.2.2 Decode

The two-stage decode logic accepts predicted x86 instruction
bytes and their predecode bits from the fetch logic, shifts them
into a 16-byte FIFO buffer called the byte queue, merges regis-
ter tags and operands, and generates internal RISC operations
(ROPs). The decode logic also generates microcode entry
points for complex instructions, interrupts and exceptions, and
several other functions, and it manages the floating-point
stack.

ROPs are fixed-format internal instructions with up to three
operands. Most ROPs execute in a single clock. The operands
(up to two source and one destination) can be 1-, 2-, or 4-bytes
wide, or half of an 8- or 10-byte floating-point operand. ROPs
can be combined to perform every function of an x86 instruc-
tion. One x86 instruction can be decoded into as few as one
ROP (for example, a register-to-register add), or it can be
decoded into several ROPs, depending on its complexity.

The processor uses a combination of hardware and microcode
to convert x86 instructions into ROPs. The hardware consists
of four parallel fastpath converters that translate the most
commonly used x86 instructions (moves, shifts, branches,
ALUs) into one, two, or three ROPs. Translations requiring
more than three ROPs (complex instructions, serializing condi-
tions, interrupts and exceptions, etc.) are handled by micro-
code. Microcode generates the same types of ROPs as the
fastpath hardware but in streams longer than three. The prede-
code information stored with each x86 instruction byte speci-
fies the number of ROPs that instruction requires, or it
specifies that microcode is required. The decoder provides the
entry point into microcode for complex operations.

Pipeline serialization (or synchronization) is handled at the
decode stage. When the processor decodes a serializing instruc-
tion, it stops decoding at that instruction, waits for all previ-
ously decoded instructions to retire (described in Section 2.2.5
on page 2-12), then decodes and executes through retirement
the serializing instruction before decoding any additional
instructions. Thus, the serializing instruction is guaranteed to
execute in program order.

2-8 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The serializing instructions include OUTx, invalidations
(INVD, WBINVD, INVLPG), interrupt returns (IRET, IRETD,
RSM), descriptor-table-register and task-register loads (LGDT,
LLDT, LIDT, LTR), moves to control or debug registers (MOV
to CRx or DRx), model-specific register instructions (RDMSR,
WRMSR), and CPUID. Special bus cycles and interrupt-
acknowledge operations also serialize the pipeline. INx
instructions are not executed until the store buffer and write-
back buffers are drained of any pending writes.

The four converters that generate fastpath or microcode ROPs
dispatch up to four ROPs in parallel per clock to the execution
unit reservation stations.

2.2.3 Execute

The processor has the following execution units that work in
parallel with one another:

■ Two ALUs (integer, logic, and shift operations)

■ One floating-point unit

■ Two load/store units

■ One branch unit

Each execution unit has its own FIFO reservation station with
two or four entries. ROPs are dispatched to reservation sta-
tions in program order. One ROP can be dispatched to a single
reservation station in a given clock, thus up to four reservation
stations receive an ROP each clock. ROPs are issued from a res-
ervation station to its execution unit when all operands are
available from the register file, reorder buffer, or prior execu-
tion via forwarding (including from data cache loads), and
when the execution unit has completed its prior ROP. Issue
and dispatch occur in the same clock if the operands are avail-
able and the unit is free at dispatch time.

While ROPs are issued in order to a particular execution unit,
ROPs go out of order at the point of issue because reservation
stations issue ROPs at different times relative to each other.
The use of reservation stations and out-of-order execution
reduces instruction stalls due to dependencies on execution
resources and allows a higher issue rate to be maintained. Mul-
tiple values for the same register are resolved by providing
tags for each register value (register renaming). True data

Execution Pipeline 2-9

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

dependencies are resolved using forwarding at all execution
units. Antidependencies (in which later instructions produce a
value that overwrites one used by an earlier instruction) are
removed automatically by buffering operands—or tags that
point to operands—at reservation stations. Output dependen-
cies (in which later instructions must be seen by software to
complete after earlier instructions in order to leave the correct
value in a register) are resolved by the reorder buffer.

Reservation stations are supplied with operands over eight 41-
bit operand buses. Execution results are sent to the reorder
buffer (ROB) over five 41-bit result buses. Tags forwarded to
the execution units represent results to watch for on one of the
result buses.

No special compiler optimizations are required for high-perfor-
mance execution on the AMD5K86 processor.

Integer/Shift Units Two ALUs perform integer, logic, and shift operations. Both
ALUs have two-entry reservation stations. Table 2-1 shows the
types of ROPs executed by each ALU. Unlike the Pentium pro-
cessor, the AMD5K86 processor has few restrictions on the pair-
ing of integer instructions needed to use both integer units in
parallel.

TABLE 2-1. ALU Instruction Classes

Instruction Class ALU0 ALU1

Addition Yes Yes

Subtraction Yes Yes

Logical Yes Yes

Compare Yes Yes

Packed BCD Yes No

Unpacked BCD Yes No

Special (ADDC, SUBB) Yes No

Shift No Yes

Divide Yes No

2-10 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Floating-Point Unit The IEEE 854-compatible floating-point unit (FPU) can issue
pipelined ROPs from its 2-entry reservation station at the rate
of one per clock. One ROP can be issued to either the add or
multiply pipeline in each clock, even when the operations are
separated by an exchange ROP. The add and multiply pipe-
lines use a common pre-detect unit and rounder. The rounder
can return one result per clock.

When data is loaded from memory, it is converted to an inter-
nal 82-bit extended format before being stored in the stack.
The format uses two of the internal 41-bit operand or result
buses.

Load/Store Units Two load/store units read and write data-cache and memory
operands. A shared, 4-entry reservation station buffers incom-
ing ROPs, and a shared, 4-entry store buffer accepts outgoing
speculative-state operands destined for the data cache or mem-
ory. The reservation station is dual-ported and the store buffer
is single-ported, so that the processor can perform two loads or
one load and one store per clock.

Each unit holds copies of segment-descriptor fields so that it
can calculate logical and linear addresses and check protection
variables and segment limits. Data loaded by one instruction in
a load/store unit can be used by another instruction in another
execution unit in the next clock. There is no load-use penalty.
The data cache can be accessed in a single clock. These low
latencies provide an important performance advantage
because a majority of x86 instructions in typical desktop pro-
grams involve memory as one of their operands.

The load/store units can service two accesses in parallel (two
loads or one load and one store), except a load and store to the
same data-cache index and bank, or when one of the accesses is
an I/O load, a locked access, a segment-descriptor load, a data
breakpoint, or the first half of a misaligned access.

Branch Unit The branch unit has a 2-entry reservation station and executes
correctly predicted branches with zero delay. The unit exe-
cutes calls, returns, conditional jumps, conditional byte-sets,
floating-point exchanges, and microbranches. Speculative exe-
cution occurs whenever a conditional-branch instruction exe-
cutes. The branch unit is the only execution unit that decodes
condition codes and supports speculative flag input operands.

Execution Pipeline 2-11

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The branch unit receives branch-prediction information from
the decoder. If the branch unit executes a branch differently
than predicted, it signals the instruction cache, reorder buffer,
and decode logic, and it passes the correct information to the
branch-prediction array in the fetch stage.

2.2.4 Result

The processor implements a 16-entry reorder buffer (ROB) for
speculative-state register renaming, and a 4-entry store buffer
for speculative-state buffering between the load/store units
and the data cache. An ROP is said to complete when the result
of its execution is written to the ROB or store buffer. Results
may be returned out of order. Results written to the ROB are
simultaneously forwarded (that is, fed back) to all execution
units.

An entry tag is allocated at the top of the ROB for each ROP
that is dispatched to a reservation station. Entries for up to
four ROPs can be allocated simultaneously. Among other
things, the ROB keeps track of the program counter associated
with each instruction, resolves ROP-level dependencies, stores
speculative results, provides the most recent copy of a register
to execution units, recovers from mispredicted branches with-
out altering real state, and provides substitute tags to internal
resources when required operands are still outstanding.

The x86 architecture defines only eight general-purpose regis-
ters and eight entries in the floating-point stack. This limited
set of registers leads to register dependencies and register
reuse. The processor overcomes register dependencies by
renaming registers in the ROB, and it overcomes register reuse
with data forwarding. Data forwarding provides execution
results immediately to other instructions without waiting for
results to be written to and read back from registers, the data
cache, or memory. Multiple speculative-state registers for each
real-state register enable different execution units to use the
same logical register simultaneously. When the register file
detects multiple writes to the same real-state register, only the
latest write in program order is performed—all other writes
are discarded. Multiple reads of the same real-state register
are performed without detection or special handling.

2-12 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

2.2.5 Retire

The processor implements a real-state (non-speculative) regis-
ter file that contains the x86-architecture registers and a real-
state 8-Kbyte data cache. While ROPs complete out of order
and their results are forwarded to other execution units and to
the ROB out of order, their results are always written at retire-
ment time to the real-state x86 registers in program order.
Likewise, as results are written from the load/store units to the
store buffer out of order, they are always written at retirement
time to the data cache and/or memory in program order.

An x86 instruction is said to retire when the ROB or store
buffer writes the operands for all of its ROPs, in program
order, to the x86 real-state registers or the data cache. At the
point of retirement, the register file and data cache fully
reflect the execution of an instruction. Any associated excep-
tions are recognized (the ROB facilitates precise exception
handling), any external interrupts that were latched or are cur-
rently held asserted are recognized, and the instruction
pointer is updated. For instructions that store an operand to
memory, retirement is the time at which the store is guaran-
teed to be written externally. When a pipeline invalidation
(flush) occurs, it does so at the retirement stage, causing all
instructions in the pipeline that have not reached the retire-
ment stage to be invalidated.

The retirement stage is also called the instruction-retirement
boundary, or simply instruction boundary. The processor can
retire up to four instructions per processor clock. Thus, the
next set of up to four instructions that are candidates to retire
determines the next instruction boundary at which an external
interrupt can be recognized.

Only one store (from the store buffer or from either of the pro-
cessor’s two writeback buffers) can be among the set of up to
four instructions that retire simultaneously. Thus, for example,
the processor will only finish one in-progress store cycle on the
bus before recognizing an asserted HOLD, SMI, or STPCLK. If
the set of retirement candidates in any clock includes more
than one store, only those instructions up to (but not including)
the second store will retire. The remaining stores occur one at
a time, in their queued order, during subsequent retirements.

Cache Organization and Management 2-13

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

2.3 Cache Organization and Management

The performance of the execution pipeline is enhanced by the
processor’s on-chip, 16-Kbyte instruction cache and 8-Kbyte
data cache. Both caches are linearly addressed and each has
two associated tag directories, one for linear tags and one for
physical tags.

Linearly addressed caches avoid linear-to-physical address
translation through the TLB and can be faster than physically
addressed caches. Cache accesses in the AMD5K86 processor
take one clock. The physical tags are only accessed during
cache misses and snoops. By comparison, accesses in the Pen-
tium processor’s physically tagged caches take one or two
clocks, depending on the type of operand being accessed (oper-
ands used in address calculations for the next cache access
take two clocks). Since most x86 instructions access memory,
they benefit greatly by being cached, and the faster cache-
access time on the AMD5K86 processor is a performance
advantage.

The enabling and operating modes for the caches are software
controlled by the CD and NW bits of CR0. When disabled, both
caches are locked. They are accessed in all operating modes,
and the processor can still hit in a cache that has not been
invalidated, even if software has turned the caches off. These
mechanisms work the same on both the AMD5K86 and Pentium
processors.

Any area of memory may be cached. However, the processor
prevents caching of locked operations and TLB reads, the oper-
ating system can prevent caching of certain pages by setting
the PCD bit in page-directory and/or page-table entries, and
system logic can prevent caching of certain bus cycles by
negating the KEN input signal on the first BRDY.

The processor implements a requested-word-first protocol for
line fills in both caches. Upon receiving the first 8-byte quad-
word, execution continues while the remainder of the line is
loaded into the cache. Both caches, however, are blocking—a
read hit or miss after a read miss waits until the prior miss fills
the cache. Since read misses are rare, relative to read hits,
cache blocking has little effect on overall performance.

2-14 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The following sections describe the basic architecture and
resources of the processor’s internal caches. For information
about how the system software and hardware control cache
configuration and coherency, see Section 6.2 on page 6-8.

2.3.1 Instruction Cache

The instruction cache has the following characteristics:

■ 16 Kbytes

■ 32-byte line size

■ Four-way, set associative

■ Dual-tagged (linear and physical)

■ Single-clock access

■ Supports 16-byte split-line accesses

■ Requested-word-first line-fill protocol

■ Five predecode bits per instruction byte

■ Round-robin replacement policy

■ Read-only, invalidate on write hit

Instruction-cache accesses can be to any 16 bytes within a sin-
gle 32-byte line or they can be split into two 8-byte accesses
across two contiguous lines.

Split-line fetches can provide instructions from sequential
lines in a single clock. This keeps decode logic supplied with a
steady stream of bytes. Instruction fetches can read any 16
bytes of a single line or—in a split-line fetch—the high 8 bytes
of the first line and the low 8 bytes of the next sequential line
(index + 1 as determined by the A4 address bit), starting on
either an odd or even line.

Instruction-cache lines have only two coherency states (valid
or invalid) rather than the four MESI (modified, exclusive,
shared, invalid) coherency states of data-cache lines. Only two
states are needed because these lines are only read, never writ-
ten. In addition to holding instructions, each instruction-cache
line holds 5 predecode bits per instruction byte. The informa-
tion contained in these bits is described in Section 2.1 on page
2-3.

Cache Organization and Management 2-15

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Parts of the current code-segment descriptor are maintained in
the instruction cache. This allows the cache to translate logical
addresses for branches and other prefetch targets to linear
address tags for the incoming cache-line fills.

Details on the instruction-cache storage formats and testing
are given in Section 7.4 on page 7-7.

2.3.2 Data Cache

The data cache has the following characteristics:

■ 8 Kbytes

■ 32-byte line size

■ Four-way, set associative

■ Four banks

■ Dual-tagged (linear and physical)

■ Byte-addressable

■ Single-clock access

■ Two true linear-tag ports—two parallel accesses per clock

■ Two logical data ports (one read-only, one read/write)—two
parallel accesses per clock, if not to the same bank

■ MESI cache-coherency protocol (maintained by physical
tags)

■ Requested-word-first line-fill protocol

■ Pseudo-random replacement policy

■ Read/write (writeback or writethrough modes)

The data cache overcomes load/store bottlenecks by support-
ing simultaneous accesses to two lines in a single clock, if the
lines are in separate banks. Each of the four cache banks con-
tains eight bytes, or one-fourth of a 32-byte cache line. They
are interleaved on a four-byte boundary. One instruction can
be accessing bank 0 (bytes 0–3 and 16–19), while another
instruction is accessing bank 1, 2, or 3 (bytes 4–7 and 20–23,
8–11 and 24–27, and 12–15 and 28–31 respectively).

Entries in the data cache are real-state operands. A load occurs
when one of the load/store units reads an operand from the
data cache or memory. A store occurs at the retirement pipe-
line stage when an entry from the speculative-state store

2-16 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

buffer, which resides between the load/store units and the data
cache, moves to the real-state data cache or memory.

Details on the data-cache storage formats and testing are given
in Section 7.4 on page 7-7.

2.3.3 Cache Tags

The processor’s caches are dual-tagged. That is, the processor
maintains two sets of tags—linear and physical—for each line
in the two caches. The linear tags are stored in the instruction
and data caches. The physical tags are stored in the memory
management unit (MMU), where the TLB is also located. The
physical-tag directories for each cache have one port.

Linear tags are read for all accesses to the instruction and data
caches. All read misses, memory writes, and snooping—both
external inquire cycles and automatic internal snooping—go
through the physical tags. The MESI cache-coherency state is
recorded in the physical tags.

Accesses to the data-cache physical tags add two clocks to the
one-clock linear-tag access. Accesses to the instruction-cache
physical tags add three clocks to the one-clock linear-tag
access. Thus, physical-tag accesses take a total of three clocks
for the data cache or four clocks for the instruction cache, but
they occur infrequently. For write hits to the data cache, how-
ever, the additional latency for accessing the physical tags
(needed to determine the MESI state) is transparent to pro-
gram execution because write hits are pipelined and can occur
at a sustained rate of one per clock.

There is a corresponding physical tag for each linear tag. Two
or more linear addresses can be aliased to a single physical
address. When the processor detects an aliased access to the
store buffer, the TLB and physical tags forward the access
directly from the store buffer without depending on a linear-
tag match in the data cache.

The linear tags for both caches are invalidated whenever pag-
ing is turned on or off, or when CR3 (the page-directory base
register) is loaded, except that during x86-architecture task
switches, the linear tags are only invalidated if the current and
new value for CR3 are different. When linear tags are invali-

Cache Organization and Management 2-17

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

dated, many or all of the cached lines may still be valid, but
accesses miss in the linear tags and go through the MMU to the
physical tags. If an access misses the linear tags but hits in the
physical tags, the processor restores the linear tag using the
linear address for the access. This is called a cache-tag recovery.
The revalidation of the linear tag does not add any additional
time to that of the physical-tag access itself.

The linear tags for both caches are invalidated during physical-
tag invalidation, or when the RESET or INIT input signal is
asserted. The linear and physical tags for both caches are inval-
idated when the FLUSH input signal is asserted or when the
INVD or WBINVD instruction is executed.

2.3.4 Cache-Line Fills

Memory reads that miss in the instruction or data cache gener-
ate read-allocate operations. These begin with an attempt to
find an invalid line in one of the four cache ways for the
accessed index. If an invalid line cannot be found in one of the
four ways for the index, a line is pseudo-randomly selected for
replacement from one of the four ways. Then the processor fills
the line by driving a four-transfer burst cycle on the bus,
aligned on 32-byte boundaries, with the target quadword
(qword) delivered first.

Instruction-cache line fills initiate four 8-byte transfers from
memory (one burst cycle) on the bus. All 32 bytes go through
the prefetch cache (which has two 32-byte lines) to the instruc-
tion cache and byte queue, with x86 instruction predecoding
performed on the fly.

Data-cache line fills also initiate four 8-byte transfers on the
bus. If a shared or exclusive line is being replaced prior to the
line fill, the first two 8-byte qwords fill half of the cache line,
while the accessed data item is simultaneously forwarded
through the load/store unit to the ROB and execution units.
Then the remaining two qwords arrive and fill the other half of
the cache line. When the cache line is completely filled, the
state of the line is updated. If the line being filled is replacing
a modified line, the prior contents of the line are copied to a 32-
byte writeback (copyback) buffer in the bus interface unit
while the new line is being read.

2-18 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

2.3.5 Cache Coherency

The processor’s cache-coherency mechanism is based on real
(non-speculative) state. Everything that accesses main memory
has the same view of that memory, which is never modified
speculatively. The contents of the processor’s data cache are
always real-state. Furthermore, on the AMD5K86 processor,
writes to both memory and the data cache are always done in
program order, irrespective of the state of the EWBE input sig-
nal.

The processor’s data cache implements coherency with the
MESI (Modified, Exclusive, Shared, Invalid) protocol. The
instruction cache, which is read-only, has no write-related
states. The instruction cache implements coherency with only
a valid bit, which in effect works like a shared-invalid subset of
the MESI protocol. The coherency state bits are stored in the
physical tags for each cache. The physical tags can be accessed
by external logic (using inquire cycles) or the processor (for
internal snoops) in parallel with accesses to the linear tag by
programs running on the processor.

Table 2-2 shows all possible cache-line states before and after
program-generated accesses to individual cache lines. The
table includes the correspondence between MESI states and
writethrough or writeback states for lines in the data cache.
Table 2-3 shows all possible cache-line states before and after
cache snoop or invalidation operations performed with inquire
cycles. Together, these tables show all of the conditions for
writethroughs and writebacks to memory.

Cache Organization and Management 2-19

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

TABLE 2-2. Cache States for Read and Write Accesses

Type Tags1 Cache State
Before
Access5

Access
Type2

Cache State After Access

MESI State5 Writeback-
Writethrough

 State

Cache
Read

Read
Miss

Linear

invalid single read invalid invalid

invalid3
(cacheable)

burst read
(line fill)

shared or
exclusive4

writethrough
 or

writeback4

Read
Hit

Linear

shared — shared writethrough

exclusive — exclusive writeback

modified — modified writeback

Cache
Write

Write
Miss

Linear invalid single write invalid invalid

Write
Hit

Linear
shared

cache
update and
single write

shared or
exclusive4

writethrough
 or

writeback4

exclusive or
modified

cache update modified writeback

Notes:
1. Linear tags are masked by A20M, physical tags are not.
2. Single read, single write, cache update, and writethrough = 1 to 8 bytes. Line fill = 32 bytes.
3. If CACHE and KEN are Low.
4. If PWT is Low and WB/WT is High.
5. MESI state is stored in the physical tags. Instruction-cache state consists only of valid (shared) or invalid, and there are no write-

related states.
— Not applicable or none.

2-20 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

TABLE 2-3. Cache States for Snoops, Invalidation, and Replacements

Type of
Operation

Tags1 Cache State
Before

Operation3

Memory
Access3

Cache State After Operation

MESI State5 Writeback-
Writethrough

State

Inquire
Cycle

Physical

shared or
exclusive

—
INV=0 shared writethrough

INV=1 invalid invalid

modified
burst write
(writeback)

INV=0 shared writethrough

INV=1 invalid invalid

Internal
Snoop

Physical

shared or
exclusive

—
invalid invalid

modified
burst write
(writeback)

FLUSH
Signal

Physical

shared or
exclusive

—
invalid invalid

modified
burst write
(writeback)

WBINVD
Instruction

Physical

shared or
exclusive

—
invalid invalid

modified
burst write
(writeback)

INVD
Instruction

— — — invalid invalid

Cache-Line
Replacement

Physical

shared or
exclusive

— Depends on
replacement-line
characteristicsmodified

burst write
(writeback)

Notes:
1. Linear tags are masked by A20M, physical tags are not.
2. Writeback = 32 bytes.
3. MESI state is stored in the physical tags. Instruction-cache state consists only of valid (shared) or invalid, and there are no write-

related states.
— Not applicable or none.

Cache Organization and Management 2-21

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

2.3.6 Snooping

The term snooping commonly refers to at least three different
actions, only two of which are supported by the AMD5K86 and
Pentium processors:

■ Inquire Cycles—These are bus cycles initiated by external
logic that cause the processor to look up an address in its
physical cache tags. Both the AMD5K86 and Pentium pro-
cessors support inquire cycles.

■ Internal Snooping—This is initiated by the processor (rather
than external logic) during certain cache accesses. Internal
snooping detects self-modifying code. Both the AMD5K86
and Pentium processors support internal snooping.

■ Bus Watching—Some caching devices watch their address
and data buses while they are held off the bus, comparing
addresses driven by another bus master with their internal
cache tags and optionally updating their cached lines on the
fly during writebacks by the other master. The AMD5K86
and the Pentium processor do not support bus watching.

Table 2-4 shows the conditions under which snooping occurs in
the AMD5K86 processor and the resources that are snooped.
All such snooping is done in the processor’s physical tags, in
parallel with the processor’s own accesses to the linear tags.
Thus, there is no execution-performance penalty for snooping.

Inquire Cycles In systems with multiple caching masters, external logic main-
tains cache coherency by driving inquire cycles to the proces-
sor. System logic initiates inquire cycles by asserting AHOLD,
BOFF, or HOLD to obtain control of the address bus, and then
driving EADS, INV and an inquire address. Such bus cycles
cause the processor to compare the physical tags for both its
instruction and data caches with the inquire address. If the
compare hits a shared or exclusive line in the data cache or a
valid line in the instruction cache, the processor asserts HIT. If
the compare hits a modified line in the data cache, the proces-
sor asserts HITM.

The resulting state of a cache line that is hit depends on the
state of the INV signal at the time of the inquire cycle. If INV is
negated, the line remains in or transitions to the shared (or
valid) state. If INV is asserted, the modified line in the data
cache is written back, and the line is invalidated.

2-22 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Internal Snooping The processor automatically snoops its instruction cache dur-
ing read or write misses to its data cache, and it snoops its data
cache during read misses to its instruction cache. It does this to
detect the presence of self-modifying code. Table 2-4 summa-
rizes the actions taken during this internal snooping.

TABLE 2-4. Snoop Action

Origin of
Snoop

Type of Access

Snooping Action

Instructions Data

Instruction
Cache

Prefetch
Cache

Data
Cache

Store
Buffer

Writeback
Buffers

External Inquire Cycle yes1 yes yes1 no yes1

Internal

Instruction
Cache

Read
Miss

— — yes2 yes2 yes2

Read
Hit

— — no no no

Data
Cache

Read
Miss yes3 yes3 — — —

Read
Hit

no no — — —

Write
Miss yes4 yes4 — — —

Write
Hit

no no — — —

Notes:
1. The processor’s response to a snoop hit depends on the state of the INV input signal and the state of the cache line as follows:

For instructions if INV is negated, the line remains invalid or shared, but if INV is asserted, the line is invalidated. For data if INV is
negated, valid lines remain in or transition to the shared state, a modified data cache line is written back before the line is marked
shared (with HITM asserted), invalid lines remain invalid.
For data if INV is asserted, the line is marked invalid. Modified lines are written back before invalidation.

2. If the snoop hits a line in the data cache, store buffer or writeback buffer, the line is written back (if modified) and invalidated.
Then the instruction-cache read is performed again. If the line is modified, a copy of the writeback data is passed directly to the
instruction cache, thus avoiding a line-fill bus cycle after the writeback bus cycle.

3. If the snoop hits a line in the instruction cache, prefetch cache, or line-fill buffer, the line stays valid and the data-cache read is
performed again, but as a single, non-cacheable read.

4. If the snoop hits a line in the instruction cache, prefetch cache, or line-fill buffer, the line is invalidated and the data-cache write is
performed.

— Not applicable.

Cache Organization and Management 2-23

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

If an internal snoop hits its target, the processor does the fol-
lowing:

■ During Instruction-Cache Read Miss—The line in the data
cache, store buffer, or writeback buffer is written back (if
modified) and invalidated, and the instruction-cache read is
performed again. If the data-cache line was modified, a
copy of the writeback data is passed directly to the instruc-
tion cache, thus avoiding a line-fill bus cycle after the write-
back bus cycle.

■ During Data-Cache Read Miss—The line in the instruction
cache, prefetch cache, or line-fill buffer stays valid, and the
data-cache read is performed as a single, non-cacheable
read.

■ During Data-Cache Write Miss—The line in the instruction
cache, prefetch cache, or line-fill buffer is invalidated, the
reorder buffer invalidates all instructions in the pipeline
following the instruction that initiated the snoop, and the
data-cache write is performed.

The AMD5K86 processor, like the 486 processor but unlike the
Pentium processor, requires a jump (near or far) after a self-
modifying write to clear the prefetch cache. However, both the
AMD5K86 and the Pentium processors require a serializing
instruction after self-modifying code whose physical address is
aliased to multiple linear addresses.

2.3.7 Buffers

Several buffers are associated with the instruction and data
caches, as described below.

Line-Fill Buffers The processor has two 16-byte line-fill buffers in the bus inter-
face unit, one of which is used during instruction-cache line
fills and the other during data-cache line fills. The buffer holds
half of the 32-byte burst cycle that the processor drives in
response to a cacheable fetch miss.

Instruction-cache lines are 16 bytes wide. During fetch misses,
the first 16 bytes of the burst go through the prefetch cache to
the instruction cache and/or byte queue. The remaining 16
bytes from the 32-byte burst cycle, if they are not used immedi-
ately thereafter to fill the prefetch cache, are held in a 16-byte
line-fill buffer in the bus interface unit for a possible future

2-24 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

access. As shown in Table 2-4, the line-fill buffer for the
instruction cache is snooped internally during read or write
misses in the data cache, but it is not snooped during inquire
cycles. The line-fill buffer for the data cache, unlike the
instruction-cache buffer, is never snooped and for this reason
does not appear in Table 2-4.

Prefetch Cache The processor prefetches instructions during fetch-stage
misses in the instruction cache, as described in Section 2.1 on
page 2-3. When a miss occurs, the processor initiates a 32-byte
access for a 16-byte line fill and additional sequentially
addressed bytes to fill the prefetch cache. During non-cache-
able accesses, the fetch logic fetches directly from the prefetch
cache.

As shown in Table 2-4 on page 2-22, the prefetch cache is
snooped internally during read or write misses in the data
cache and during inquire cycles.

Store Buffer The Pentium processor implements a write buffer in which
real-state data writes can be buffered, waiting for access to the
bus, and in which certain types of cacheable read cycles on the
bus are promoted ahead of certain types of write cycles when
the EWBE signal is asserted. The AMD5K86 processor has no
such real-state write buffer between its data cache and the bus,
although it does implement a speculative-state, 4-entry, 4-byte-
wide store buffer between the two load/store execution units
and the data cache.

The store buffer can contain both speculative- and real-state
data. Each entry in the store buffer is in speculative state until
the associated ROP is retired, after which the data is trans-
ferred to the data cache and/or memory, both of which repre-
sent the real (non-speculative) state of data. A store occurs at
the retirement stage of the pipeline, when the processor writes
an entry from the store buffer to the data cache and/or mem-
ory. For non-cacheable stores, the processor writes directly
from the store buffer to the bus interface, at which point the
store becomes real-state.

As shown in Table 2-4 on page 2-22, the store buffer is not
snooped during inquire cycles. When external logic drives an
inquire cycle, the processor’s response depends only on the
contents of the data cache at that time (that is, only on its real
state). Subsequent stores to that line—be they in the store

Cache Organization and Management 2-25

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

buffer, load/store execution units, reservation stations, decode
unit, or prefetch cache—are not relevant to an inquire cycle or
internal snoop. Such stores are speculative and might never
occur, due to a branch misprediction, an interrupt, or other
intervening event.

As a buffered store leaves the store buffer to update the data
cache and/or memory, the processor checks the location’s
MESI state in the physical tags and observes the MESI update
rules for that state. For example, if a buffered store were going
to hit an exclusive line in the data cache when first placed in
the store buffer, but the line’s MESI state was changed from
exclusive to shared by a subsequent inquire cycle while the
store waited in the store buffer, the store would see a shared
state on being transferred to the data cache, and it would
become a writethrough, going externally to main memory at the
same time that it updates the data cache.

Replacement and
Invalidation
Writeback Buffer

The processor has a 1-entry, 32-byte-wide writeback (copy-
back) buffer in the bus interface unit for replacements and
invalidations. The buffer is used for writebacks of modified
data in the data cache due to one of the following:

■ Cache-line replacement during data-cache read miss

■ WBINVD instruction

■ FLUSH signal

During cache-line replacements, the memory read cycle for the
new cache line is initiated on the bus before the contents of the
modified line to be replaced are copied into the writeback
buffer. When the cache-line fill is completed, the contents of
the writeback buffer are written to memory.

Writethroughs from the data cache do not go through a buffer.
These transfers are between 1 and 8 bytes in length and they
go directly onto the bus from the store buffer.

As shown in Table 2-4 on page 2-22, the writeback buffer is
snooped internally during instruction-cache read misses and
during inquire cycles.

2-26 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Snoop Writeback
Buffer

In addition to the replacement and invalidation writeback
buffer, the processor also has a 1-entry, 32-byte-wide snoop
writeback buffer in the bus interface unit that is used for
writebacks due to one of the following:

■ Internal snoop during an instruction-cache read miss

■ External inquire cycle in which the INV signal is asserted

A modified data-cache line can be replaced in parallel with a
snoop-hit invalidation to a modified line because the write-
backs go to separate buffers.

2.4 Memory Management Unit (MMU)

The MMU supports standard x86 demand-paged virtual memo-
ry by translating linear addresses to physical addresses. To
speed this process, the most recently accessed address transla-
tions are stored in one of two translation lookaside buffers
(TLBs), one for mapping 4-Kbyte pages and another for map-
ping 4-Mbyte pages. Mappings to 4-Kbyte and 4-Mbyte pages
can be intermixed in a given page directory, the base of which
is pointed to by the contents of control register 3 (CR3).

During memory accesses, the MMU receives a linear address
and searches the TLBs for a corresponding physical address. If
found, the physical address is passed to the physical tag direc-
tory for a validity check. If the physical address is not present
(a TLB miss), the MMU searches the page directory and page
tables in memory. If found, the MMU loads the translation into
the appropriate TLB. If not found, the processor generates a
page fault.

2.4.1 Storage Model

The AMD5K86 processor always observes the strongly ordered
memory-write model. All writes—whether to cache, memory, or
I/O—are performed in program order, regardless of the state
of the External Write Buffer Empty (EWBE) input signal. The
only effect of EWBE on writes is to hold additional writes off
when the signal is negated. In particular, assertion of EWBE
does not permit the AMD5K86 processor to observe a weakly
ordered memory-write model, in which writes to cache may

Memory Management Unit (MMU) 2-27

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

occur out of program order with respect to writes on the bus to
memory.

In a strongly ordered memory-write model, writes to cache and
memory always appear in program order. In a weakly ordered
memory-write model, writes to cache and memory can occur
out of program order (that is, a write to cache can occur before
a prior write to memory). Weakly ordered systems may per-
form better, but they can cause problems in systems with mul-
tiple-caching masters. For example, errors may occur in weakly
ordered systems when a master that is held off the bus contin-
ues writing to exclusive or modified lines in its internal data
cache while another master writes to memory. Nevertheless,
the strongly ordered AMD5K86 processor supports high perfor-
mance without using weakly ordered memory writes by buffer-
ing speculative stores in the store buffer.

2.4.2 Read/Write Reordering

The processor reorders certain types of cacheable read cycles
on the bus ahead of certain types of write cycles. Specifically,
any read that hits in the instruction or data cache is promoted
ahead of a write in the store buffer if the read is not from the
same location to which a write in the store buffer is to be writ-
ten. The reordering allows reads, which dominate the proces-
sor’s use of the bus in Writeback mode, to take precedence
over data writes, which normally occur infrequently. The
EWBE signal has no effect on this reordering of bus cycles.

2.4.3 Segmentation

The instruction cache contains a copy of certain fields in the
current code-segment descriptor. The information is used dur-
ing prefetch for segment translation (logical-to-linear
addresses), thus providing linear-address tags for the instruc-
tion-cache entries. Likewise, the load/store units hold the cur-
rent data-segment descriptors, which are used to generate the
linear address and perform protection checks during data-
cache accesses. The processor can cache segment descriptors
in its data cache.

2-28 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

2.4.4 Paging and the TLBs

The processor supports 4-Kbyte and 4-Mbyte paging with two
separate translation lookaside buffers (TLBs) that work in par-
allel:

■ 4-Kbyte Pages—A 128-entry, four-way, set-associative TLB
that can cover 512 Kbytes of memory space

■ 4-Mbyte Pages—A four-entry, fully-associative TLB that can
cover 16 Mbytes of memory space

The TLBs are accessed during cache accesses that miss in the
linear tags. Each TLB is organized into tag directories (linear-
address references) and data arrays (physical-address refer-
ences). The TLB entries also contain bits used to check privi-
lege and access rights. Because the caches are linearly
addressed, however, cache accesses do not go through the TLB.
The cache accesses are faster because the TLB is not involved.
Copies of the privilege and access bits from the TLB entries
are loaded into the caches when the cache lines are filled. If a
privilege-level violation is detected during a cache access, the
TLB is accessed, and it alone can issue a page-related excep-
tion.

TLB invalidations (flushes) are done in the standard ways: a
MOV to CR3, which loads a new page-table directory, or the
INVLPG instruction, which invalidates a single TLB entry.
Both the 4-Kbyte and 4-Mbyte TLBs support global pages,
which remain in the TLBs during such TLB invalidations when
the global-page extension is enabled.

When a TLB miss or fault occurs during a prefetch, bits reflect-
ing this are passed via the prefetch cache to the decode logic
during fetch misses so that microcode can serialize the pipe-
line and initiate the TLB reload nonspeculatively. TLB replace-
ment is done using a pseudo-random algorithm. The processor
never caches TLB loads, regardless of the state of the PCD and
PWT bits, and it does not do speculative TLB reloads. A page-
fault handler, however, may cache page-table entries in the
data cache. During a TLB reload, the physical cache tags are
snooped for the page-table entry (PTE). A hit on a modified line
causes that line to be written back to memory. The TLB then
completes the read from memory. The TLB always performs
reloads from memory, regardless of whether a page-directory
entry (PDE) or page-table entry (PTE) is in the data cache. If

Memory Management Unit (MMU) 2-29

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

the TLB reload involves a write to memory to set the PDE
Accessed or Dirty bit, a hit during the physical-tag snoop
causes the cache line to be invalidated.

Details on software configuration for 4-Mbyte paging are given
in Section 3.1.2 on page 3-5. The global-page option is
described in Section 3.1.3 on page 3-9. Details on the TLB stor-
age formats and their testing are given in Section 7.4 on page
7-7.

2-30 Internal Architecture

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3
Software Environment and
Extensions

The AMD5K86 processor is compatible with the instruction set,
programming model, memory management mechanisms, and
other software infrastructure supported by the 486 and Pen-
tium (735\90, 815\100) processors. Operating system and appli-
cation software that runs on the Pentium processor can be
executed on the AMD5K86 processor without modification.
Because the AMD5K86 processor takes a significantly different
approach to implementing the x86 architecture, some subtle
differences from the Pentium processor may be visible to sys-
tem and code developers. These differences are described in
Appendix A.

The AMD5K86 processor implements the following extensions
to the 486 architecture:

■ 4-Mbyte Page Size

■ Global Pages

■ Protected Virtual Extensions

■ Virtual-8086 Mode Extensions (VME)

■ Machine-Check Registers and Exceptions

■ Model-Specific Registers (MSRs)

■ Time Stamp Counter (TSC)

■ New Instructions: CPUID, CMPXCHG8B, MOV to and from
CR4, RDTSC, RDMSR, WRMSR, and RSM

■ I/O Breakpoints

3-2 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The sections that follow provide details on the architectural
extensions visible to system and application software. Some
sections include pseudo-code algorithms for suggested BIOS
modifications to support the extensions. Architectural exten-
sions visible to debug and test software, such as I/O break-
points, are described in Chapter 7.

3.1 Control Register 4 (CR4) Extensions

Control register 4 contains bits that enable or specify many of
the extensions to the 486 architecture. The majority of the bits
in CR4 are reserved. The default state for all bits in CR4 is all
zeros. Figure 3-1 shows the format of CR4. Table 3-1 describes
the fields in CR4.

FIGURE 3-1. Control Register 4 (CR4)

Global Page Extension GPE 7
Machine Check Enable MCE 6
Page Size Extension PSE 4
Debugging Extensions DE 3
Time Stamp Disable TSD 2
Protected Virtual Interrupts PVI 1
Virtual-8086 Mode Extensions VME 0

7 6 5 4 3 2 1 031

P
S
E

T
S
D

M
C
E

V
M
E

D
E

P
V
I

G
P
E

Reserved

8

Control Register 4 (CR4) Extensions 3-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

TABLE 3-1. Control Register 4 (CR4) Fields

Bit Mnemonic Description Function

7 GPE
Global Page
Extension

Enables retention of designated entries in the
4-Kbyte TLB or 4-Mbyte TLB during invalida-
tions.

1 = enabled, 0 = disabled.

See Section 3.1.3 on page 3-9 for details.

6 MCE
Machine-Check
Enable

Enables machine-check exceptions.

1 = enabled, 0 = disabled.

See Section 3.1.1 on page 3-4 for details.

4 PSE
Page Size
Extension

Enables 4-Mbyte pages.

1 = enabled, 0 = disabled.

See Section 3.1.2 on page 3-5 for details.

3 DE
Debugging
Extensions

Enables I/O breakpoints in the DR7–DR0 regis-
ters.

1 = enabled, 0 = disabled.

See Section 7.5 on page 7-16 for details.

2 TSD
Time Stamp
Disable

Selects privileged (CPL=0) or non-privileged
(CPL>0) use of the RDTSC instruction, which
reads the Time Stamp Counter (TSC).

1 = CPL must be 0, 0 =any CPL.

See Section 3.2.3 on page 3-27 for details.

1 PVI
Protected Virtual
Interrupts

Enables hardware support for interrupt virtu-
alization in Protected mode.

1 = enabled, 0 = disabled.

See Section 3.1.5 on page 3-24 for details.

0 VME
Virtual-8086
Mode Extensions

Enables hardware support for interrupt virtu-
alization in Virtual-8086 mode.

1 = enabled, 0 = disabled.

See Section 3.1.4 on page 3-12 for details.

3-4 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3.1.1 Machine-Check Exceptions

Bit 6 in CR4, the machine-check enable (MCE) bit, controls
generation of machine-check exceptions (12h). If enabled by
the MCE bit, these exceptions are generated when either of
the following occurs:

■ System logic asserts BUSCHK to identify a parity or other
type of bus-cycle error

■ The processor asserts PCHK while system logic asserts PEN
to identify an enabled parity error on the D63–D0 data bus

Whether or not machine-check exceptions are enabled, the
processor does the following when either type of bus error
occurs:

■ Latches the physical address of the failed cycle in its 64-bit
machine-check address register (MCAR)

■ Latches the cycle definition of the failed cycle in its 64-bit
machine-check type register (MCTR)

Software can read the MCAR and MCTR registers in the excep-
tion handling routine with the RDMSR instruction, as
described in Section 3.3.5 on page 3-35. The format of the regis-
ters is shown in Figure 3-8 on page 3-25 and Figure 3-9 on page
3-26.

If system software has cleared the MCE bit in CR4 to 0 before
a bus-cycle error, the processor attempts to continue execution
without generating a machine-check exception, although it still
latches the address and cycle type in MCAR and MCTR as
described above.

Control Register 4 (CR4) Extensions 3-5

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3.1.2 4-Mbyte Pages

The TLBs in the 486 and 386 processors support only 4-Kbyte
pages. However, large data structures such as a video frame
buffer or non-paged operating system code can consume many
pages and easily overrun the TLB. The AMD5K86 processor
accommodates large data structures by allowing the operating
system to specify 4-Mbyte pages as well as 4-Kbyte pages, and
by implementing a four-entry, fully-associative 4-Mbyte TLB
which is separate from the 128-entry, 4-Kbyte TLB. From a
given page directory, the processor can access both 4-Kbyte
pages and 4-Mbyte pages, and the page sizes can be intermixed
within a page directory. When the Page Size Extension (PSE)
bit in CR4 is set, the processor translates linear addresses
using either the 4-Kbyte TLB or the 4-Mbyte TLB, depending
on the state of the page size (PS) bit in the page-directory
entry. Figures 3-2 and 3-3 show how 4-Kbyte and 4-Mbyte page
translation work.

FIGURE 3-2. 4-Kbyte Paging Mechanism

Linear Address

4-Kbyte
Page

Directory

4-Kbyte
Page
Table

4-Kbyte
Page

CR3

011122131 22

Page Directory
Offset

Page Table
Offset

Page
Offset

PDE

PTE

Byte

3-6 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 3-3. 4-Mbyte Paging Mechanism

To enable the 4-Mbyte paging option:

1. Set the Page Size Extension (PSE) bit in CR4 to 1.

2. Set the Page Size (PS) bit in the page-directory entry to 1.

3. Write the physical base addresses of 4-Mbyte pages in bits
31–22 of page-directory entries. (Bits 21–12 of these entries
must be cleared to 0 or the processor will generate a page
fault.)

4. Load CR3 with the base address of the page directory that
contains these page-directory entries.

Linear Address

4-Mbyte
Page

Directory

4-Mbyte
Page

CR3

02131 22

Page Directory
Offset

Page
Offset

PDE

Byte

Control Register 4 (CR4) Extensions 3-7

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Figure 3-1 and Table 3-1 show the fields in CR4. Figure 3-4 and
Table 3-2 show the fields in a page-directory entry.

4-Kbyte page translation differs from 4-Mbyte page translation
in the following ways:

■ 4-Kbyte Paging (Figure 3-2)—Bits 31–22 of the linear address
select an entry in a 4-Kbyte page directory in memory,
whose physical base address is stored in CR3. Bits 21–12 of
the linear address select an entry in a 4-Kbyte page table in
memory, whose physical base address is specified by bits
31–22 of the page-directory entry. Bits 11–0 of the linear
address select a byte in a 4-Kbyte page, whose physical base
address is specified by the page-table entry.

■ 4-Mbyte Paging (Figure 3-3)—Bits 31–22 of the linear
address select an entry in a 4-Mbyte page directory in mem-
ory, whose physical base address is stored in CR3. Bits 21–0
of the linear address select a byte in a 4-Mbyte page in
memory, whose physical base address is specified by bits
31–22 of the page-directory entry. Bits 21–12 of the page-
directory entry must be cleared to 0.

FIGURE 3-4. Page-Directory Entry (PDE)

Available to Software AVL 11–9
Global G 8
Page Size PS 7
Dirty = 0 D 6
Accessed A 5
Page Cache Disable PCD 4
Page Writethrough PWT 3
User/Supervisor U/S 2
Write/Read W/R 1
Present (valid) P 0

8 7 6 5 4 3 2 1 031

P
C
D

U
/
S

W
/
R

G

9101112

A
V
L

P
S A

P
W
T

PPhysical Base Address 0

3-8 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

TABLE 3-2. Page-Directory Entry (PDE) Fields

Bit Mnemonic Description Function

31–12 BASE
Physical Base
Address

For 4-Kbyte pages, bits 31–12 contain the physical
base address of a 4-Kbyte page table.

For 4-Mbyte pages, bits 31–22 contain the physical
base address of a 4-Mbyte page and bits 21–12
must be cleared to 0. (The processor will generate
a page fault if bits 21–12 are not cleared to 0.)

11–9 AVL
Available to
Software

Software may use this field to store any type of
information. When the page-directory entry is not
present (P bit cleared), bits 31–1 become available
to software.

8 G Global 0 = local, 1 = global.

7 PS Page Size 0 = 4-Kbyte, 1 = 4-Mbyte.

6 D Dirty

For 4-Kbyte pages, this bit is undefined and
ignored. The processor does not change it.

0 = not written, 1 = written.

For 4-Mbyte pages, the processor sets this bit to 1
during a write to the page that is mapped by this
page-directory entry.

0 = not written, 1 = written.

5 A Accessed

The processor sets this bit to 1 during a read or
write to any page that is mapped by this page-
directory entry.

0 = not read or written, 1 = read or written.

4 PCD
Page Cache Dis-
able

Specifies cacheability for all pages mapped by this
page-directory entry. Whether a location in a
mapped page is actually cached also depends on
several other factors.

0 = cacheable page, 1 = non-cacheable.

3 PWT
Page
Writethrough

Specifies writeback or writethrough cache proto-
col for all pages mapped by this page-directory
entry. Whether a location in a mapped page is
actually cached in a writeback or writethrough
state also depends on several other factors.

0 = writeback page, 1 = writethough page.

2 U/S User/Supervisor 0 = user (any CPL), 1 = supervisor (CPL < 3).

1 W/R Write/Read 0 = read or execute, 1 = write, read, or execute.

0 P Present 0 = not valid, 1 = valid.

Control Register 4 (CR4) Extensions 3-9

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3.1.3 Global Pages

The processor’s performance can sometimes be improved by
making some pages global to all tasks and procedures. This can
be done for both 4-Kbyte pages and 4-Mbyte pages.

The processor invalidates (flushes) both the 4-Kbyte TLB and
the 4-Mbyte TLB whenever CR3 is loaded with the base
address of the new task’s page directory. The processor loads
CR3 automatically during task switches, and the operating sys-
tem can load CR3 at any other time. Unnecessary invalidation
of certain TLB entries can be avoided by specifying those
entries as global (a global TLB entry references a global page).
This improves performance after TLB flushes. Global entries
remain in the TLB and need not be reloaded. For example,
entries may reference operating system code and data pages
that are always required. The processor operates faster if these
entries are retained across task switches and procedure calls.

To specify individual pages as global:

1. Set the Global Page Extension (GPE) bit in CR4.

2. (Optional) Set the Page Size Extension (PSE) bit in CR4.

3. Set the relevant Global (G) bit for that page:

For 4-Kbyte pages—Set the G bit in both the page-directory
entry (shown in Figure 3-4 and Table 3-2) and the page-
table entry (shown in Figure 3-5 and Table 3-3).

For 4-Mbyte pages—(Optional) After the PSE bit in CR4 is
set, set the G bit in the page-directory entry (shown in Fig-
ure 3-4 and Table 3-2).

4. Load CR3 with the base address of the page directory.

The INVLPG instruction clears both the V and G bits for the
referenced entry. To invalidate all entries, including global-
page entries, in both TLBs:

1. Clear the Global Page Extension (GPE) bit in CR4.

2. Load CR3 with the base address of another (or same) page
directory.

3-10 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 3-5. Page-Table Entry (PTE)

Available to Software AVL 11–9
Global G 8
Page Size = 0 PS 7
Dirty D 6
Accessed A 5
Page Cache Disable PCD 4
Page Writethrough PWT 3
User/Supervisor U/S 2
Write/Read W/R 1
Present (valid) P 0

8 7 6 5 4 3 2 1 031

P
C
D

U
/
S

W
/
R

G

9101112

A
V
L

D A
P
W
T

PPhysical Base Address 0

Control Register 4 (CR4) Extensions 3-11

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

TABLE 3-3. Page-Table Entry (PTE) Fields

Bit Mnemonic Description Function

31–12 BASE
Physical Base
Address

The physical base address of a 4-Kbyte page.

11–9 AVL
Available to
Software

Software may use the field to store any type of
information. When the page-table entry is not
present (P bit cleared), bits 31–1 become available
to software.

8 G Global 0 = local, 1 = global.

7 PS Page Size
This bit is ignored in page-table entries, although
clearing it to 0 preserves consistent usage of this
bit between page-table and page-directory entries.

6 D Dirty
The processor sets this bit to 1 during a write to
the page that is mapped by this page-table entry.

0 = not written, 1 = written.

5 A Accessed

The processor sets this bit to 1 during a read or
write to any page that is mapped by this page-
table entry.

0 = not read or written, 1 = read or written.

4 PCD
Page Cache
Disable

Specifies cacheability for all locations in the page
mapped by this page-table entry. Whether a loca-
tion is actually cached also depends on several
other factors.

0 = cacheable page, 1 = non-cacheable.

3 PWT
Page
Writethrough

Specifies writeback or writethrough cache proto-
col for all locations in the page mapped by this
page-table entry. Whether a location is actually
cached in a writeback or writethrough state also
depends on several other factors.

0 = writeback, 1 = writethough.

2 U/S
User/Supervi-
sor

0 = user (any CPL), 1 = supervisor (CPL < 3).

1 W/R Write/Read 0 = read or execute, 1 = write, read, or execute.

0 P Present 0 = not valid, 1 = valid.

3-12 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3.1.4 Virtual-8086 Mode Extensions (VME)

The Virtual-8086 Mode Extensions (VME) bit in CR4 (bit 0)
enable performance enhancements for 8086 programs running
as protected tasks in Virtual-8086 mode. These extensions
include:

■ Virtualizing maskable external interrupt control and notifi-
cation via the VIF and VIP bits in EFLAGS

■ Selectively intercepting software interrupts (INTn instruc-
tions) via the Interrupt Redirection Bitmap (IRB) in the
Task State Segment (TSS)

Interrupt Redirection
in Virtual-8086 Mode
Without VME
Extensions

8086 programs expect to have full access to the interrupt flag
(IF) in the EFLAGS register, which enables maskable external
interrupts via the INTR signal. When 8086 programs run in Vir-
tual-8086 mode on a 386 or 486 processor, they run as pro-
tected tasks and access to the IF flag must be controlled by the
operating system on a task-by-task basis to prevent corruption
of system resources.

Without the VME extensions available on the AMD5K86 pro-
cessor, the operating system controls Virtual-8086 mode access
to the IF flag by trapping instructions that can read or write
this flag. These instructions include STI, CLI, PUSHF, POPF,
INTn, and IRET. This method prevents changes to the real IF
when the I/O privilege level (IOPL) in EFLAGS is less than 3,
the privilege level at which all Virtual-8086 tasks run. The
operating system maintains an image of the IF flag for each
Virtual-8086 program by emulating the instructions that read
or write IF. When an external maskable interrupt occurs, the
operating system checks the state of the IF image for the cur-
rent Virtual-8086 program to determine whether the program
is allowing interrupts. If the program has disabled interrupts,
the operating system saves the interrupt information until the
program attempts to re-enable interrupts.

The overhead for trapping and emulating the instructions that
enable and disable interrupts, and the maintenance of virtual
interrupt flags for each Virtual-8086 program, can degrade the
processor’s performance. This performance can be regained by
running Virtual-8086 programs with IOPL set to 3, thus allow-
ing changes to the real IF flag from any privilege level, but
with a loss in protection.

Control Register 4 (CR4) Extensions 3-13

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

In addition to these performance problems caused by virtual-
ization of the IF flag in Virtual-8086 mode, software interrupts
(those caused by INTn instructions that vector through inter-
rupt gates) cannot be masked by the IF flag or virtual copies of
the IF flag, these flags only affect hardware interrupts. Soft-
ware interrupts in Virtual-8086 mode are normally directed to
the Real mode interrupt vector table (IVT), but it may be
desirable to redirect interrupts for certain vectors to the Pro-
tected mode interrupt descriptor table (IDT).

The processor’s Virtual-8086 mode extensions support both of
these cases—hardware (external) interrupts and software
interrupts—with mechanisms that preserve high performance
without compromising protection. Virtualization of hardware
interrupts is supported via the Virtual Interrupt Flag (VIF)
and Virtual Interrupt Pending (VIP) flag in the EFLAGS regis-
ter. Redirection of software interrupts is supported with the
Interrupt Redirection Bitmap (IRB) in the TSS of each Virtual-
8086 program.

Hardware Interrupts
and the VIF and VIP
Extensions

When VME extensions are enabled, the IF-modifying instruc-
tions that are normally trapped by the operating system are
allowed to execute, but they write and read the VIF bit rather
than the IF bit in EFLAGS. This leaves maskable interrupts
enabled for detection by the operating system. It also indicates
to the operating system whether the Virtual-8086 program is
able to or expecting to receive interrupts.

When an external interrupt occurs, the processor switches
from the Virtual-8086 program to the operating system, in the
same manner as on a 386 or 486 processor. If the operating sys-
tem determines that the interrupt is for the Virtual-8086 pro-
gram, it checks the state of the VIF bit in the program’s
EFLAGS image on the stack. If VIF has been set by the proces-
sor (during an attempt by the program to set the IF bit), the
operating system permits access to the appropriate Virtual-
8086 handler via the interrupt vector table (IVT). If VIF has
been cleared, the operating system holds the interrupt pend-
ing. The operating system can do this by saving appropriate
information (such as the interrupt vector), setting the pro-
gram's VIP flag in the EFLAGS image on the stack, and return-
ing to the interrupted program. When the program
subsequently attempts to set IF, the set VIP flag causes the
processor to inhibit the instruction and generate a general-

3-14 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

protection exception with error code zero, thereby notifying
the operating system that the program is now prepared to
accept the interrupt.

Thus, when VME extensions are enabled, the VIF and VIP bits
are set and cleared as follows:

■ VIF—This bit is controlled by the processor and used by the
operating system to determine whether an external
maskable interrupt should be passed on to the program or
held pending. VIF is set and cleared for instructions that
can modify IF, and it is cleared during software interrupts
through interrupt gates. The original IF value is preserved
in the EFLAGS image on the stack.

■ VIP—This bit is set and cleared by the operating system via
the EFLAGS image on the stack. It is set when an interrupt
occurs for a Virtual-8086 program who’s VIF bit is cleared.
The bit is checked by the processor when the program sub-
sequently attempts to set VIF.

Figure 3-6 and Table 3-4 show the VIF and VIP bits in the
EFLAGS register. The VME extensions support conventional
emulation methods for passing interrupts to Virtual-8086 pro-
grams, but they make it possible for the operating system to
avoid time-consuming emulation of most instructions that
write or read the IF.

The VIF and IF flags only affect the way the operating system
deals with hardware interrupts (the INTR signal). Software
interrupts are handled like machine-generated exceptions and
cannot be masked by real or virtual copies of IF (see page 3-
21). The VIF and VIP flags only ease the software overhead
associated with managing interrupts so that virtual copies of
the IF flag do not have to be maintained by the operating sys-
tem. Instead, each task’s TSS holds its own copy of these flags
in its EFLAGS image.

Control Register 4 (CR4) Extensions 3-15

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 3-6. EFLAGS Register

TABLE 3-4. Virtual-Interrupt Additions to EFLAGS Register

Bit Mnemonic Description Function

20 VIP
Virtual Interrupt
Pending

Set by the operating system (via the EFLAGS
image on the stack) when an external maskable
interrupt (INTR) occurs for a Virtual-8086 pro-
gram who’s VIF bit is cleared. The bit is checked
by the processor when the program subsequently
attempts to set VIF.

19 VIF
Virtual Interrupt
Flag

When the VME bit in CR4 is set, the VIF bit is
modified by the processor when a Virtual-8086
program running at less privilege than the IOPL
attempts to modify the IF bit. The VIF bit is used
by the operating system to determine whether a
maskable interrupt should be passed on to the
program or held pending.

ID Flag ID 21
Virtual Interrupt Pending VIP 20
Virtual Interrupt Flag VIF 19
Alignment Check AC 18
Virtual-8086 Mode VM 17
Resume Flag RF 16
Nested Task NT 14
I/O Privilege Level IOPL 13–12
Overflow Flag OF 11
Direction Flag DF 10
Interrupt Flag IF 9
Trap Flag TF 8
Sign Flag SF 7
Zero Flag ZF 6
Auxiliary Flag AF 4
Parity Flag PF 2
Carry Flag CF 0

9 8 7 6 5 4 3 2 1 0101112131415161718192021

I
O
P
L

31 30 29 28 27 26 25 24 23 22

A
F

P
F

Z
F

S
F

I
F

D
F

T
F

O
F

N
T

R
F

V
M

A
C

V
I
F

V
I
P

I
D

C
F

Reserved

3-16 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Table 3-5 shows the effects, in various x86-processor modes, of
instructions that read or write the IF and VIF flag. The column
headings in this table include the following values:

■ PE—Protection Enable bit in CR0 (bit 0)

■ VM—Virtual-8086 Mode bit in EFLAGS (bit 17)

■ VME—Virtual Mode Extensions bit in CR4 (bit 0)

■ PVI—Protected-mode Virtual Interrupts bit in CR4 (bit 1)

■ IOPL—I/O Privilege Level bits in EFLAGS (bits 13–12)

■ GP(0)—General-protection exception, with error code = 0

■ IF—Interrupt Flag bit in EFLAGS (bit 9)

■ VIF—Virtual Interrupt Flag bit in EFLAGS (bit 19)

TABLE 3-5. Instructions that Modify the IF or VIF Flags

Mode TYPE PE VM VME PVI IOPL GP(0) IF VIF

Real Mode1

CLI 0 0 0 0 — No IF ← 0 —

STI 0 0 0 0 — No IF ← 1 —

PUSHF 0 0 0 0 — No
No
Change

—

POPF 0 0 0 0 — No
IF ←
Stack
Image

—

IRET 0 0 0 0 — No
IF ←
Stack
Image

—

Notes:
1. All Virtual-8086 tasks run at CPL = 3.
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.

Control Register 4 (CR4) Extensions 3-17

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

286 Protected
Mode

CLI 1 0 0 0 ≥CPL No IF ← 0 —

CLI 1 0 0 0 <CPL Yes
No
Change

—

STI 1 0 0 0 ≥CPL No IF ← 1 —

STI 1 0 0 0 <CPL Yes
No
Change

—

PUSHF 1 0 0 0 ≥CPL No
No
Change

—

PUSHF 1 0 0 0 <CPL No
No
Change

—

POPF 1 0 0 0 ≥CPL No
IF ←
Stack
Image

—

POPF 1 0 0 0 <CPL No
No
Change

—

IRET 1 0 0 0 ≥CPL No
IF ←
Stack
Image

—

IRET 1 0 0 0 <CPL No
IF ←
Stack
Image

—

TABLE 3-5. Instructions that Modify the IF or VIF Flags (continued)

Mode TYPE PE VM VME PVI IOPL GP(0) IF VIF

Notes:
1. All Virtual-8086 tasks run at CPL = 3.
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.

3-18 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

386 Virtual-
8086 Mode1

CLI 1 1 0 — ≥CPL No IF ← 0 —

CLI 1 1 0 — <CPL Yes
No
Change

—

STI 1 1 0 — ≥CPL No IF ← 1 —

STI 1 1 0 — <CPL Yes
No
Change

—

PUSHF 1 1 0 — ≥CPL No
No
Change

—

PUSHF 1 1 0 — <CPL Yes
No
Change

—

POPF 1 1 0 — ≥CPL No
IF ←
Stack
Image

—

POPF 1 1 0 — <CPL Yes
No
Change

—

IRETD 1 1 0 — ≥CPL No
IF ←
Stack
Image

—

IRETD 1 1 0 — <CPL Yes
No
Change

—

TABLE 3-5. Instructions that Modify the IF or VIF Flags (continued)

Mode TYPE PE VM VME PVI IOPL GP(0) IF VIF

Notes:
1. All Virtual-8086 tasks run at CPL = 3.
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.

Control Register 4 (CR4) Extensions 3-19

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Virtual-8086
Mode
Extensions
(VME)1, 2

CLI 1 1 1 — 3 No IF ← 0
No
Change

CLI 1 1 1 — 0 No
No
Change

VIF ← 0

STI 1 1 1 — 3 No IF ← 1
No
Change

STI 1 1 1 — 0 No
No
Change

VIF ← 1

PUSHF 1 1 1 — 3 No Pushed
Not
Pushed

PUSHF 1 1 1 — 0 No
Not
Pushed

Pushed
into
stack IF

PUSHFD 1 1 1 — 3 No Pushed Pushed

PUSHFD 1 1 1 — 0 Yes — —

POPF 1 1 1 — 3 No Popped
Not
Popped

POPF 1 1 1 — 0 No
Not
Popped

Popped
from
stack IF

POPFD 1 1 1 — 3 No Popped
Not
Popped

POPFD 1 1 1 — 0 Yes — —

IRETD 1 1 1 — 3 No

IF ←
Return
Stack
Image

VIF ←
Return
Stack
Image

IRETD 1 1 1 — 0 No

IF ←
Return
Stack
Image

VIF ←
Return
Stack
Image

TABLE 3-5. Instructions that Modify the IF or VIF Flags (continued)

Mode TYPE PE VM VME PVI IOPL GP(0) IF VIF

Notes:
1. All Virtual-8086 tasks run at CPL = 3.
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.

3-20 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Protected
Virtual
Extensions
(PVI)1, 2

CLI 1 0 — 1 3 No IF ← 0
No
Change

CLI 1 0 — 1 0 No
No
Change

VIF ← 0

STI 1 0 — 1 3 No IF ← 1
No
Change

STI 1 0 — 1 0 No
No
Change

VIF ← 1

PUSHF 1 0 — 1 3 No Pushed
Not
Pushed

PUSHF 1 0 — 1 0 No Pushed
Not
Pushed

PUSHFD 1 0 — 1 3 No Pushed Pushed

PUSHFD 1 0 — 1 0 No Pushed Pushed

POPF 1 0 — 1 3 No Popped
Not
Popped

POPF 1 0 — 1 0 No
Not
Popped

Not
Popped

POPFD 1 0 — 1 3 No Popped
Not
Popped

POPFD 1 0 — 1 0 No
Not
Popped

Not
Popped

IRETD 1 0 — 1 3 No

IF ←
Return
Stack
Image

VIF ←
Return
Stack
Image

IRETD 1 0 — 1 0 No

IF ←
Return
Stack
Image

VIF ←
Return
Stack
Image

TABLE 3-5. Instructions that Modify the IF or VIF Flags (continued)

Mode TYPE PE VM VME PVI IOPL GP(0) IF VIF

Notes:
1. All Virtual-8086 tasks run at CPL = 3.
2. INTn handlers and IRETO instructions run at CPL = 0. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.

Control Register 4 (CR4) Extensions 3-21

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Software Interrupts
and the Interrupt
Redirection Bitmap
(IRB) Extension

In Virtual-8086 mode, software interrupts (INTn exceptions
that vector through interrupt gates) are trapped by the operat-
ing system for emulation, because they would otherwise clear
the real IF. When VME extensions are enabled, these INTn
instructions are allowed to execute normally, vectoring
directly to a Virtual-8086 service routine via the Virtual-8086
interrupt vector table (IVT) at address 0 of the task address
space. However, it may still be desirable for security or perfor-
mance reasons to intercept INTn instructions on a vector-spe-
cific basis to allow servicing by Protected-mode routines
accessed through the interrupt descriptor table (IDT). This is
accomplished by an Interrupt Redirection Bitmap (IRB) in the
TSS, which is created by the operating system in a manner sim-
ilar to the IO Permission Bitmap (IOPB) in the TSS.

Figure 3-7 shows the format of the TSS, with the Interrupt
Redirection Bitmap near the top. The IRB contains 256 bits,
one for each possible software-interrupt vector. The most-sig-
nificant bit of the IRB is located immediately below the base of
the IOPB. This bit controls interrupt vector 255. The least-sig-
nificant bit of the IRB controls interrupt vector 0.

The bits in the IRB work as follows:

■ Set—If set to 1, the INTn instruction behaves as if the VME
extensions are not enabled. The interrupt vectors to a Pro-
tected-mode routine if IOPL = 3, or it causes a general-pro-
tection exception with error code zero if IOPL<3.

■ Cleared—If cleared to 0, the INTn instruction vectors
directly to the corresponding Virtual-8086 service routine
via the Virtual-8086 program’s IVT.

Only software interrupts can be redirected via the IRB to a
Real mode IVT—hardware interrupts cannot. Hardware inter-
rupts are asynchronous events and do not belong to any cur-
rent virtual task. The processor thus has no way of deciding
which IVT (for which Virtual-8086 program) to direct a hard-
ware interrupt to. Because of this, hardware interrupts always
require operating system intervention. The VIF and VIP bits
described on page 3-13 are provided to assist the operating sys-
tem in this intervention.

3-22 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 3-7. Task State Segment (TSS)

31

Interrupt Redirection Bitmap (IRB)
(eight 32-bit locations)

0

I/O Permission Bitmap (IOPB)
(up to 8 Kbyte)

Operating System
Data Structure

Base Address of IOPB

LDT Selector0000h

0000h

0000h
0000h

0000h

0000h

0000h

GS

FS

DS
SS

CS

ES

EDI

ESI
EBP

ESP

EBX

EDX
ECX

EAX

CR3

EFLAGS

EIP

0000h

0000h

0000h

0000h

SS2

SS1

SS0

Link (Prior TSS Selector)
ESP0

ESP1

ESP2

TSS Limit
 from TR

64h

0

T0000h

Control Register 4 (CR4) Extensions 3-23

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Table 3-6 compares the behavior of hardware and software
interrupts in various x86-processor operating modes. It also
shows which interrupt table is accessed: the Protected-mode
IDT or the Real- and Virtual-8086-mode IVT. The column head-
ings in this table include:

■ PE—Protection Enable bit in CR0 (bit 0)

■ VM—Virtual-8086 Mode bit in EFLAGS (bit 17)

■ VME—Virtual Mode Extensions bit in CR4 (bit 0)

■ PVI—Protected-Mode Virtual Interrupts bit in CR4 (bit 1)

■ IOPL—I/O Privilege Level bits in EFLAGS (bits 13–12)

■ IRB—Interrupt Redirection Bit for a task, from the Inter-
rupt Redirection Bitmap (IRB) in the tasks TSS

■ GP(0)—General-protection exception, with error code = 0

■ IDT—Protected-Mode Interrupt Descriptor Table

■ IVT—Real- and Virtual-8086 Mode Interrupt Vector Table

TABLE 3-6. Interrupt Behavior and Interrupt-Table Access

Mode
Interrupt

Type
PE VM VME PVI IOPL IRB GP(0) IDT IVT

Real mode
Software 0 0 0 — 0 — — — 3

Hardware 0 0 0 — 0 — — — 3

286 Pro-
tected mode

Software 1 0 0 — — — — 3 —

Hardware 1 0 0 — — — — 3 —

Software 1 1 0 — =3 — No 3 —

386 Virtual-
8086 mode1

Software 1 1 0 — <3 — Yes 3 —

Hardware 1 1 0 — — — No 3 —

Software 1 1 1 0 — 0 No 3

 Virtual-
8086 Mode
Extensions
(VME)1

Software 1 1 1 0 =3 1 No 3 —

Software 1 1 1 0 <3 1 Yes 3 —

Hardware 1 1 1 0 — — No 3 —

 Protected
Virtual
Extensions
(PVI)

Software 1 0 1 1 — — No 3 —

Hardware 1 0 1 1 — — No 3 —

Notes:
1. All Virtual-8086 tasks run at CPL = 3.
— Not applicable.

3-24 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3.1.5 Protected Virtual Interrupt (PVI) Extensions

The Protected Virtual Interrupts (PVI) bit in CR4 enables sup-
port for interrupt virtualization in Protected mode. In this vir-
tualization, the processor maintains program-specific VIF and
VIP flags in a manner similar to those in Virtual-8086 Mode
Extensions (VME). When a program is executed at CPL = 3, it
can set and clear its copy of the VIF flag without causing gen-
eral-protection exceptions.

The only differences between the VME and PVI extensions are
that, in PVI, selective INTn interception using the Interrupt
Redirection Bitmap in the TSS does not apply, and only the STI
and CLI instructions are affected by the extension.

Tables 3-5 and 3-6 show, among other things, the behavior of
hardware and software interrupts, and instructions that affect
interrupts, in Protected mode with the PVI extensions enabled.

Model-Specific Registers (MSRs) 3-25

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3.2 Model-Specific Registers (MSRs)

The processor supports model-specific registers (MSRs) that
can be accessed with the RDMSR and WRMSR instructions
when CPL = 0. The following index values in the ECX register
access specific MSRs:

■ 00h: Machine-Check Address Register (MCAR)

■ 01h: Machine-Check Type Register (MCTR)

■ 10h: Time Stamp Counter (TSC)

■ 82h: Array Access Register (AAR)

■ 83h: Hardware Configuration Register (HWCR)

The RDMSR and WRMSR instructions are described in Section
3.3.5 on page 3-35. The following sections describe the format
of the registers.

3.2.1 Machine-Check Address Register (MCAR)

The processor latches the address of the current bus cycle in
its 64-bit Machine-Check Address Register (MCAR) when a
bus-cycle error occurs. These errors are indicated either by (a)
system logic asserting BUSCHK, or (b) the processor asserting
PCHK while system logic asserts PEN.

The MCAR can be read with the RDMSR instruction when the
ECX register contains the value 00h. Figure 3-8 shows the for-
mat of the MCAR register. The contents of the register can be
read with the RDMSR instruction.

If system software has set the MCE bit in CR4 before the bus-
cycle error, the processor also generates a machine-check
exception as described in Section 3.1.1 on page 3-4.

FIGURE 3-8. Machine-Check Address Register (MCAR)

031

Physical Address of Last Bus Cycle that Failed

3-26 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3.2.2 Machine-Check Type Register (MCTR)

The processor latches the cycle definition and other informa-
tion about the current bus cycle in its 64-bit Machine-Check
Type Register (MCAR) at the same times that the Machine-
Check Address Register (MCAR) latches the cycle address:
when a bus-cycle error occurs. These errors are indicated
either by (a) system logic asserting BUSCHK, or (b) the proces-
sor asserting PCHK while system logic asserts PEN.

The MCTR can be read with the RDMSR instruction when the
ECX register contains the value 01h. Figure 3-9 and Table 3-7
show the formats of the MCTR register. The contents of the
register can be read with the RDMSR instruction. The proces-
sor clears the CHK bit (bit 0) in MCTR when the register is
read with the RDMSR instruction.

If system software has set the MCE bit in CR4 before the bus-
cycle error, the processor also generates a machine-check
exception as described in Section 3.1.1 on page 3-4.

FIGURE 3-9. Machine-Check Type Register (MCTR)

Locked Cycle LOCK 4
Memory or I/O Cycle M/IO 3
Data or Code Cycle D/C 2
Write or Read Cycle W/R 1
Valid Machine-Check Data CHK 0

5 4 3 2 1 031

C
H
K

D
/
C

W
/
R

L
O
C
K

M
/
I
O

Reserved

Model-Specific Registers (MSRs) 3-27

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3.2.3 Time Stamp Counter (TSC)

With each processor clock cycle, the processor increments a 64-
bit time stamp counter (TSC) model-specific register. The
counter can be written or read using the WRMSR or RDMSR
instructions when the ECX register contains the value 10h and
CPL = 0. The counter can also be read using the RDTSC
instruction (see Section 3.3.4 on page 3-34) but the required
privilege level for this instruction is determined by the Time
Stamp Disable (TSD) bit in CR4. With any of these instruc-
tions, the EDX and EAX registers hold the upper and lower
double-words (dwords) of the 64-bit value to be written to or
read from the TSC, as follows:

■ EDX—Upper 32 bits of TSC

■ EAX—Lower 32 bits of TSC

The TSC can be loaded with any arbitrary value.

3.2.4 Array Access Register (AAR)

The Array Access Register (AAR) contains pointers for testing
the tag and data arrays for the instruction cache, data cache, 4-
Kbyte TLB, and 4-Mbyte TLB. The AAR can be written or read
with the WRMSR or RDMSR instruction when the ECX regis-
ter contains the value 82h.

For details on the AAR, see Section 7.4 on page 7-7.

TABLE 3-7. Machine-Check Type Register (MCTR) Fields

Bit Mnemonic Description Function

4 LOCK Locked Cycle
Set to 1 if the processor was asserting LOCK dur-
ing the bus cycle.

3 M/IO Memory or I/O 1 = memory cycle, 0 = I/O cycle.

2 D/C Data or Code 1 = data cycle, 0 = code cycle.

1 W/R Write or Read 1 = write cycle, 0 = read cycle.

0 CHK
Valid Machine-
Check Data

The processor sets the CHK bit to 1 when both
the MCTR and MCAR registers contain valid
information. The processor clears the CHK bit to
0 when software reads the MCTR with the
RDMSR instruction.

3-28 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3.2.5 Hardware Configuration Register (HWCR)

The Hardware Configuration Register (HWCR) contains con-
figuration bits that control miscellaneous debugging functions.
The HWCR can be written or read with the WRMSR or
RDMSR instruction when the ECX register contains the value
83h.

For details on the HWCR, see Section 7.1 on page 7-3.

3.3 New Instructions

In addition to supporting all of the 486 processor instructions,
the AMD5K86 processor implements the following instructions:

■ CPUID

■ CMPXCHG8B

■ MOV to and from CR4

■ RDTSC

■ RDMSR

■ WRMSR

■ RSM

■ Illegal instruction (reserved opcode)

New Instructions 3-29

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3.3.1 CPUID

mnemonic opcode description

CPUID 0FA2h Identify processor

Privilege: CPL=0
Registers Affected: EAX, EBX, ECX, EDX
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—none

Protected mode—none

The CPUID instruction identifies the type of processor and the features it supports.
A 0 or 1 value written to the EAX register specifies what information will be
returned by the instruction.

The processor implements the ID flag (bit 21) in the EFLAGS register. By writing and
reading this bit, software can verify that the processor will execute the CPUID
instruction.

If 0 is written to EAX, the following values are returned in EAX, EBX, ECX, and
EDX:

■ EAX: 00000001h

■ EBX: 68747541h

■ ECX: 444D4163h

■ EDX: 69746E65h

These values decode to the ASCII string “AuthenticAMD” when read in the EBX-
EDX-ECX registers in least significant byte to most significant byte order.

If 1 is written to EAX, the following value is returned in the bit locations of EAX and
EDX:

■ EAX:

• EAX[3–0] Stepping ID

• EAX[7–4] Model:

AMD-SSA5 processor (0, 0000b)
AMD5K86 processor (1, 0001b)

• EAX[11–8] Family (0101b)

• EAX[31–12] reserved

3-30 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

■ EDX:

• EDX[0] FPU on chip (1 = FPU, 0 = no FPU)

• EDX[1] Virtual Mode Extensions (1 = support, 0 = no support)

• EDX[2] I/O Breakpoints (1 = support, 0 = no support)

• EDX[3] 4-Mbyte Pages (1 = support, 0 = no support)

• EDX[4] Time Stamp Counter (1 = support, 0 = no support)

• EDX[5] K86™ Model-Specific Registers (1 = support, 0 = no support)

• EDX[6] Reserved

• EDX[7] Support of machine-check exception (1 = supported)

• EDX[8] Execution of CMPXCHG8B instruction (1 = supported)

• EDX[9] Global Paging Extension (1 = supported)

• EDX[31–10] reserved

The following pseudo-code illustrates the use of the CPUID instruction:

begin
{
if vendor string report desired

{
load EAX with 0h
execute CPUID instruction (opcode = 0Fh 0A2h)
Result:
EBX = ‘Auth’
EDX = ‘enti’
ECX = ‘cAMD’
}

else if CPU information desired
{
load EAX with 1
execute CPUID instruction (opcode = 0Fh 0A2h)
Result:
EAX[3–0] = stepping ID (contact AMD for specifics)
EAX[7–4] = Model

AMD-SSA5 processor -> 0000b
AMD5K86 processor -> 0001b

EAX[11–8] = Family
K5 CPU -> 5

EAX[31–12] = Reserved
EBX = 00000000h
ECX = 00000000h
EDX[0] = 1b (bit 0==1 indicates FPU present)
EDX[1] = 1b (bit 1==1 indicates Virtual Mode Extensions)
EDX[2] = 1b (bit 2==1 indicates I/O Breakpoints)
EDX[3] = 1b (bit 3==1 indicates 4-Mbyte pages)
EDX[4] = 1b (bit 4==1 indicates Time Stamp Counter)

New Instructions 3-31

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

EDX[5] = 1b (bit 5==1 indicates K86 Model-Specific Registers)
EDX[6] = 0b Reserved
EDX[7] = Support of machine check exception (bit 7==1 indicates support)
EDX[8] = Support of CMPXCHG8B instruction (bit 8==1 indicates support)
EDX[9] = Support of global paging extension (bit 9==1 indicates support)
EDX[31–10] = Reserved
}

}
end

3-32 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3.3.2 CMPXCHG8B

mnemonic opcode description

CMPXCHG8B r/m64 0FC7 Compare and exchange 8-byte operand

Privilege: CPL = 0
Registers Affected: EAX, EBX, ECX, EDX
Flags Affected: ZF
Exceptions Generated: Real, Virtual-8086, Protected mode—GP(0) for all standard cases. Invalid opcode if

destination is a register.
Virtual-8086 mode—Page fault

The CMPXCHG8B instruction is an 8-byte version of the 4-byte CMPXCHG instruc-
tion supported by the 486 processor. CMPXCHG8B compares a value from memory
with a value in the EDX and EAX register, as follows:

■ EDX—Upper 32 bits of compare value

■ EAX—Lower 32 bits of compare value

If the memory value matches the value in EDX and EAX, the ZF flag is set to 1 and
the 8-byte value in ECX and EBX is written to the memory location, as follows:

■ ECX—Upper 32 bits of exchange value

■ EBX—Lower 32 bits of exchange value

New Instructions 3-33

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3.3.3 MOV to and from CR4

mnemonic opcode description

MOV CR4,r32 0F22 Move to CR4 from register
MOV r32,CR4 0F20 Move to register from CR4

Privilege: CPL = 0
Registers Affected: CR4, 32-bit general-purpose register
Flags Affected: none
Exceptions Generated: Real mode—none

Virtual-8086 mode—GP(0)
Protected mode—GP(0) if CPL not = 0

These instructions read and write control register 4 (CR4).

3-34 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3.3.4 RDTSC

mnemonic opcode description

RDTSC 0F31 Read time stamp counter

Privilege: Selectable by TSD bit in CR4
Registers Affected: EAX, EDX
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—Invalid Opcode

Protected mode—GP (0) if CPL not = 0 when CR4.TSD = 1

The processor’s 64-bit time stamp counter (TSC) increments on each processor clock.
In Real or Protected mode, the counter can be read with the RDMSR instruction and
written with the WRMSR instruction when CPL = 0. However, in Protected mode the
RDTSC instruction can be used to read the counter at privilege levels higher than
CPL = 0.

The required privilege level for using the RDTSC instruction is determined by the
Time Stamp Disable (TSD) bit in CR4, as follows:

■ CPL = 0—Set the TSD bit in CR4 to 1

■ Any CPL—Clear the TSD bit in CR4 to 0

The RDTSC instruction reads the counter value into the EDX and EAX registers as
follows:

■ EDX—Upper 32 bits of TSC

■ EAX—Lower 32 bits of TSC

The following example shows how the RDTSC instruction can be used. After this
code is executed, EAX and EDX contain the time required to execute the RDTSC
instruction.

mov ecx,10h ;Time Stamp Counter Access via MSRs
mov eax,00000000h ;Initialize the Counter to zero
db 0Fh, 30h ;WRMSR
db 0Fh, 31h ;RDTSC
db 0Fh, 31h ;RDTSC

New Instructions 3-35

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3.3.5 RDMSR and WRMSR

mnemonic opcode description

RDMSR 0F32 Read model-specific register (MSR)
WRMSR 0F30 Write model-specific register (MSR)

Privilege: CPL = 0
Registers Affected: EAX, ECX, EDX
Flags Affected: none
Exceptions Generated: Real—GP(0) for unimplemented MSR address

Virtual-8086 mode—GP(0)
Protected mode—GP(0) if CPL not = 0
Protected mode—GP(0) for unimplemented MSR address

The RDMSR or WRMSR instructions can be used in Real or Protected mode to access
several 64-bit, model-specific registers (MSRs). These registers are addressed by the
value in ECX, as follows:

■ 00h: Machine-Check Address Register (MCAR). This may contain the physical
address of the last bus cycle for which the BUSCHK or PCHK signal was asserted.
For details, see Section 3.1.1 on page 3-4.

■ 01h: Machine-Check Type Register (MCTR). This contains the cycle definition of
the last bus cycle for which the BUSCHK or PCHK signal was asserted. For
details, see Section 3.1.1 on page 3-4. The processor clears the CHK bit (bit 0) in
MCTR when the register is read with the RDMSR instruction.

■ 10h: Time Stamp Counter (TSC). This contains a time value. The TSC can be ini-
tialized to any value with the WRMSR instruction, and it can be read with either
the RDMSR or RDTSC instruction. For details, see Section 3.2.3 on page 3-27.

■ 82h: Array Access Register (AAR). This contains an array pointer and test data
for testing the processor’s cache and TLB arrays. For details on the AAR, see Sec-
tion 7.4 on page 7-7.

■ 83h: Hardware Configuration Register (HWCR). This contains configuration bits
that control miscellaneous debugging functions. For details, see Section 7.1 on
page 7-3.

3-36 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The above value in ECX identifies the register to be read or written. The EDX and
EAX registers contain the MSR values to be read or written, as follows:

■ EDX—Upper 32 bits of MSR. For the AAR, this contains the array pointer and (in
contrast to all other MSRs) its contents are not altered by a RDMSR instruction.

■ EAX—Lower 32 bits of MSR. For the AAR, this contains the data to be read/writ-
ten.

All MSRs are 64 bits wide. However, the upper 32 bits of the AAR are write-only and
are not returned on a read. EDX remains unaltered, making it more convenient to
maintain the array pointer.

If an attempt is made to execute either the RDMSR or WRMSR instruction when
CPL is greater than 0, or to access an undefined model-specific register, the proces-
sor generates a general-protection exception with error code zero.

Model-specific registers, as their name implies, may or may not be implemented by
later models of the AMD5K86 processor.

New Instructions 3-37

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

3.3.6 RSM

mnemonic opcode description

RSM 0FAA Resume execution (exit System Management Mode)

Privilege: CPL = 0
Registers Affected: CS, DS, ES, FS, GS, SS, EIP, EFLAGS, LDTR,

CR3, EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—Invalid opcode if not in SMM

Protected mode—Invalid opcode if not in SMM
Protected mode—GP(0) if CPL not = 0

The RSM instruction should be the last instruction in any System Management Mode
(SMM) service routine. It restores the processor state that was saved when the SMI
interrupt was asserted. This instruction is only valid when the processor is in SMM. It
generates an invalid opcode exception at all other times.

The processor enters the Shutdown state if any of the following illegal conditions are
encountered during the execution of the RSM instruction: the SMM base value is not
aligned on a 32-Kbyte boundary, or any reserved bit of CR4 set to 1, or the PG bit is
set while the PE is cleared in CR0, or the NW bit it set while the CD bit is cleared in
CR0.

3-38 Software Environment and Extensions

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3.3.7 Illegal Instruction (Reserved Opcode)

mnemonic opcode description

(none) 0FFF Illegal instruction (reserved opcode)

Privilege: none
Registers Affected: none
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—Invalid opcode

Protected mode—Invalid opcode
Protected mode—Invalid opcode

This opcode always generates an invalid opcode exception. The opcode will not be
used in future AMD K86 processors.

Code Optimization 4-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

4
Performance

This chapter provides information to assist fast execution and
details on dispatch and execution timing for x86 instructions.
Throughout the chapter, the terms clock and cycle refer to pro-
cessor clock cycles, not bus clock (CLK) cycles.

4.1 Code Optimization

The code optimization suggestions in this section cover both
general superscalar optimization (that is, techniques common
to both the AMD5K86 and Pentium processors) and techniques
specific to the AMD5K86 processor. In general, all optimization
techniques used for the Pentium processor apply to any wide-
issue x86 processor, but wider-issue designs like the AMD5K86
processor have fewer restrictions.

4.1.1 General Superscalar Techniques
■ Short Forms—Use shorter forms of instructions to increase

the effective number of instructions that can be examined
for decoding at any one time. Use 8-bit displacements and
jump offsets where possible.

■ Simple Instructions—Use simple instructions with hard-
wired decode because they often perform more efficiently.

4-2 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Moreover, future implementations may increase the penal-
ties associated with microcoded instructions.

■ Dependencies—Spread out true dependencies to increase
the opportunities for parallel execution. Antidependencies
and output dependencies do not impact performance.

■ Memory Operands—Instructions that operate on data in
memory (load/op/store) can inhibit parallelism. Using sepa-
rate move and ALU instructions allows independent opera-
tions to be performed in parallel. On the other hand, if
there are no opportunities for parallel execution, use the
load/op/store forms to reduce the number of register spills
(storing register values in memory to free registers for
other uses) and increase code density.

■ Register Operands—Maintain frequently used values in reg-
isters or on the stack rather than in static storage.

■ Branch Prediction—Use control-flow constructs that allow
effective branch prediction. Although correctly predicted
branches have no cost, mispredicted branches incur a three
clock penalty.

■ Stack References—Use ESP for references to the stack so
that EBP remains available for general use.

■ Stack Allocation—When placing outgoing parameters on the
stack, allocate space by adjusting the stack pointer (prefer-
ably at the same time local storage is allocated on proce-
dure entry) and use moves rather than pushes. This method
of allocation allows random access to the outgoing parame-
ters so that they may be set up when they are calculated,
instead of having to be held somewhere else until the proce-
dure call. This method also uses fewer execution resources
(specifically, fewer register-file write ports when updating
ESP).

■ Shifts—Although there is only one shifter, certain shifts can
be done using other execution units: for example, shift left
1 by adding a value to itself. Use LEA index scaling to shift
left by 1, 2, or 3.

■ Data Embedded in Code—When data is embedded in the
code segment, align it in separate cache blocks from nearby
code to avoid some overhead in maintaining coherency
between the instruction and data caches.

■ Undefined Flags—Do not rely on the behavior of undefined
flag results.

Code Optimization 4-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

■ Loops—Unroll loops to get more parallelism and reduce
loop overhead even with branch prediction. Inline small
routines to avoid procedure-call overhead. In both cases,
however, consider the cost of possible increased register
usage, which might add load/store instructions for register
spilling.

■ Indexed Addressing—There is no penalty for base + index
addressing in the AMD5K86 processor. However, future
implementations may have such a penalty to achieve a
higher overall clock rate.

4.1.2 Techniques Specific to the AMD5K86 Processor
■ Jumps and Loops—JCXZ requires 1 cycle (correctly pre-

dicted) and therefore is faster than a TEST/JZ, in contrast
to the Pentium processor in which JCXZ requires 5 or 6
cycles. All forms of LOOP take 2 cycles (correctly pre-
dicted), which is also faster than the Pentium processor's 7
or 8 cycles.

■ Multiplies—Independent IMULs can be pipelined at one
per cycle with 4-cycle latency, in contrast to the Pentium
processor's serialized 9-cycle time. (MUL has the same
latency, although the implicit AX usage of MUL prevents
independent, parallel MUL operations.)

■ Dispatch Conflicts—Load-balancing (that is, selecting
instructions for parallel decode) is still important, but to a
lesser extent than on the Pentium processor. In particular,
arrange instructions to avoid execution-unit dispatching
conflicts. (See Section 4.2 on page 4-5.)

■ Instruction Prefixes—There is no penalty for instruction pre-
fixes, including combinations such as segment-size and
operand-size prefixes. This is particularly important for 16-
bit code. However, future implementations may have penal-
ties for the use of these prefixes.

■ Byte Operations—For byte operations, the high and low
bytes of AX, BX, CX, and DX are effectively independent
registers that can be operated on in parallel. For example,
reading AL does not have a dependency on an outstanding
write to AH.

■ Move and Convert—MOVZX, MOVSX, CBW, CWDE, CWD,
CDQ all take 1 cycle (2 cycles for memory-based input), in
contrast to the Pentium processor's 2 or 3 cycles.

4-4 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

■ Bit Scan—BSF and BSR take 1 cycle (2 cycles for memory-
based input), in contrast to the Pentium processor's data-
dependent 6 to 34 cycles.

■ Bit Test—BT, BTS, BTR, and BTC take 1 cycle for register-
based operands, and 2 or 3 cycles for memory-based oper-
ands with immediate bit-offset, in contrast to the Pentium
processor's 4 to 9 cycles. Register-based bit-offset forms on
the AMD5K86 processor take 5 cycles. If the semantics of
the register-based bit-offset form are desired (where the bit
offset can cover a very large bit string in memory), it is bet-
ter to emulate this with simpler instructions that can be
interleaved with independent instructions for greater paral-
lelism.

■ Floating-Point Top-of-Stack Bottleneck—The AMD5K86 pro-
cessor has a pipelined floating-point unit. Greater parallel-
ism can be achieved by using FXCH in parallel with
floating-point operations to alleviate the top-of-stack bottle-
neck, as in the Pentium processor. The AMD5K86 processor
also permits integer operations (ALU, branch, load/store) in
parallel with floating-point operations.

■ Locating Branch Targets—Performance can be sensitive to
code alignment, especially in tight loops. Locating branch
targets to the first 17 bytes of the 32-byte cache line maxi-
mizes the opportunity for parallel execution at the target.
NOPs can be added to adjust this alignment. The AMD5K86
processor executes NOPs (opcode 90h) at the rate of two per
cycle. Adding NOPs is even more effective if they execute
in parallel with existing code. Other instructions of greater
length, such as a register-based TEST instruction, can be
used as NOPs to minimize the overhead of such padding.

■ Branch Prediction—There are two branch prediction bits in
a 32-byte instruction cache line. One bit applies to the first
16 bytes of the line and the second bit applies to the second
16 bytes of the line. For effective branch prediction, code
should be generated with one branch per 16-byte line half.

■ Address-Generation Interlocks (AGIs)—The AMD5K86 proces-
sor does not suffer from the single-cycle penalty that the
486 and Pentium processors have when a result from execu-
tion or from a data-cache access is used to form a cache
address, so it is not necessary to avoid these situations.

Dispatch and Execution Timing 4-5

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

4.2 Dispatch and Execution Timing

This section documents functional unit usage for each instruc-
tion, along with relative cycle numbers for dispatch and execu-
tion of the associated ROPs for the instruction.

4.2.1 Notation

Table 4-1 on page 4-8 contains the definitions for the integer
instructions. Table 4-3 on page 4-19 contains the definitions for
the floating-point instructions. The first column in these tables
indicates the instruction mnemonic and operand types. The fol-
lowing notations are used in the AMD5K86 microprocessor doc-
umentation:

■ reg—register

■ mem—memory location

■ imm—immediate value

■ int_16—16-bit integer

■ int_32—32-bit integer

■ int_64—64-bit integer

■ real_32—32-bit floating-point number

■ real_64—64-bit floating-point number

■ real_80—80-bit floating-point number

If an operand refers to a specific register, the register name is
used (e.g., AX, DX). When the register name is of the form Exx
(e.g., EAX, ESI), the width of the register depends on the oper-
and size attribute.

4-6 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The second column contains an identifier with the following
format:

The third column in the tables indicates whether the instruc-
tion is Fastpath (F) or Microcoded (M). Fastpath and MROM
ROPs cannot both be present in a decode stage at the same
time. If a microcoded instruction appears at the head of the
byte queue without having been present in the queue on the
previous cycle, there is a one-cycle penalty for MROM entry
point generation.

Each x86 instruction is converted into one or more ROPs. The
fourth column shows the execution unit and timing for each of
the ROPs. The ROP types and corresponding execution units
are:

■ ld—load/store

■ st—load/store

■ alu—either alu0 or alu1

■ alu0—alu0 only

■ alu1—alu1 only

■ brn—branch

■ fadd—floating-point add pipe

■ fmul—floating-point multiply pipe

■ fpmv—floating-point move and compare pipe

■ fpfill—floating-point upper half

MODrm[2:0]

1 = two-byte opcode (0F xx)

MODrm[5:3]

Opcode

Addressing Mode:
 0x = register
 10 = memory without index
 1x = memory with or without index
 11 = memory with index

x_xx_xxxxxxxx_xxx_xxx

Dispatch and Execution Timing 4-7

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The x/y value following the ROP type indicates the relative dis-
patch and execution cycle of the opcode, in the absence of any
conflicts. The format is:

x/y[/z]

where:

■ x = Dispatch Cycle—The relative cycle in which the ROP is
dispatched from decode to the reservation station.

■ y = Execution Cycle—The relative cycle in which the ROP is
issued from the reservation station to the execution unit.

■ z = Result Cycle—The relative cycle in which the result is
returned on the result bus. It is indicated only when the
latency is greater than one cycle. For stores, it reflects the
relative time that a store operand is available to be for-
warded from the store buffer to a dependent load opera-
tion.

Using the time that the first ROP of an instruction is dis-
patched to an execution unit as clock 1, the x/y value indicates
in which clock each ROP is dispatched and executed relative to
clock 1. The execution order and timing does not necessarily
match the dispatch order and timing.

If any of the instructions read from or write to memory, it is
assumed that the data exists in the cache.

4-8 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

4.2.2 Integer Instructions

Table 4-1 shows the execution-unit usage for each integer
instruction, along with relative cycle numbers for dispatch and
execution of the associated ROPs for the instruction.

TABLE 4-1. Integer Instructions

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

ADD reg, reg 0_0x_000000xx_xxx_xxx F alu 1/1

ADD reg, mem 0_1x_0000001x_xxx_xxx F
ld 1/1
alu 1/2

ADD mem, reg 0_1x_0000000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

ADD AL/AX/EAX, imm 0_xx_0000010x_xxx_xxx F alu 1/1

ADD reg, imm 0_0x_100000xx_000_xxx F alu 1/1

ADD mem, imm 0_1x_100000xx_000_xxx F
ld 1/1
alu 1/2
st 1/1/3

AND reg, reg 0_0x_001000xx_xxx_xxx F alu 1/1

AND reg, mem 0_1x_0010001x_xxx_xxx F
ld 1/1
alu 1/2

AND mem, reg 0_1x_0010000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

AND AL/AX/EAX, imm 0_xx_0010010x_xxx_xxx F alu 1/1

AND reg, imm 0_0x_100000xx_100_xxx F alu 1/1

AND mem, imm 0_1x_100000xx_100_xxx F
ld 1/1
alu 1/2
st 1/1/3

BSF reg, reg 1_0x_10111100_xxx_xxx F alu1 1/1

BSF reg, mem 1_1x_10111100_xxx_xxx F
ld 1/1
alu1 1/2

BSR reg, reg 1_0x_10111101_xxx_xxx F alu1 1/1

BSR reg, mem 1_1x_10111101_xxx_xxx F
ld 1/1
alu1 1/2

BSWAP reg 1_xx_11001xxx_xxx_xxx F alu1 1/1

BT reg, reg 1_0x_10100011_xxx_xxx F alu1 1/1

Dispatch and Execution Timing 4-9

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

BT mem, reg 1_1x_10100011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5

BT reg, imm 1_0x_10111010_100_xxx F alu1 1/1

BT mem, imm 1_1x_10111010_100_xxx F
ld 1/1
alu1 1/2

BTC reg, reg 1_0x_10111011_xxx_xxx F alu1 1/1

BTC mem, reg 1_1x_10111011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTC reg, imm 1_0x_10111010_111_xxx F alu1 1/1

BTC mem, imm 1_1x_10111010_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

BTR reg, reg 1_0x_10110011_xxx_xxx F alu1 1/1

BTR mem, reg 1_1x_10110011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTR reg, imm 1_0x_10111010_110_xxx F alu1 1/1

BTR mem, imm 1_1x_10111010_110_xxx F
ld 1/1
alu1 1/2
st 1/1/3

BTS reg, reg 1_0x_10101011_xxx_xxx F alu1 1/1

BTS mem, reg 1_1x_10101011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTS reg, imm 1_0x_10111010_101_xxx F alu1 1/1

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

4-10 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

BTS mem, imm 1_1x_10111010_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

CALL near relative 0_xx_11101000_xxx_xxx M

alu 1/1
st 1/1/2
alu 1/1
brn 1/1

CALL near reg 0_0x_11111111_010_xxx M

alu 1/1
st 1/1/2
alu 1/1
brn 1/1

CALL near mem 0_1x_11111111_010_xxx M

alu 1/1
ld 1/1
st 1/1/2
alu 1/1
brn 2/2

CBW/DE 0_xx_10011000_xxx_xxx F alu1 1/1

CMP reg, reg 0_0x_001110xx_xxx_xxx F alu 1/1

CMP reg, mem 0_1x_0011101x_xxx_xxx F
ld 1/1
alu 1/2

CMP mem, reg 0_1x_0011100x_xxx_xxx F
ld 1/1
alu 1/2

CMP AL/AX/EAX, imm 0_xx_0011110x_xxx_xxx F alu 1/1

CMP reg, imm 0_0x_100000xx_111_xxx F alu 1/1

CMP mem, imm 0_1x_100000xx_111_xxx F
ld 1/1
alu 1/2

CWD/DQ 0_xx_10011001_xxx_xxx F alu1 1/1

DEC reg 0_xx_01001xxx_xxx_xxx F alu 1/1

DEC reg 0_0x_1111111x_001_xxx F alu 1/1

DEC mem 0_1x_1111111x_001_xxx F
ld 1/1
alu 1/2
st 1/1/3

IMUL AX, AL, reg 0_0x_11110110_101_xxx F
fpfill 1/1/4
fmul 1/1/4

IMUL EDX:EAX, EAX, reg 0_0x_11110111_101_xxx F
fpfill 1/1/4
fmul 1/1/4

IMUL reg, reg 1_0x_10101111_xxx_xxx F
fpfill 1/1/4
fmul 1/1/4

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

Dispatch and Execution Timing 4-11

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

IMUL reg, reg, imm 0_0x_011010x1_xxx_xxx F
fpfill 1/1/4
fmul 1/1/4

IMUL AX, AL, mem 0_1x_11110110_101_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL EDX:EAX, EAX, mem 0_1x_11110111_101_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL reg, mem 1_1x_10101111_xxx_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL reg, reg, mem 0_1x_011010x1_xxx_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

INC reg 0_xx_01000xxx_xxx_xxx F alu 1/1

INC reg 0_0x_1111111x_000_xxx F alu 1/1

INC mem 0_1x_1111111x_000_xxx F
ld 1/1
alu 1/2
st 1/1/3

Jcc short displacement 0_xx_0111xxxx_xxx_xxx F brn 1/1

Jcc long displacement 1_xx_1000xxxx_xxx_xxx F brn 1/1

JCXZ short displacement 0_xx_11100011_xxx_xxx F brn 1/1

JMP long displacement 0_xx_11101001_xxx_xxx F brn 1/1

JMP short displacement 0_xx_11101011_xxx_xxx F brn 1/1

JMP reg 0_0x_11111111_100_xxx F brn 1/1

JMP mem 0_1x_11111111_100_xxx F
ld 1/1
brn 1/2

LEA 0_1x_10001101_xxx_xxx F ld 1/1

LOOP short displacement 0_xx_11100010_xxx_xxx F
alu 1/1
brn 1/2

LOOPE short displacement 0_xx_11100001_xxx_xxx M
alu 1/1
brn 1/2

LOOPNE short displacement 0_xx_11100000_xxx_xxx M
alu 1/1
brn 1/2

MOV reg, reg 0_0x_100010xx_xxx_xxx F alu 1/1

MOV reg, mem 0_1x_1000101x_xxx_xxx F ld 1/1

MOV mem, reg 0_10_1000100x_xxx_xxx F st 1/1

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

4-12 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

MOV mem, reg

(base + index addressing)
0_11_1000100x_xxx_xxx F

ld 1/1
st 1/2/3

MOV AL/AX/EAX, mem 0_xx_1010000x_xxx_xxx F ld 1/1

MOV mem, AL/AX/EAX 0_xx_1010001x_xxx_xxx F st 1/1

MOV reg, imm 0_0x_1100011x_000_xxx F alu 1/1

MOV reg, imm 0_xx_1011xxxx_xxx_xxx F alu 1/1

MOV mem, imm 0_10_1100011x_000_xxx F
alu 1/1
st 1/1

MOV mem, imm

(base + index addressing)
0_11_1100011x_000_xxx F

alu 1/1
ld 1/1
st 1/2/3

MOVSX reg, reg 1_0x_1011111x_xxx_xxx F alu1 1/1

MOVSX reg, mem 1_1x_1011111x_xxx_xxx F
ld 1/1
alu1 1/2

MOVZX reg, reg 1_0x_1011011x_xxx_xxx F alu 1/1

MOVZX reg, mem 1_1x_1011011x_xxx_xxx F
ld 1/1
alu 1/2

MUL AX, AL, reg 0_0x_11110110_100_xxx F
fpfill 1/1/4
fmul 1/1/4

MUL EDX:EAX, EAX, reg 0_0x_11110111_100_xxx F
fpfill 1/1/4
fmul 1/1/4

MUL AX, AL, mem 0_1x_11110110_100_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

MUL EDX:EAX, EAX, mem 0_1x_11110111_100_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

NEG reg 0_0x_1111011x_011_xxx F alu 1/1

NEG mem 0_1x_1111011x_011_xxx F
ld 1/1
alu 1/2
st 1/1/3

NOP (XCHG EAX, EAX) 0_xx_10010000_xxx_xxx F alu 1/1

NOT reg 0_0x_1111011x_010_xxx F alu 1/1

NOT mem 0_1x_1111011x_010_xxx F
ld 1/1
alu 1/2
st 1/1/3

OR reg, reg 0_0x_000010xx_xxx_xxx F alu 1/1

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

Dispatch and Execution Timing 4-13

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

OR reg, mem 0_1x_0000101x_xxx_xxx F
ld 1/1
alu 1/2

OR mem, reg 0_1x_0000100x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

OR AL/AX/EAX, imm 0_xx_0000110x_xxx_xxx F alu 1/1

OR reg, imm 0_0x_100000xx_001_xxx F alu 1/1

OR mem, imm 0_1x_100000xx_001_xxx F
ld 1/1
alu 1/2
st 1/1/3

POP reg 0_xx_01011xxx_xxx_xxx F
ld 1/1
alu 1/1

POP reg 0_0x_10001111_000_xxx F
ld 1/1
alu 1/1

POP mem 0_1x_10001111_000_xxx M

ld 1/1
ld 1/1
st 2/2/3
alu 2/2

PUSH reg 0_xx_01010xxx_xxx_xxx F
st 1/1
alu 1/1/2

PUSH reg 0_0x_11111111_110_xxx F
st 1/1
alu 1/1/2

PUSH imm 0_xx_011010x0_xxx_xxx F
alu 1/1
st 1/1/2
alu 1/1

PUSH mem 0_1x_11111111_110_xxx M
ld 1/1
st 1/1/2
alu 1/1

RET near 0_xx_11000011_xxx_xxx F
ld 1/1
alu 1/1
brn 1/2

RET near imm 0_xx_11000010_xxx_xxx M

ld 1/1
alu 1/1
alu 1/2
brn 1/2

ROL reg, 1 0_0x_1101000x_000_xxx F alu1 1/1

ROL mem, 1 0_1x_1101000x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

4-14 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

ROL reg, imm 0_0x_1100000x_000_xxx F alu1 1/1

ROL mem, imm 0_1x_1100000x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROL reg, CL 0_0x_1101001x_000_xxx F alu1 1/1

ROL mem, CL 0_1x_1101001x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, 1 0_0x_1101000x_001_xxx F alu1 1/1

ROR mem, 1 0_1x_1101000x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, imm 0_0x_1100000x_001_xxx F alu1 1/1

ROR mem, imm 0_1x_1100000x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, CL 0_0x_1101001x_001_xxx F alu1 1/1

ROR mem, CL 0_1x_1101001x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, 1 0_0x_1101000x_111_xxx F alu1 1/1

SAR mem, 1 0_1x_1101000x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, mem 0_0x_1100000x_111_xxx F alu1 1/1

SAR mem, imm 0_1x_1100000x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, CL 0_0x_1101001x_111_xxx F alu1 1/1

SAR mem, CL 0_1x_1101001x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SETcc reg 1_0x_1001xxxx_xxx_xxx F brn 1/1

SETcc mem 1_1x_1001xxxx_xxx_xxx F
brn 1/1
ld 1/1
st 1/2/3

SHL reg, 1 0_0x_1101000x_1x0_xxx F alu1 1/1

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

Dispatch and Execution Timing 4-15

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

SHL mem, 1 0_1x_1101000x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHL reg, mem 0_0x_1100000x_1x0_xxx F alu1 1/1

SHL mem, imm 0_1x_1100000x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHL reg, CL 0_0x_1101001x_1x0_xxx F alu1 1/1

SHL mem, CL 0_1x_1101001x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHLD reg, reg, imm 1_0x_10100100_xxx_xxx F
alu1 1/1
alu1 2/2

SHLD mem, reg, imm 1_1x_10100100_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHLD reg, reg, CL 1_0x_10100101_xxx_xxx F
alu1 1/1
alu1 2/2

SHLD mem, reg, CL 1_1x_10100101_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHR reg, 1 0_0x_1101000x_101_xxx F alu1 1/1

SHR mem, 1 0_1x_1101000x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHR reg, mem 0_0x_1100000x_101_xxx F alu1 1/1

SHR mem, imm 0_1x_1100000x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHR reg, CL 0_0x_1101001x_101_xxx F alu1 1/1

SHR mem, CL 0_1x_1101001x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHRD reg, reg, imm 1_0x_10101100_xxx_xxx F
alu1 1/1
alu1 2/2

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

4-16 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

SHRD mem, reg, imm 1_1x_10101100_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHRD reg, reg, CL 1_0x_10101101_xxx_xxx F
alu1 1/1
alu1 2/2

SHRD mem, reg, CL 1_1x_10101101_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SUB reg, reg 0_0x_001010xx_xxx_xxx F alu 1/1

SUB reg, mem 0_1x_0010101x_xxx_xxx F
ld 1/1
alu 1/2

SUB mem, reg 0_1x_0010100x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

SUB AL/AX/EAX, imm 0_xx_0010110x_xxx_xxx F alu 1/1

SUB reg, imm 0_0x_100000xx_101_xxx F alu 1/1

SUB mem, imm 0_1x_100000xx_101_xxx F
ld 1/1
alu 1/2
st 1/1/3

TEST reg, reg 0_0x_1000010x_xxx_xxx F alu 1/1

TEST mem, reg 0_1x_1000010x_xxx_xxx F
ld 1/1
alu 1/2

TEST reg, imm 0_0x_1111011x_00x_xxx F alu 1/1

TEST AL/AX/EAX, imm 0_xx_1010100x_xxx_xxx F alu 1/1

TEST mem, imm 0_1x_1111011x_00x_xxx F
ld 1/1
alu 1/2

XCHG EAX, reg (except EAX) 0_xx_10010xxx_xxx_xxx F
alu 1/1
alu 1/1
alu 2/2

XCHG reg, reg 0_0x_1000011x_xxx_xxx F
alu 1/1
alu 1/1
alu 2/2

XCHG mem, reg 0_1x_1000011x_xxx_xxx F
ld 1/1
st 1/1/2
alu 1/2

XOR reg, reg 0_0x_001100xx_xxx_xxx F alu 1/1

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

Dispatch and Execution Timing 4-17

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

4.2.3 Integer Dot Product Example

This example illustrates an optimal code sequence for an inte-
ger dot product operation that performs multiply/accumulates
(MACs) at the rate of one every 3 cycles. In this example, the
array size is a constant. The loop is unrolled to perform sepa-
rate MAC operations in parallel for even and odd elements.
The final sum is generated outside the loop (as well as the final
iteration for odd-sized arrays).

mac_loop:
MOV EAX, [ESI][ECX*4] ;load A(i)
MOV EBX, [ESI][ECX*4]+4 ;load A(i+1)
IMUL EAX, [EDI][ECX*4] ;A(i) * B(i)
IMUL EBX, [EDI][ECX*4]+4 ;A(i+1) * B(i+1)
ADD ECX, 2 ;increment index
ADD EDX, EAX ;even sum
ADD EBP, EBX ;odd sum
CMP ECX, EVEN_ARRAY_SIZE ;loop control
JL mac_loop ;jump

;do final MAC here for odd-sized arrays

ADD EDX, EBP ;final sum

Table 4-2 shows the timing of internal operations from dis-
patch to retire of each ROP for nearly two iterations of this
loop. All memory accesses are assumed to hit in the cache.
EVEN_ARRAY_SIZE is set to 20.

XOR reg, mem 0_1x_0011001x_xxx_xxx F
ld 1/1
alu 1/2

XOR mem, reg 0_1x_0011000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

XOR AL/AX/EAX, imm 0_xx_0011010x_xxx_xxx F alu 1/1

XOR reg, imm 0_0x_100000xx_110_xxx F alu 1/1

XOR mem, imm 0_1x_100000xx_110_xxx F
ld 1/1
alu 1/2
st 1/1/3

TABLE 4-1. Integer Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcode

Execution
Unit Timing

4-18 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

TABLE 4-2. Integer Dot Product Internal Operations Timing

Instruction
Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MOV EAX,[ESI][ECX*4] L > - - - !

MOV EBX,[ESI][ECX*4]+4 L > - - - !

IMUL EAX,[EDI][ECX*4]
L > - - !

- M M M M > !

IMUL EBX,[EDI][ECX*4]+4
L > - - - !

- M M M M > !

ADD ECX,2 A > - - - !

ADD EDX,EAX - - - A > !

ADD EBP,EBX - - - A > !

CMP ECX,20 - - - A > !

JL LOOP - - - - B > !

MOV EAX,[ESI][ECX*4] L > - - - !

MOV EBX,[ESI][ECX*4]+4 L > - - - !

IMUL EAX,[EDI][ECX*4]
L > - - !

- M M M M > !

IMUL EAX,[EDI][ECX*4]+4
L > - - - !

- M M M M >

Notes:
L— load execute
M— multiply execute
A— ALU execute
B— branch execute
>— result
!— retire (update real state)
- — preceding execute: waiting in the reservation station

Dispatch and Execution Timing 4-19

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

4.2.4 Floating-Point Instructions

Floating-point ROPs are always dispatched in pairs to the FPU
reservation station. The first ROP conveys the lower halves of
the A and B operands, and it always has the fpfill ROP type.
The second ROP conveys the upper halves of the operands, as
well as the numeric opcode. Data from both ROPs is merged in
the reservation station and must be converted into an internal
floating-point format before it can be issued to the add pipe
(fadd), multiply pipe (fmul), or detect pipe (fmv). It takes one
cycle to perform the conversion, and this delay is incurred
whenever the source of the data is the register file or one of
the other functional units (e.g., load/store, ALU). If data is
being forwarded from the FPU itself, however, no format con-
version is required and operands are fast-forwarded from the
back end of a pipe to the front of any other pipe without the
one-cycle delay.

The add/subtract/reverse FPU latencies assume that cancella-
tion does not occur in the adder/subtractor. If cancellation
does occur, an extra cycle is required to normalize the result.

Table 4-3 shows the execution-unit usage for each floating-
point instruction, along with relative cycle numbers for dis-
patch and execution of the associated ROPs for the instruction.

TABLE 4-3. Floating-Point Instructions

Instruction Mnemonic Opcode Format
Fastpath or
Microcoded

Execution
Unit Timing

FABS 0_0x_11011001_100_xxx F
fpfill 1/2/4
fmv 1/2/4

FADD ST, ST(i) 0_0x_11011000_000_xxx F
fpfill 1/2/5
fadd 1/2/5

FADD ST(i), ST 0_0x_11011000_000_xxx F
fpfill 1/2/5
fadd 1/2/5

FADD real_32 0_1x_11011000_000_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FADD real_64 0_1x_11011100_000_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7

4-20 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FADDP ST(i), ST 0_0x_11011110_000_xxx F
fpfill 1/2/5
fadd 1/2/5

FCHS 0_0x_11011001_100_xxx F
fpfill 1/2/4
fchs 1/2/4

FCOM ST(i) 0_0x_11011x00_010_xxx F
fpfill 1/2/4
fcmpst 1/2/4

FCOM real_32 0_1x_11011000_010_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FCOM real_64 0_1x_11011100_010_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fadd 1/4/6

FCOMP ST(i) 0_0x_11011x00_011_xxx F
fpfill 1/2/4
fmv 1/2/4
alu 1/1

FCOMP real_32 0_1x_11011000_011_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FCOMP real_64 0_1x_11011100_011_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fadd 1/4/6

FCOMPP 0_0x_11011110_011_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1/2

FDECSTP 0_0x_11011001_110_xxx M
alu 1/1/2
alu 1/1/2

FIADD int_16 0_1x_11011110_000_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FIADD int_32 0_1x_11011010_000_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

TABLE 4-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcoded

Execution
Unit Timing

Dispatch and Execution Timing 4-21

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FICOM int_16 0_1x_11011110_010_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOM int_32 0_1x_11011010_010_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOMP int_16 0_1x_11011110_011_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOMP int_32 0_1x_11011010_011_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FILD int_16 0_1x_11011111_000_xxx F
ld 1/1
fpfill 1/3/7
fadd 1/3/7

FILD int_32 0_1x_11011011_000_xxx F
ld 1/1
fpfill 1/3/7
fadd 1/3/7

FILD int_64 0_1x_11011111_101_xxx M

ld 1/1
ld 1/2
fpfill 1/4/8
fadd 1/4/8

FIMUL int_16 0_1x_11011110_001_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/11
fmul 2/7/11

FIMUL int_32 0_1x_11011010_001_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/11
fmul 2/7/11

TABLE 4-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcoded

Execution
Unit Timing

4-22 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIST int_16 0_1x_11011111_010_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FIST int_32 0_1x_11011011_010_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_16 0_1x_11011111_011_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_32 0_1x_11011011_011_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_64 0_1x_11011111_111_xxx M

ld 1/1
ld 1/2
fpfill 1/2/5
fadd 1/2/5
st 2/3/6
st 2/4/7

FISUB int_16 0_1x_11011110_100_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FISUB int_32 0_1x_11011010_100_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FISUBR int_16 0_1x_11011110_101_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

TABLE 4-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcoded

Execution
Unit Timing

Dispatch and Execution Timing 4-23

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FISUBR int_32 0_1x_11011010_101_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FLD real_32 0_1x_11011001_000_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FLD real_64 0_1x_11011101_000_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fmv 1/4/6

FLD real_80 0_1x_11011011_101_xxx M

ld 1/1
ld 1/2
fpfill 1/6/8
fmv 1/6/8

FLD ST(i) 0_0x_11011001_000_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FMUL ST, ST(i) 0_0x_11011000_001_xxx F
fpfill 1/2/8
fmul 1/2/8

FMUL ST(i), ST 0_0x_11011100_001_xxx F
fpfill 1/2/8
fmul 1/2/8

FMUL real_32 0_1x_11011000_001_xxx F
ld 1/1
fpfill 1/3/7
fmul 1/3/7

FMUL real_64 0_1x_11011100_001_xxx M

ld 1/1
ld 1/2
fpfill 1/4/10
fmul 1/4/10

FMULP ST, ST(i) 0_0x_11011110_001_xxx F
fpfill 1/2/8
fmul 1/2/8

FMULP ST(i), ST 0_0x_11011110_001_xxx F
fpfill 1/2/8
fmul 1/2/8

FNOP 0_0x_11011001_010_xxx F
alu 1/1/2
alu 1/1/2

FRNDINT 0_0x_11011001_111_xxx F
fpfill 1/2/9
fadd 1/2/9

TABLE 4-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcoded

Execution
Unit Timing

4-24 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FSCALE 0_0x_11011001_111_xxx F
fpfill 1/2/8
fadd 1/2/8

FST real_32 0_1x_11011001_010_xxx M

ld 1/1
fpfill 1/2/4
fmv 1/2/4
st 1/2/5

FST ST(i) 0_0x_11011101_010_xxx F
fpfill 1/2/4
fmv 1/2/4

FSTP real_32 0_1x_11011001_011_xxx M

ld 1/1
fpfill 1/2/4
fmv 1/2/4
st 1/2/5

FSTP real_64 0_1x_11011101_011_xxx M

ld 1/1
ld 1/2
fpfill 1/2/4
fmv 1/2/4
st 2/3/5
st 2/4/6

FSTP real_80 0_1x_11011011_111_xxx M

ld 1/1
ld 1/2
fpfill 1/2/4
fmv 1/2/4
st 2/3/5
st 2/4/6

FSTP ST(i) 0_0x_11011x01_011_xxx F
fpfill 1/2/4
fmv 1/2/4

FSUB ST, ST(i) 0_0x_11011000_100_xxx F
fpfill 1/2/5
fadd 1/2/5

FSUB ST(i), ST 0_0x_11011100_100_xxx F
fpfill 1/2/5
fadd 1/2/5

FSUB real_32 0_1x_11011000_100_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FSUB real_64 0_1x_11011100_100_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7

FSUBP ST(i), ST 0_0x_11011110_100_xxx F
fpfill 1/2/5
fadd 1/2/5

TABLE 4-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcoded

Execution
Unit Timing

Dispatch and Execution Timing 4-25

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FSUBR ST, ST(i) 0_0x_11011000_101_xxx F
fpfill 1/2/5
fadd 1/2/5

FSUBR ST(i), ST 0_0x_11011100_101_xxx F
fpfill 1/2/5
fadd 1/2/5

FSUBR real_32 0_1x_11011000_101_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FSUBR real_64 0_1x_11011100_101_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7

FSUBRP ST(i), ST 0_0x_11011110_101_xxx F
fpfill 1/2/5
fadd 1/2/5

FTST 0_0x_11011001_100_xxx F
fpfill 1/2/4
fmv 1/2/4

FUCOM ST(i) 0_0x_11011101_100_xxx F
fpfill 1/2/4
fmv 1/2/4

FUCOMP ST(i) 0_0x_11011101_101_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FUCOMPP 0_0x_11011010_101_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FWAIT 0_xx_10011011_xxx_xxx F alu 1/1

FXAM 0_0x_11011001_100_xxx F
fpfill 1/2/4
fmv 1/2/4

FXCH ST(i) 0_0x_11011001_001_xxx F brn 1/1

FXTRACT 0_0x_11011001_110_xxx M

fpfill 1/2/4
fmv 1/2/4
fpfill 2/3/11
fadd 2/3/11
fpfill 3/4/6
fmv 3/4/6

TABLE 4-3. Floating-Point Instructions (continued)

Instruction Mnemonic Opcode Format
Fastpath or
Microcoded

Execution
Unit Timing

4-26 Performance

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5
Bus Interface

This chapter describes two closely related subjects, bus signals
(Sections 5.1 and 5.2) and the bus-cycle protocols implemented
with those signals (Sections 5.3 and 5.4). These sections
describe only the architectural characteristics and functions of
the signals and bus cycles. The processor data sheet defines
the setup and hold times for signals.

Throughout this chapter, unless otherwise stated, the term
clock refers to bus-clock (CLK) cycles, not processor-clock
cycles. The term cycle refers to bus cycles not clock cycles. The
terms asserted and negated mean that a signal is sampled
asserted or sampled negated by its target on the signal’s active
(typically rising) clock edge.

5-2 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.1 Signal Overview

The signals on the AMD5K86 processor are compatible with the
comparable signals on the Pentium (735\90, 815\100) processor
296-pin socket. Appendix A gives a complete list of hardware
and software issues relating to this compatibility. The follow-
ing figures and tables summarize the characteristics and
behavior of the AMD5K86 processor’s signals:

■ Figure 5-1 (Signal Groups) summarizes the processor’s sig-
nals, showing the functional groups to which each signal
belongs (the same figure appears in the introduction to this
manual).

■ Table 5-1 (Summary of Signal Characteristics) shows each
signal’s I/O type, when it is sampled, driven, and floated,
and its internal resistor (if any).

■ Table 5-2 on page 5-9 (Conditions for Driving and Sampling
Signals) shows the states and bus cycles during which the
processor effectively drives or samples each signal.

■ Table 5-3 on page 5-17 (Summary of Interrupts and Excep-
tions) shows the priority and characteristics of interrupts
and exceptions.

Signal Overview 5-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-1. Signal Groups

A20M
A31–A3
AP
ADS
ADSC
APCHK
BE7–BE0

AHOLD
BOFF
BREQ
HLDA
HOLD

D/C
EWBE
LOCK
M/IO
NA
SCYC
W/R

CACHE
KEN
PCD
PWT
WB/WT

Clock

Bus
Arbitration

CLK BF

FRCMC IERR TCK TDI TDO TMS TRST

BRDY
BRDYC

D63–D0
DP7–DP0

PCHK
PEN

EADS
HIT

HITM
INV

FERR
IGNNE

BUSCHK
FLUSH

INIT
INTR
NMI

PRDY
R/S

RESET
SMI

SMIACT
STPCLK

Test and Debug

Data
and
Data
Parity

Inquire
Cycles

Floating-Point
Errors

External
Interrupts,
Interrupt
Acknowledge,
and Reset

Address
and

Address
Parity

Cycle
Definition

and
Control

Cache
Control

AMD5K86
Processor

5-4 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.1.1 Signal Characteristics

TABLE 5-1. Summary of Signal Characteristics

Signal Type
Sampled (Input) or
Asserted (Output)2

Internal
Resistor Floated3

A20M1 I Every clock.

A31–A3 I/O

Output: From ADS until last expected
BRDY of the bus cycle.

Input: Same clock as EADS. A4–A3 are dis-
abled for input.

AHOLD +1,
BOFF +1 or
HLDA

ADS O First clock of bus cycle.
BOFF +1 or
HLDA

ADSC O First clock of bus cycle.
BOFF +1 or
HLDA

AHOLD I Every clock.

AP I/O (same as A31–A3)
AHOLD +1,
BOFF +1 or
HLDA

APCHK O Two clocks after EADS, for one clock.

BE7–BE0 O
From ADS until the last expected BRDY of
the bus cycle.

BOFF +1 or
HLDA

BF I Falling edge of RESET. pullup

BOFF I Every clock.

BRDY I
Every clock, from one clock after ADS until
the last expected BRDY of the bus cycle.

BRDYC I (same as BRDY) pullup

BREQ O

First clock of every bus cycle (same as
ADS), cache store, cache-tag recovery, and
aliased cache load. Asserted continuously
while processor is held off bus and needs
access to continue.

BUSCHK I
Every BRDY. Recognized at the next
instruction boundary.

pullup

CACHE O
From ADS until the last expected BRDY of
the bus cycle. Driven for all reads; only
driven for writes during writebacks.

BOFF +1 or
HLDA

Notes:
1. Can be driven asynchronously or synchronously.
2. The term clock means bus clock (CLK). “+n” means n CLKs later.
3. “+n” means n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH

at RESET).

Signal Overview 5-5

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

CLK I Always.

D/C O
From ADS until the last expected BRDY of
the bus cycle.

BOFF +1 or
HLDA

D63–D0 I/O

Output (single transfer): From one clock
after ADS until BRDY.

Output (burst transfer): From one clock after
ADS until the first BRDY, and thereafter
from one clock after each BRDY until the
next BRDY.

Input: Every BRDY.

BOFF +1 or
HLDA

DP7–DP0 I/O (same as D63–D0)
BOFF +1 or
HLDA

EADS I

Every clock while AHOLD, BOFF or HLDA
is asserted, beginning two clocks after the
assertion of AHOLD, two clocks after the
assertion of BOFF, or one clock after the
assertion of HLDA; except while the proces-
sor drives A31–A3, while it asserts HITM,
and one clock after EADS.

EWBE I
With BRDY of external write cycles and in
every clock thereafter until EWBE is
asserted.

FERR O Every clock.

FLUSH1 I

Every clock. Falling-edge-triggered. Recog-
nized at next instruction boundary.
Acknowledged with Flush-Acknowledge spe-
cial bus cycle.

FRCMC1 I Every clock in which RESET is asserted.

HIT O
Every clock. Changes state two clocks after
EADS and retains that state until two clocks
after next EADS.

HITM O
Every clock. Changes state two clocks after
EADS and retains that state until one clock
after the last BRDY of writeback.

TABLE 5-1. Summary of Signal Characteristics (continued)

Signal Type
Sampled (Input) or
Asserted (Output)2

Internal
Resistor Floated3

Notes:
1. Can be driven asynchronously or synchronously.
2. The term clock means bus clock (CLK). “+n” means n CLKs later.
3. “+n” means n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH

at RESET).

5-6 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

HLDA O

From two clocks after last BRDY of an in-
progress bus cycle, or two clocks after
HOLD, whichever comes last, until two
clocks after HOLD is negated.

HOLD I Every clock. Acknowledged with HLDA.

IERR O
Every clock, in the Functional-Redundancy
Checking mode.

IGNNE1 I Every clock.

INIT1 I
Every clock. Rising-edge-triggered. Recog-
nized at next instruction boundary.

INTR1 I
Every clock. Level-sensitive. Recognized at
next instruction boundary. Acknowledged
with an interrupt acknowledge operation.

INV I Every EADS.

KEN I
First BRDY or NA of bus cycle, whichever
comes first. Recognized only during read
cycles.

LOCK O

From ADS until last expected BRDY of the
bus cycle. Negated for one clock (dead
cycle) between sequential locked opera-
tions.

BOFF +1 or
HLDA

M/IO O
From ADS until last expected BRDY of the
bus cycle.

BOFF +1 or
HLDA

NA I

From one clock after ADS until the first
expected BRDY of a bus cycle. The only
function of NA is to validate KEN or WB/
WT in place of BRDY.

NMI1 I
Every clock. Rising-edge-triggered. Recog-
nized at next instruction boundary.

PCD O
From ADS until last expected BRDY of the
bus cycle.

BOFF +1 or
HLDA

PCHK O Two clocks after every BRDY of read cycles.

PEN I
Every BRDY of read cycles, and second
BRDY of interrupt acknowledge operation.

TABLE 5-1. Summary of Signal Characteristics (continued)

Signal Type
Sampled (Input) or
Asserted (Output)2

Internal
Resistor Floated3

Notes:
1. Can be driven asynchronously or synchronously.
2. The term clock means bus clock (CLK). “+n” means n CLKs later.
3. “+n” means n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH

at RESET).

Signal Overview 5-7

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

PRDY O

Every clock, in response to R/S. Asserted at
instruction boundary after R/S is sampled
Low. Negated in the clock after R/S is sam-
pled High.

PWT O
From ADS until last expected BRDY of the
bus cycle.

BOFF +1 or
HLDA

R/S1 I
Every clock. Level-sensitive. Recognized at
next instruction boundary. Acknowledged
with PRDY.

pullup

RESET1 I
Every clock. Recognized at next instruction
boundary.

SCYC O
From ADS until last expected BRDY of the
bus cycle.

BOFF +1 or
HLDA

SMI1 I
Every clock. Falling-edge-triggered. Recog-
nized at next instruction boundary.
Acknowledged with SMIACT.

pullup

SMIACT O

From one clock after the last expected
BRDY of the bus cycle, while EWBE is
asserted, until the return from SMM inter-
rupt handler.

STPCLK1 I
Every clock. Level-sensitive. Recognized at
next instruction boundary. Acknowledged
with Stop Grant special bus cycle.

pullup

TCK I Always. pullup

TDI I
Every rising TCK edge during the shift_IR
and shift_DR states.

pullup

TDO O
Every falling TCK edge during the shift_IR
and shift_DR states.

While not in
shift_IR or
shift_DR
state.

TMS I Every rising TCK edge. pullup

TRST I Always sampled asynchronously. pullup

TABLE 5-1. Summary of Signal Characteristics (continued)

Signal Type
Sampled (Input) or
Asserted (Output)2

Internal
Resistor Floated3

Notes:
1. Can be driven asynchronously or synchronously.
2. The term clock means bus clock (CLK). “+n” means n CLKs later.
3. “+n” means n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH

at RESET).

5-8 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.1.2 Conditions for Driving and Sampling Signals

Table 5-2 shows the processor states, signal states, and bus
cycles during which the processor can drive or sample each sig-
nal. The table indicates when signals can be driven or sampled
so that their state has some practical (meaningful) effect on
the state of the processor or on the bus cycle being driven or
sampled. In Table 5-2, shading indicates signals that are mean-
ingfully driven or sampled. Signals that are not shaded are not
driven or sampled or are not meaningful. For details on how
each signal behaves, see Section 5.2 starting on page 5-18.

W/R O
From ADS until last expected BRDY of the
bus cycle.

BOFF +1 or
HLDA

WB/WT I
First BRDY or NA of bus cycle, whichever
comes first.

TABLE 5-1. Summary of Signal Characteristics (continued)

Signal Type
Sampled (Input) or
Asserted (Output)2

Internal
Resistor Floated3

Notes:
1. Can be driven asynchronously or synchronously.
2. The term clock means bus clock (CLK). “+n” means n CLKs later.
3. “+n” means n CLKs after the named signal is sampled active. All outputs and bidirectionals are floated during the float test (FLUSH

at RESET).

Signal Overview 5-9

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

TABLE 5-2. Conditions for Driving and Sampling Signals

Signal

Conditions under which signals are meaningfully driven or sampled

Bus Cycles or Cache Accesses38 Arbitration States and Modes8 Reset,
Debug

M
em

or
y

Re
ad

s14

M
em

or
y

W
rit

es
14

Ca
ch

e
Hi

ts
39

In
qu

ire
 C

yc
le

s3

I/O
 C

yc
le

s

Lo
ck

ed
 C

yc
le

s

Sp
ec

ia
l C

yc
le

s

In
te

rr
up

t A
ck

no
w

.

AH
O

LD
 A

ct
iv

e

BO
FF

 A
ct

iv
e

HL
DA

 A
ct

iv
e

Sh
ut

do
w

n33

Ha
lt

St
op

 G
ra

nt

St
op

 C
lo

ck

SM
IA

CT
 A

ct
iv

e

RE
SE

T
Ac

tiv
e

IN
IT

 A
ct

iv
e

PR
DY

 A
ct

iv
e

Bus Arbitration

AHOLD I 23 —

BOFF I —

BREQ O 38

HLDA O 39 35 —

HOLD I 35

Address and Address Parity

A20M I 10 10 10 10 10 10 10 10 10

A31–A32 I/O 44 19 19 7 4 4 3 3 3

AP I/O 38 7 4 4 3 3 3

ADS O 38 37 3 3 3 3

ADSC O 38 37 3 3 3 3

APCHK O 7 3 3 3 3 3 3 3 3

BE7–BE0 38 37 16 3 3 3

Cycle Definition and Control

D/C O 38 37 16 3 3 3

EWBE I 37 26 26 3 3 3

LOCK O 38 1 — 16

M/IO O 38 37 16 3 3 3

NA18 I 18 18 18 16 18

SCYC O 13 13 13 13 13

W/R O 38 37 16 3 3 3

5-10 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Cache Control

CACHE O 38 37 25 25 25 25 16 3 3 3 21

KEN42 I 16 21

PCD O 38 16 3 3 3 21

PWT O 38 16 3 3 3 15

WB/WT I 38 16 15

Data and Data Parity

BRDY I 38 37 16 3 3 3

BRDYC I 38 37 16 3 3 3

D63–D0 I/O 38 37 16 3 3 3

DP7–DP0 I/O 38 37 16 3 3 3

PCHK42 O 16

PEN42 I 16

Inquire Cycles

EADS7 I 43 43 43 43 1 43 43

HIT O 1

HITM O 1

INV I 43 43 43 43 1 43 43

Floating-Point Errors

FERR O

IGNNE I

TABLE 5-2. Conditions for Driving and Sampling Signals (continued)

Signal

Conditions under which signals are meaningfully driven or sampled

Bus Cycles or Cache Accesses38 Arbitration States and Modes8 Reset,
Debug

M
em

or
y

Re
ad

s14

M
em

or
y

W
rit

es
14

Ca
ch

e
Hi

ts
39

In
qu

ire
 C

yc
le

s3

I/O
 C

yc
le

s

Lo
ck

ed
 C

yc
le

s

Sp
ec

ia
l C

yc
le

s

In
te

rr
up

t A
ck

no
w

.

AH
O

LD
 A

ct
iv

e

BO
FF

 A
ct

iv
e

HL
DA

 A
ct

iv
e

Sh
ut

do
w

n33

Ha
lt

St
op

 G
ra

nt

St
op

 C
lo

ck

SM
IA

CT
 A

ct
iv

e

RE
SE

T
Ac

tiv
e

IN
IT

 A
ct

iv
e

PR
DY

 A
ct

iv
e

Signal Overview 5-11

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

External Interrupts, Interrupt Acknowledgments, and Reset

BUSCHK29 I 38 29 16 3 12 12

FLUSH27 I 41 41 41 41 12

INIT27 I 30 30 30 30 12 —

INTR5, 28 I 40 40 40 40

NMI27 I 12 9

PRDY O —

R/S28 I 31

RESET I 30 30 30 30 — 17

SMI27 I 12 22

SMIACT O — 32

STPCLK28 I 34 34 34 34 24

Test and Debug

FRCMC I

IERR O 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

PRDY O See “External Interrupts, Interrupt Acknowledgments, and Reset”

R/S I See “External Interrupts, Interrupt Acknowledgments, and Reset”

TCK I

TDI I

TDO O

TMS I

TRST I

Bus and Processor Clock

BF I 11

CLK I 11

TABLE 5-2. Conditions for Driving and Sampling Signals (continued)

Signal

Conditions under which signals are meaningfully driven or sampled

Bus Cycles or Cache Accesses38 Arbitration States and Modes8 Reset,
Debug

M
em

or
y

Re
ad

s14

M
em

or
y

W
rit

es
14

Ca
ch

e
Hi

ts
39

In
qu

ire
 C

yc
le

s3

I/O
 C

yc
le

s

Lo
ck

ed
 C

yc
le

s

Sp
ec

ia
l C

yc
le

s

In
te

rr
up

t A
ck

no
w

.

AH
O

LD
 A

ct
iv

e

BO
FF

 A
ct

iv
e

HL
DA

 A
ct

iv
e

Sh
ut

do
w

n33

Ha
lt

St
op

 G
ra

nt

St
op

 C
lo

ck

SM
IA

CT
 A

ct
iv

e

RE
SE

T
Ac

tiv
e

IN
IT

 A
ct

iv
e

PR
DY

 A
ct

iv
e

5-12 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Notes to Table 5-2:
– Shading indicates signals that are meaningfully driven or sampled. Signals that are not shaded are not driven or sampled or are not

meaningful.
1. Inquire cycles can be driven while LOCK is asserted if AHOLD is used to obtain the bus for the inquire cycle. Inquire cycles never hit

locations involved in a locked operation because the processor invalidates such locations, if found in the cache, before doing the
locked operation. If the inquire cycle hits a modified location that is different than the one involved in the locked operation, the write-
back may be done in the middle of the locked operation, between the two locked cycles, with LOCK asserted during the writeback.

2. A31–A5 are I/O signals (input for inquire cycles), but A4–A3 are output only.
3. Sampled or driven during inquire cycles or resulting writebacks.
4. Sampled only during inquire cycles, but not driven for resulting writebacks.
5. If enabled by the IF flag in EFLAGS.
6. Output only.
7. If AHOLD is held asserted throughout an inquire cycle and writeback, system logic must use its latched copy of the inquire cycle

address for the writeback. By contrast, if system logic always negates AHOLD before the writeback, the processor will drive the write-
back address when it asserts ADS for the writeback.

8. Signal recognition and assertion applies to the actual state, not to the special cycle driven by the processor prior to entering the state.
9. During SMM, NMI is recognized only in response to an IRET instruction. After the return from SMM (RSM instruction), a latched NMI

will be serviced.
10. A20M is recognized only in Real mode, and masking is applied to linear addresses. Because the caches are linearly tagged, assertion

of A20M during Real mode affects all program-generated cache addresses, including cache-line fills (caused by read misses), cache
writethroughs (caused by write misses or write hits to lines in the shared state) and cache accesses that occur while the processor
does not control the bus. However, A20M does not mask inquire cycle addresses or any writebacks caused by inquire cycles; these
addresses are looked up only in the physical tags, which are not masked by A20M.

11. CLK can be driven with a different frequency, and/or BF can be changed when CLK is restarted on exit from the Stop-Clock state.
12. Latched or (in the case of BUSCHK) otherwise sampled and held, pending exit from this state.
13. SCYC may be asserted during any misaligned memory or I/O cycle, but it is only meaningful during locked cycles.
14. Includes Protected, Virtual-8086 and Real modes, unless otherwise indicated.
15. During the Hardware Debug Tool (HDT) mode, this signal is only meaningful for cache write misses (PWT=0 and WB/WT=1 tran-

sition a shared line to an exclusive line). The signal is not meaningful during cache read misses in the HDT mode, because the caches
are never filled during the HDT mode.

16. Sampled or driven only during the completion of a cycle the processor initiated before the assertion of AHOLD, or for writebacks due
to inquire cycles.

17. Different than the Pentium processor. The system hardware or software must exit the HDT before asserting RESET.
18. NA acts as an assertion of BRDY, but only when sampled with KEN or WB/WT. It is valid only for memory reads and writes, including

writethroughs during cache hits to shared or exclusive lines. NA has no effect on any signals other than KEN and WB/WT, and
addresses are not pipelined when NA is asserted.

19. If an inquire cycle occurs during a Branch-Trace Message special cycle, the branch address information driven by the processor on
A31–A3 can be overwritten by the inquiring bus master. In such cases, external logic should latch A31–A3 when ADS is asserted (i.e.,
before asserting AHOLD, BOFF or HOLD).

20. Used only to report errors in Functional Redundancy Checking mode and driven only by the Checker.
21. This signal is not meaningful during cache read misses in the HDT mode, because the caches are never filled in the HDT mode.
22. The debugger can force the processor into SMM, but the processor will not recognize SMI until PRDY is negated. If SMI is asserted

while PRDY is asserted, it is latched and acted upon after PRDY is negated.
23. During AHOLD, the system must prevent other bus masters from locking the same address that the AMD5K86 processor is locking.
24. Different than the Pentium processor, which ignores STPCLK in this state.
25. Always negated (non-cacheable).
26. EWBE is not checked prior to running special bus cycles or interrupt acknowledge operations. All special bus cycles (which have

W/R=1) and interrupt acknowledge operations (which have W/R=0) serialize the pipeline and do not require EWBE for this purpose.
27. An edge-triggered interrupt. It is latched when sampled and recognized on an instruction boundary.
28. A level-sensitive interrupt. It must be held asserted until recognized, which occurs on an instruction boundary.
29. Unlike other level-sensitive interrupts, BUSCHK is sampled with every BRDY and it does not need to be held asserted after sampling.

If BUSCHK is asserted during a locked operation or inquire cycle, an enabled machine-check exception will not be acted upon until
after the last BRDY of the locked operation or after a writeback caused by an inquire cycle.

Signal Overview 5-13

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

30. The first code fetch after register initialization during INIT or RESET does not occur if AHOLD, BOFF, or HLDA is asserted.
31. PRDY is asserted either when R/S goes Low or when the Test Access Port (TAP) instruction, USEHDT, is executed. In the latter case,

R/S is watched for a Low-to-High transition, which takes the processor out of the Hardware Debug Tool (HDT) mode.
32. The processor can go into the Hardware Debug Tool (HDT) mode from within SMM either when R/S goes Low or when the TAP

instruction, USEHDT, is executed (the instruction causes the processor to assert PRDY). In this case, SMIACT can be toggled with HDT
commands. SMIACT selects main or SMM memory.

33. Only NMI, INIT, RESET, and SMI gets the processor out of the Shutdown state.
34. The processor cannot drive the Stop-Grant special bus cycle.
35. HOLD is sampled, but the only practical effect is to assert HLDA.
36. Writebacks or writethroughs cannot occur when HLDA is asserted.
37. During writebacks.
38. During writebacks or writethroughs.
39. Including writebacks and writethroughs (except for HLDA).
40. The processor cannot drive the interrupt acknowledge cycle, and therefore cannot obtain the interrupt vector.
41. If FLUSH is asserted while AHOLD, BOFF, or HLDA is asserted, the outcome of the flush depends on whether the flush causes write-

backs of modified lines. If no writebacks are needed, the processor invalidates all lines but does not perform the FLUSH-acknowledge
cycle until the processor gets control of the bus again. If a writeback is needed, the processor stops at that writeback without having
invalidated any lines, waits until control of the bus is returned to the processor, then completes the FLUSH operation.

42. Driven or sampled only during reads.
43. Sampled after AHOLD or HLDA is asserted, and while the processor completes an in-progress bus cycle.
44. Without ADS during cache accesses, with ADS during cache writethroughs and writebacks.

5-14 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.1.3 External Interrupts

Interrupts and exceptions are often differentiated in x86 docu-
mentation as follows: an interrupt is the assertion of a hard-
ware input signal and an exception is a software event, such as
an invalid opcode or execution of an INTn instruction. In some
documents, however, the terms interrupt and exception apply to
both hardware and software events, which are then differenti-
ated as external or hardware interrupts or exceptions, and inter-
nal or software interrupts or exceptions, respectively. In still
other x86 documents, the term software interrupt means an
INTn instruction that vectors to an interrupt gate. Moreover,
some of the old rules commonly applied to interrupts do not
apply to the external interrupts defined for the Pentium pro-
cessor: for example, not all external interrupts alter the pro-
gram flow, and not all are acknowledged by the processor.

Because these variations in definition are potentially confus-
ing, this document assumes only the following definitions:

■ Interrupt—The assertion (or in the case of R/S, the driving
Low) of one of eight hardware input signals (BUSCHK, R/S,
FLUSH, SMI, INIT, NMI, INTR, or STPCLK).

■ Exception—Any software-initiated event that accesses an
entry in the Real mode interrupt vector table (IVT) or in
the Protected mode interrupt descriptor table (IDT).

■ External Interrupt—Same as interrupt.

■ Software Interrupt—In Real mode, any INTn instruction. In
Protected mode, any INTn instruction that vectors to an
IDT entry that is an interrupt gate, or that is a task gate
which references a TSS with the interrupt flag (IF) cleared
in its EFLAGS image. (INTn instructions that vector to a
trap gate are not considered software interrupts because
the processor does not clear IF in such cases.)

All interrupts are recognized on the next instruction retire-
ment boundary. Most exceptions are recognized at the point in
the instruction where they occur, and are not usually deferred
to the end of the instruction. All interrupts and exceptions
invalidate (flush) the pipeline when recognized (as defined in
Section 2.2.5 on page 2-12). All exceptions are handled pre-
cisely so that the instruction causing an exception can be
restarted after the exception is serviced.

Signal Overview 5-15

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The processor writes (pushes) its current state onto the stack
prior to entering the service routine for exceptions and for
BUSCHK, SMI, NMI, and INTR interrupts. Because of these
writes, the state of EWBE affects the processor’s response to
such interrupts and exceptions. For example, if the processor
has initiated a write cycle prior to the next instruction retire-
ment boundary on which such an interrupt would otherwise be
recognized, the bus cycle completes but the processor does not
respond to the interrupt until it samples EWBE asserted so
that it can write to the stack. Also, if the processor has written
to the stack once and EWBE is not asserted thereafter, the pro-
cessor does not write again and its response to an interrupt is
halted. A negated EWBE also pauses the processor’s response
to FLUSH if the flush causes writebacks. However, during
interrupts that do not write to memory (R/S, FLUSH if there
are no writebacks, INIT, and STPCLK), the state of EWBE has
no affect on the processor’s recognition of or response to such
interrupts.

The processor performs an interrupt by executing a microcode
routine. In this sense, an interrupt acts like the execution of a
complex instruction and the microcode routine has a comple-
tion boundary that acts like an instruction retirement bound-
ary. In effect, the microcode routine for an interrupt begins
executing when the interrupt is recognized on an instruction
boundary and it finishes executing when an associated inter-
rupt service routine begins or the hardware aspect of the inter-
rupt function otherwise completes. For example, the FLUSH
interrupt completes when all modified cache lines have been
written back to memory and all cache lines are invalidated,
whereas the R/S interrupt completes when the processor
negates PRDY, and the STPCLK interrupt completes when the
processor drives the Stop Grant special bus cycle.

The four edge-triggered interrupts (FLUSH, SMI, INIT, and
NMI) are latched on one of the edges of CLK when they are
asserted and are recognized later, even if they are negated
before being recognized. The four level-sensitive interrupts
(BUSCHK, R/S, INTR, and STPCLK) must be held asserted
until recognized, except that the BUSCHK interrupt is sampled
and latched with every BRDY.

The processor disables the recognition of interrupts or excep-
tions in the following cases:

5-16 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

■ INTR Interrupts—The processor disables INTR interrupts
during all software interrupts (that is, INTn instructions that
vector through interrupt gates or through task gates that
reference a TSS with IF cleared in its EFLAGS image). It
does this by automatically clearing the IF bit in EFLAGS. If
system logic can leave the INTR signal asserted after the
INTR service routine is entered, the interrupt vector
returned by system logic during the Interrupt acknowledge
operation must be for an interrupt gate or for a task gate
that references a TSS with IF cleared. (Software may set
the IF flag again upon entering the service routine.)

■ NMI Interrupts—The processor disables NMI interrupts
until the IRET of the NMI service routine.

■ Debug Breakpoints—After a debug breakpoint exception,
the debug service routine can disable debug exceptions for
one instruction by setting the resume flag (RF) in EFLAGS
to 1 to prevent restarted instructions from generating
another debug fault.

Table 5-3 shows the characteristics of interrupts and excep-
tions and the priority with which the processor recognizes
them. The term priority means two things here:

■ Simultaneous Interrupts—The order in which a single inter-
rupt or exception is selected for recognition if all occur
simultaneously, and

■ Latched Interrupts—The order in which latched interrupts
(any of the four edge-triggered interrupts, FLUSH, SMI,
INIT, or NMI) are recognized when the processor becomes
interruptible again after it recognizes a prior interrupt or
exception. By contrast, the term priority does not mean the
order in which level-sensitive interrupts (BUSCHK, R/S,
INTR, and STPCLK) are nested if one such interrupt occurs
while the processor is responding to another interrupt.

Interrupts are themselves interruptible only if they have a
software component, such as a service routine. All other inter-
rupts complete their action before the processor recognizes
another interrupt. Lower-priority interruptible interrupts can
be interrupted by higher-priority interrupts or exceptions at
their point of interruptibility, as shown in the right-most column
of Table 5-3, which is always on an instruction boundary.

Signal Overview 5-17

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The processor recognizes BOFF, HOLD, and AHOLD while any
interrupt signal is asserted, and these signals will intervene
with their normal timing in the handling of any interrupt or
exception. The interrupt or exception continues from where it
left off after the intervening signal is negated. For example, if
BOFF is asserted while a FLUSH operation is writing modified

TABLE 5-3. Summary of Interrupts and Exceptions

Priority Description Type Sampling5 Vector1 Acknowledgment Point of Interruptibility6

1

INTn instruc-
tions and all
other software
exceptions

exceptions internal 0-255 none Entry to service routine.

2 BUSCHK interrupt level-sensitive 182 none Entry to service routine.2

3 R/S interrupt level-sensitive none PRDY Negation of PRDY.

4 FLUSH interrupt edge-triggered4 none
FLUSH-Acknowl-
edge special
bus cycle

BRDY of FLUSH Acknowl-
edge bus cycle.

5 SMI interrupt edge-triggered4 SMM3 SMIACT
Entry to SMM service
routine.7

6 INIT interrupt edge-triggered4 BIOS none Completion of
initialization.

7 NMI interrupt edge-triggered4 2 none
NMI interrupts: IRET from
service routine. All others:
Entry to service routine.

8 INTR interrupt level-sensitive 0-255
Interrupt acknowl-
edge special
bus cycle

Entry to service routine.

9 STPCLK interrupt level-sensitive none Stop-Grant
special bus cycle Negation of STPCLK.

Notes:
1. For interrupts with vectors, the processor saves its state prior to accessing service routine and changing program flow. Interrupts

without vectors do not change program flow; instead, they simply pause program flow for the duration of the interrupt function
and then return to where they left off.

2. If the machine check enable (MCE) bit in CR4 is set to 1.
3. The entry point for the SMI interrupt handler is at offset 8000h from the SMM Base Address.
4. Only the edge-triggered interrupts are latched when asserted. All interrupts are recognized at the next instruction retirement

boundary.
5. If a bus cycle is in progress, EWBE must be asserted before the interrupt is recognized.
6. For external interrupts (most exceptions, by contrast, are recognized when they occur). External interrupts are recognized at

instruction boundaries. MOV or POP instructions that load SS delay interruptibility until after the next instruction, thus allowing both
SS and the corresponding SP to load.

7. After assertion of SMI, subsequent assertions of SMI are masked so as to prevent recursive entry into SMM. Other exceptions or
interrupts (except INIT and NMI), however, will intervene in the SMM service routine.

5-18 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

cache lines back to memory, an in-progress writeback will be
aborted, but it will be restarted after BOFF is negated, and the
FLUSH operation will then continue; any writebacks that com-
pleted before BOFF was asserted are not affected.

5.1.4 Bus Signal Compatibility with Pentium Processor

The differences in bus signal functions between the AMD5K86
and Pentium processors are described in Section A.1 on page
A-2.

5.2 Signal Descriptions

The following pages describe each signal in detail. The bus
cycle protocols that use these signals are described in Section
5.3 on page 5-137. Chapter 6 describes the context in which the
SMM and clock-control signals are used, and Chapter 7 does
the same for the test signals.

Signal Descriptions 5-19

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.1 A20M (Address Bit 20 Mask)

Input

Summary Assertion of A20M causes the processor to clear bit 20 of the
A31–A3 address bus to 0 prior to accessing the cache or mem-
ory in Real mode. The clearing of address bit 20 bit maps
addresses above 1 Mbyte to addresses below 1 Mbyte.

Sampled The processor samples A20M in every clock during Real mode.
System logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously driven setup
and hold times).

A20M is sampled only in Real mode during memory cycles
(including cache writethroughs and writebacks) and locked
cycles; or while AHOLD, BOFF, HLDA, RESET, INIT, or PRDY
is asserted. A20M is not sampled when the processor is operat-
ing in Protected mode, Virtual-8086 mode or SMM; during I/O
cycles, inquire cycles, special bus cycles, or interrupt acknowl-
edge operations; or while the processor is in the Shutdown,
Halt, Stop Grant, or Stop Clock states.

Details The action of clearing A20 so that addresses above 1MB wrap-
around to addresses below 1 Mbyte simulates the behavior of
the 8086 processor, allowing the processor to run software
designed for DOS. A20M should only be asserted when the pro-
cessor runs in Real mode.

A20M should not be asserted during the first code fetch follow-
ing the RESET or INIT cycles because the masking of bit 20
leads to a fetch from an incorrect address. The BIOS and the
operating system alone are responsible for controlling the
state of A20M. After RESET or INIT, they do this by writing to
an external I/O port. (I/O ports 60 and 64h, or port 92h, or regis-
ter-shadowed versions of those ports are commonly used to
control the state of A20M.) The instruction pipeline is serial-
ized by virtue of writing to the I/O port, thus allowing time for
the A20M signal to assert before the next memory or cache
access. Advanced operating systems that do not run under
DOS, such as Windows NT™ and OS/2 operating systems, do
not use Real mode and never assert A20M.

Programs running in Virtual-8086 mode run as tasks under Pro-
tected mode. The effect of A20M for these Virtual-8086-mode
tasks is normally emulated by the operating system using the

5-20 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

paging mechanism. The operating system writes page table
entries so as to map all pages required for the Virtual-8086
mode task to addresses below 1 Mbyte.

Unlike the Pentium processor, the AMD5K86 processor ignores
A20M in Protected mode, Virtual-8086 mode, and System Man-
agement Mode (SMM). The Pentium processor masks the A20
bit if A20M is asserted in Protected mode or Virtual-8086
mode, even though this behavior is undefined and may change
in future processors. The AMD5K86 processor simply ignores
A20M except when the processor runs in Real mode.

The AMD5K86 processor applies A20M masking to its linear
cache tags, through which all programs access the caches.
Thus, assertion of A20M affects all program-generated cache
addresses, including cache-line fills (caused by read misses),
cache writethroughs (caused by write misses or write hits to
lines in the shared state), and cache accesses that occur while
the processor does not control the bus. However, A20M does
not mask writebacks or invalidations caused by internal
snoops, inquire cycles, the FLUSH signal, or the WBINVD
instruction—such addresses are looked up only in the physical
tags, which are not masked by A20M. (See Table 2-3 on page 2-
20 for details.) By contrast, the Pentium processor applies
masking only to physical addresses. This difference of masking
linear vs. physical addresses is not visible to software because
linear and physical addresses are identical in Real mode.

However, the AMD5K86 processor’s A20M linear address mask-
ing can affect debug software differently than such masking on
the Pentium processor. With A20M asserted, the AMD5K86
processor does breakpoint matching (debug-register compari-
sons) on masked addresses, whereas the Pentium processor
does them on unmasked addresses.

Signal Descriptions 5-21

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.2 A31–A3 (Address Bus)

A31–A5 Bidirectional, A4–A3 Output

Summary A31–A3 carries the physical address for the current bus cycle.
The processor drives addresses on A31–A3 during memory and
I/O cycles, and cycle definition information during special bus
cycles. It samples addresses on A31–A5 during inquire cycles.

Driven, Sampled, and
Floated

As Outputs: The processor drives A31–A3 from the clock in
which ADS is asserted until the last expected BRDY of the bus
cycle. The processor also drives A31–A3 without ADS during
cache accesses. A31–A3 are driven during memory cycles
(including cache writethroughs and writebacks), I/O cycles,
inquire cycle writebacks, locked cycles, special bus cycles, and
interrupt acknowledge operations in the normal operating
modes (Real, Protected, and Virtual-8086) and in SMM, and
while PRDY is asserted. During special bus cycles and inter-
rupt acknowledge operations, the address signals simply sup-
port bus cycle definition; they do not provide an address.

The processor floats A31–A3 as outputs, one clock after system
logic asserts AHOLD or BOFF, and in the same clock that the
processor asserts HLDA.

As Inputs: While AHOLD, BOFF, or HLDA is asserted, the pro-
cessor samples A31–A5 in the same clock as EADS. A31–A5 are
sampled in this way during inquire cycles in the normal operat-
ing modes (Real, Protected, and Virtual-8086) and in SMM,
including during the Shutdown, Halt, and Stop Grant states,
and while PRDY is asserted. The A4–A3 signals are not inter-
preted as part of the inquire cycle address but must neverthe-
less be driven at valid 0 or 1 logic levels. The processor may
again drive A31–A3 in the next clock after system logic negates
AHOLD, BOFF, or HOLD.

A31–A3 are never driven or sampled in the Stop Clock state, or
while RESET or INIT is asserted.

Details During processor-initiated bus cycles, the processor drives
A31–A3 with ADS to define an eight-byte (quadword) starting
address in physical memory or I/O space. System logic inter-
prets these addresses in conjunction with the BE7–BE0 and
cycle definition (D/C, M/IO, and W/R) outputs, and with the
A20M input. The processor drives BE7–BE0 to define the valid-
ity of each of the eight bytes accessed by the quadword

5-22 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

addresses on A31–A3. In this manner, BE7–BE0 replace the
function of address bits A2–A0, which do not exist.

When the processor drives burst reads it drives the starting
address on A31–A3 (which is the address of the quadword that
contains the instruction or data required) and it drives BE7–
BE0 to specify the required bytes in that quadword. (This
addressing method is unlike the 486 processor, which drives
separate addresses for each transfer of a burst.) System logic
must determine the remaining three quadword addresses as
shown in Table 5-4.

When the processor drives burst writes (writebacks), it drives
the starting address on A31–A3 in the same manner as for
burst reads, but it enables all eight bytes (BE7–BE0 = 00h)
because it always starts writebacks at 32-byte aligned
addresses (address of the first quadword is xxxx_xx00h). Thus,
A4–A3 are always 00b for writebacks.

System logic can derive memory and I/O port select signals, as
well as memory row and address signals, from A31–A3 and the
cycle definition signals. Although the processor does not inter-
pret the A4–A3 signals as part of an inquire cycle address, sys-
tem logic must drive them at valid logic levels (0 or 1) during
inquire cycles, and the processor drives both bits to 0 during
writebacks.

While system logic has obtained control of the address bus via
assertion of AHOLD, BOFF or HOLD, the A31–A5 signals
become inputs and define a 32-byte, cache-line, inquire cycle
address in conjunction with the following signals:

TABLE 5-4. Address-Generation Sequence During Bursts

Address Driven By
Processor on A31–A3

Address of Subsequent Quadwords1
Generated By System Logic

Quadword 1 Quadword 2 Quadword 3 Quadword 4

...00h ...08h ...10h ...18h

...08h ...00h ...18h ...10h

...10h ...18h ...00h ...08h

...18h ...10h ...08h ...00h
Notes:

1. quadword = 8 bytes

Signal Descriptions 5-23

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

■ The EADS input defines the beginning of the inquire cycle
and validates the input address on A31–A5.

■ The AP input carries the even parity bit for the A31–A5
address.

■ The APCHK output indicates a parity error for the inquire
cycle address on A31–A5.

During such system-initiated inquire cycles, A31–A5 defines
the starting physical address of a 32-byte cache line that is
being snooped in the processor’s on-chip instruction and data
caches. The processor interprets the addresses using its physi-
cal address tags, in conjunction with the A20M input, in paral-
lel with the processor’s own cache accesses that use its linear
cache tags.

If an inquire cycle hits a modified line in the processor’s data
cache, the processor performs a writeback. During this write-
back, A31–A5 defines a 32-byte starting address in physical
memory. This address is identified by the processor’s assertion
of ADS, just as with all other processor-initiated bus cycles,
and the address must be interpreted by system logic in con-
junction with the A20M input.

The processor does not control the complete bus during a
writeback caused by an inquire cycle; in these cases, AHOLD,
BOFF or HOLD may still be asserted. However, in addition to
writebacks caused by inquire cycle hits, writebacks can also
occur while the processor controls the bus (by processor-initi-
ated cache-line replacements, internal snoops for self-modify-
ing code, or execution of the WBINVD instruction) or by
system-initiated assertion of the FLUSH signal.

If AHOLD is held asserted throughout an inquire cycle and
writeback, system logic must latch the inquire cycle address
when it asserts EADS. This is required so that, if the inquire
cycle hits a modified line (HITM asserted), the processor need
not drive the writeback address when it asserts ADS for the
writeback, which can occur as early as two clocks after the pro-
cessor asserts HITM. Instead, system logic must use its latched
copy of the inquire cycle address for the writeback. By con-
trast, if system logic always negates AHOLD before the write-
back, the processor will drive the writeback address when it
asserts ADS for the writeback, and system logic need not
retain a copy of the inquire cycle address.

5-24 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

If an inquire cycle occurs while the processor is driving a
Branch-Trace Message special bus cycle, the branch address
information driven by the processor on A31–A3 can be over-
written by the inquiring bus master. In such cases, system logic
should latch A31–A3 when ADS is asserted (that is, before
asserting AHOLD, BOFF or HOLD).

At the falling edge of RESET, the states of BRDYC and BUS-
CHK control the drive strength on A21–A3 (not including A31–
A22). The drive strength is weak for all states of BRDYC and
BUSCHK except BRDYC and BUSCHK both Low (0), in which
case the drive strength is strong. The A31–A22 signals use the
weak drive strength at all times. See the data sheet for details.

Unlike the Pentium processor, pipelined address-data transac-
tions are not supported by the AMD5K86 processor. Thus, the
NA input has no effect on the processor’s address bus. NA only
affects the sampling time for the KEN and WB/WT inputs.

Signal Descriptions 5-25

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.3 ADS (Address Strobe)

Output

Summary The processor asserts ADS to specify the beginning of a mem-
ory or I/O bus cycle, or a cache writeback to memory. The sig-
nal validates the processor’s address and cycle definition
signals and it can be used by system logic to enable accesses to
memory and I/O.

Driven and Floated During processor-initiated bus cycles, the processor asserts
ADS for one clock at the beginning of each bus cycle. During
writeback cycles, whether initiated by the processor or by sys-
tem logic, the processor asserts ADS for one clock as early as
two clocks after the processor asserts HITM. The processor can
assert ADS as early as two clocks after the assertion of BRDY
(thus allowing one idle or dead clock between any two bus
cycles), and one clock after the negation of AHOLD, BOFF, or
HLDA.

ADS is driven during memory cycles (including cache
writethroughs and writebacks), I/O cycles, locked cycles, spe-
cial bus cycles, and interrupt acknowledge operations in the
normal operating modes (Real, Protected, and Virtual-8086)
and in SMM, or while PRDY is asserted. While AHOLD is
asserted, and during the Shutdown, Halt, and Stop Grant
states, ADS is driven only for writebacks that result from
inquire cycle hits. ADS is not driven during the Stop Clock
state, or while BOFF, HLDA, RESET, or INIT is asserted.

The processor floats ADS one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

Details The processor initiates bus cycles for the purpose of reading
and writing memory or I/O, and for writebacks of modified
cache lines. While the processor controls the bus, or while it is
writing back a modified cache line (whether in control of the
bus or not), ADS defines the beginning of the cycle. In the
clock that it asserts ADS, the processor also begins driving the
several signals that define and qualify the bus cycle, including
A31–A3 (or A31–A5 for writebacks), AP, the cycle definition
signals (D/C, M/IO and W/R), BE7–BE0, BREQ, A20M, CACHE,
LOCK, PCD, PWT and SCYC.

If ADS initiates a cache line fill and all four ways of the cache
that could accommodate the incoming line are filled with valid

5-26 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

entries, the processor uses a pseudo-random algorithm to
select a line for replacement. If the selected line is cached in
the modified state, it must be written back to memory. In this
case, the order of events is:

1. Complete the burst read, placing the incoming cache line in
the processor’s line fill buffer.

2. Write the modified line back to memory.

3. Fill the vacated cache line with the contents of the line
buffer.

Processor-initiated writebacks can occur during cache line
replacement, internal snoops for self-modifying code, and exe-
cution of the WBINVD instruction. System-initiated writebacks
can occur during inquire cycle hits to modified cache lines
(while AHOLD, BOFF or HLDA is asserted) or by assertion of
the FLUSH input. The processor drives writebacks by assert-
ing ADS and either reusing the inquire cycle address (if
AHOLD is held asserted throughout the writeback) or driving
the address itself (if AHOLD is negated for the writeback, or if
BOFF or HOLD was used to obtain the bus).

During an inquire cycle that hits a modified cache line, the
processor asserts ADS as soon as two clocks after asserting
HITM, regardless of whether AHOLD is asserted or negated.
By contrast, if BOFF or HLDA is asserted instead of AHOLD
during an inquire hit, the processor postpones the writeback
until after BOFF or HLDA is negated.

During special bus cycles and interrupt acknowledge opera-
tions, the processor drives ADS to validate A31–A3, BE7–BE0
and the cycle definition signals. This use of ADS and A31–A3
simply serves to identify the type of special bus cycle, rather
than to address a location in memory or I/O space.

The processor asserts BREQ in the same clock that it asserts
ADS, although BREQ is also asserted at other times (see the
description of BREQ on page 5-46). The processor negates ADS
for one clock between any contiguous bus operations, such as
between a single-transfer I/O write and a burst read from mem-
ory, or between two burst reads. The same is true for contigu-
ous sequences of locked operations (sequences of locked bus
cycle pairs). System logic can use the negation of ADS between
contiguous bus operations to make the bus available to other

Signal Descriptions 5-27

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

bus masters, thus intervening temporarily in the processor’s
sequential operations.

If BOFF is asserted while ADS is asserted, ADS remains Low
(floats asserted). System logic must consider this when inter-
preting the state of ADS after negating BOFF. In the next clock
after BOFF is negated, the processor may reassert ADS to
restart a cycle if a cycle was aborted by the assertion of BOFF.

If system logic begins driving an inquire cycle by asserting
AHOLD or BOFF and then asserting EADS with the inquire
address, and the processor is driving a Branch-Trace Message
special bus cycle at the same time that AHOLD or BOFF is
asserted, the branch address information driven by the proces-
sor on A31–A3 can be overwritten by the inquiring bus master.
In such cases, system logic should latch A31–A3 when ADS is
asserted, before asserting AHOLD or BOFF.

At the falling edge of RESET, the states of BRDYC and BUS-
CHK control the drive strength on the A21–A3 (not including
A31–A22), ADS, HITM, and W/R signals. The drive strength is
weak for all states of BRDYC and BUSCHK except BRDYC and
BUSCHK both Low (0), in which case the drive strength is
strong. The A31–A22 signals use the weak drive strength at all
times. See the data sheet for details.

5-28 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.4 ADSC (Address Strobe Copy)

Output

Summary ADSC is an identical copy of ADS. In systems that would other-
wise place large capacitive loads on ADS, the ADSC output can
be used instead of ADS to distribute loads, thereby increasing
response time.

Driven and Floated ADSC is driven and floated with the same timing as ADS. See
the description of ADS on page 5-25.

Details See the description of ADS on page 5-25.

Signal Descriptions 5-29

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.5 AHOLD (Address Hold)

Input

Summary System logic can assert AHOLD to obtain control of the bidi-
rectional A31–A3 address bus and AP address parity signal to
drive one or more inquire cycles to the processor.

Sampled The processor samples AHOLD in every clock and responds by
floating the bidirectional A31–A3 and AP signals one clock
after AHOLD is asserted.

AHOLD is sampled during memory cycles (including cache
writethroughs and writebacks), I/O cycles, inquire cycles,
locked cycles, writebacks, special bus cycles, and interrupt
acknowledge operations in the normal operating modes (Real,
Protected, and Virtual-8086) and in SMM; in the Shutdown,
Halt, or Stop Grant states; or while RESET, INIT or PRDY is
asserted. AHOLD is sampled but not effective when BOFF or
HLDA is asserted. AHOLD is not sampled during the Stop
Clock state.

Details The sole function of AHOLD is to support inquire cycles. There
are three methods by which system logic can obtain control of
the address bus to drive an inquire cycle: AHOLD, BOFF, or
HOLD. AHOLD obtains control only of the address bus and
allows another master or system logic to drive only inquire
cycles, whereas BOFF and HOLD obtain control of the full bus
(address and data), allowing another master to drive not only
inquire cycles but also read and write cycles. AHOLD and
HOLD both permit an in-progress bus cycle to complete, but a
writeback can occur while AHOLD is asserted, whereas a pend-
ing writeback during the assertion of BOFF or HOLD occurs
after the BOFF or HOLD is negated.

AHOLD is useful primarily in systems with multiple buses and
multiple bus masters, where operations can occur on the sepa-
rate buses independently and in parallel. This configuration
occurs, for example, if the processor shares a bus only with a
look-through L2 cache, and other caching masters work in par-
allel on another bus that is isolated from the processor by sys-
tem logic. In such designs, system logic may drive separate
AHOLD signals to each bus master in the system. For details
on how AHOLD can be driven in such configurations, see Sec-
tion 6.2.5 on page 6-14.

5-30 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

When the processor releases control of A31–A3 and AP in
response to AHOLD, the processor still maintains control of
the remaining signals on the bus so that it can (a) finish driving
a bus cycle it may have begun before AHOLD was asserted,
and (b) drive a writeback if an inquire cycle hits a modified
line in the processor’s data cache. However, the processor can-
not begin driving a new bus cycle while AHOLD is asserted
because system logic controls the address bus.

System logic drives inquire cycles with the EADS, A31–A5, AP
and INV inputs. A typical sequence for an inquire cycle is:
assert AHOLD; two clocks later, assert EADS and drive A31–
A5 and INV; wait two clocks for the processor to assert HITM
and/or HIT. If HITM remains negated two clocks after EADS is
asserted, the inquire cycle ends. If HITM is asserted at that
time, the processor begins driving a four-transfer burst write-
back as early as two clocks after asserting HITM.

AHOLD can be negated as early as one clock after EADS is
asserted. If system logic holds AHOLD asserted throughout an
inquire cycle and any required writeback, system logic must
latch the inquire cycle address when it asserts EADS. This is
required so that, if the inquire cycle hits a modified line
(HITM asserted), the address used for the writeback need not
be driven by the processor when the processor asserts ADS for
the writeback. Instead, A31–A5 remains an input-only bus and
system logic must use its latched copy of the inquire cycle
address. By contrast, if system logic always negates AHOLD
before the writeback, the processor drives the writeback
address when it asserts ADS for the writeback, and system
logic need not retain a copy of the inquire cycle address. While
the processor drives the writeback address, it drives only the
beginning address for the 32-byte transfer on A31–A5. System
logic must determine the remaining addresses as shown in
Table 5-4 on page 5-22.

If system logic asserts AHOLD while the processor is driving a
locked cycle, the system must not allow accesses by other bus
masters to lock the same address that the processor is locking.

While AHOLD is asserted (after the completion of any in-
progress bus cycle by the processor), the processor continues
to execute out of its instruction and data caches, if possible. If
the processor can no longer operate out of its caches, it holds

Signal Descriptions 5-31

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

BREQ asserted continuously. For a list of signals recognized
while AHOLD is asserted, see Table 5-2 on page 5-9.

The processor may again drive its own cycles with ADS as early
as one clock after system logic negates AHOLD. Before negat-
ing AHOLD, however, system logic may need to arbitrate
among potential contenders for the address bus so as to avoid
deadlock contention for the bus.

Ground-bounce spikes can be avoided by following two rules
with respect to AHOLD:

■ Do not negate AHOLD in the same clock that BRDY is
asserted during a write cycle.

■ Do not negate AHOLD in the same clock that ADS is
asserted during a writeback.

These restrictions must be observed because the processor’s 32
address drivers turn on almost immediately after AHOLD is
negated. If the processor is driving data with BRDY on the 64-
bit data bus at the same time, the processor then drives 96 bits
simultaneously and ground-bounce spikes can occur.

5-32 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.6 AP (Address Parity)

Bidirectional

Summary AP carries the even parity bit for cache line addresses driven
and sampled on A31–A5. The processor drives AP when it
drives an address for a read or write cycle. The processor sam-
ples AP during inquire cycles in order to drive the APCHK out-
put.

Driven, Sampled, and
Floated

AP is driven, sampled, and floated with the same timing as
A31–A3. See the description of A31–A3 on page 5-21.

Details The bit value driven on AP is counted with the bit values
driven on A31–A5 to determine address parity. If the total
number of 1 bits is even on AP and A31–A5, the address is con-
sidered free of error (thus the term even parity). If the total
number of 1 bits is odd, the address is considered to have an
error. The bit values driven on A4–A3 are not counted during
the parity checking.

In addition to generating and checking address parity, the pro-
cessor also generates and checks data parity using the DP7–
DP0 and PCHK signals. See page 5-58 and 5-102 for details.
Unlike the handling of PCHK, however, the processor does not
capture the faulty address in a register when it asserts
APCHK. System logic must handle the error externally. Typi-
cal PC systems assert an interrupt signal such as NMI after a
parity error is detected.

Systems that do not implement address parity generation and
checking should tie AP either High or Low and ignore the
APCHK output.

Signal Descriptions 5-33

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.7 APCHK (Address Parity Check)

Output

Summary The processor asserts APCHK if an even-parity error occurs on
A31–A5 during an inquire cycle.

Driven The processor drives APCHK for one clock, two clocks after
system logic asserts EADS with an inquire address.

APCHK is driven under the same conditions in which EADS is
sampled: See the description of EADS on page 5-59.

Details System logic can use APCHK to initiate a remedy for the error.
Typical PC systems assert an interrupt such as NMI if a parity
error is detected.

See the description of parity error determination for the AP
input on page 5-32. Systems that do not implement address par-
ity checking should ignore APCHK.

5-34 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.8 BE7–BE0 (Byte Enables)

Output

Summary The eight bits of BE7–BE0, when cleared to 0, validate the
eight bytes driven on D63–D0. In this way, BE7–BE0 expands
on the function of address bits A2–A0, which do not exist on
the A31–A3 address bus. BE7–BE0 also help differentiate the
special bus cycles.

Driven and Floated The processor drives BE7–BE0 from the clock in which ADS is
asserted until the last expected BRDY of the bus cycle. The
processor floats BE7–BE0 one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

BE7–BE0 is driven with the address and cycle definition out-
puts (D/C, M/IO and W/R) during memory cycles (including
cache writethroughs and writebacks), I/O cycles, locked cycles,
special bus cycles, and interrupt acknowledge operations in
the normal operating modes (Real, Protected, and Virtual-
8086) and in SMM, or while PRDY is asserted. While AHOLD is
asserted, BE7–BE0 is driven only to complete a bus cycle that
had been initiated before AHOLD was asserted, or for inquire
cycle writebacks. During the Shutdown, Halt, and Stop Grant
states, BE7–BE0 is driven only for inquire cycle writebacks.
BE7–BE0 is not driven during the Stop Clock state, or while
BOFF, HLDA, RESET, or INIT is asserted.

Details Table 5-5 shows the relationship between BE7–BE0, D63–D0,
DP7–DP0, and the effective relationship with A2–A0, the non-
existent low address bits. The BE7–BE0 signals expand on the
function of A2–A0; BE7–BE0 allow the processor to address
any or all eight bytes indicated by A31–A3, whereas A2–A0, if
they existed, would only address one of eight bytes.

During single-transfer memory cycles and all I/O cycles, the
processor drives BE7–BE0 to identify all of the bytes desired
for the transfer. System logic must return valid data in those
byte lanes of D63–D0.

During burst reads (CACHE and KEN both asserted with the
first BRDY of a memory read), the processor drives BE7–BE0
with ADS to identify the bytes of the desired instruction or
operand. The processor drives BE7–BE0 with the desired bytes
at that time because it does not yet know whether the read will
be a single-transfer or a burst—this depends on how system

Signal Descriptions 5-35

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

logic drives KEN with the first BRDY. If system logic negates
KEN, it must return as a single transfer only the bytes speci-
fied on BE7–BE0. If system logic asserts KEN, it must ignore
BE7–BE0 during all transfers of the burst and return all eight
bytes for the starting address on A31–A3. BE7–BE0 does not
change during the four transfers of the burst. (This behavior is
unlike the 486 processor, which drives BE3–BE0 separately for
each transfer of a burst.) System logic must determine the suc-
cessive quadword addresses for each transfer in a burst,
depending on the starting address, as shown in Section 5-4 on
page 5-22.

During single writes, which include cache writethroughs (1-to-
8-byte transfers with CACHE negated) the processor drives the
bits of BE7–BE0 to indicate which of the eight bytes on D63–D0
are valid. During writebacks (32-byte, four-transfer bursts with
CACHE asserted) the processor drives all bits of BE7–BE0 Low
to indicate that all eight bytes on D63–D0 are valid. Write-
backs are addressed by A31–A3 but they are always aligned to
32-byte boundaries, so A4–A3 are always 0.

The processor differentiates special bus cycles using a combi-
nation of BE7–BE0, the cycle definition (D/C, M/IO, and W/R)
outputs, and A31–A3. The values on the cycle definition signals
are the same for all special cycles; only BE7–BE0 and A31–A3
differentiate among those cycles. Table 5-6 shows the relation-

TABLE 5-5. Relation Of BE7–BE0 To Other Signals

Byte Enable
Output

Effective Address Bits1
Byte On
Data Bus

Data Parity
BitA2 A1 A0

BE7 1 1 1 D63–D56 D7

BE6 1 1 0 D55–D48 D6

BE5 1 0 1 D47–D40 D5

BE4 1 0 0 D39–D32 D4

BE3 0 1 1 D31–D24 D3

BE2 0 1 0 D23–D16 D2

BE1 0 0 1 D15–D8 D1

BE0 0 0 0 D7–D0 D0
Notes:

1. BE7–BE0 expand on the function of A2–A0 by allowing the processor to address any or all
eight bytes addressed by A31–A3.

5-36 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

ships. This function of BE7–BE0 bears no relationship to the
D63–D0 data bus. This is particularly apparent in the case of
the Branch-Trace Message special bus cycle, during which the
value of BE7–BE0 is DFh (1101_1111b) but, in contradiction to
the byte-enable bits, the four bytes on D31–D0 carry valid data
during both cycles of the operation: during the first cycle, D31–
D0 carries the EIP value of the source (branch) instruction;
during the second cycle, D31–D0 carries the EIP value of the
branch-target instruction.

Certain models of the Pentium processor implement BE7–BE5
as outputs and BE4–BE0 as bidirectional signals. On the
AMD5K86 processor, however, all eight BE7–BE0 signals are
outputs only.

TABLE 5-6. Encodings For Special Bus Cycles

BE7–BE0 A31–A3 Special Bus Cycle1 Cause

FEh ...00h Shutdown Triple fault

FDh ...00h Cache Invalidation INVD instruction

FBh ...10h Stop Grant STPCLK

FBh ...00h Halt HLT instruction

F7h ...00h
Cache Writeback and
Invalidation

WBINVD instruction

EFh ...00h FLUSH Acknowledge FLUSH

DFh ...00h Branch-Trace Message2

Bit 5 = 1 and bits 3–1 = 001 in
the Hardware Configuration
Register (HWCR). See Section
7.1 on page 7-3 for details.

Notes:
1. For all special bus cycles, D/C = 0, M/IO = 0 and W/R = 1. System logic must return BRDY in response to this cycle.
2. The message in a branch-trace message special bus cycle is different in the AMD5K86 and Pentium processors.

Signal Descriptions 5-37

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.9 BF (Bus Frequency)

Input

Summary During RESET, BF selects between a high and low multiplica-
tion factor for the frequency ratio between the processor’s
internal clock and the bus clock (CLK).

Sampled The processor samples BF only on the falling edge of RESET.
The signal assertion must be stable 10 clocks prior to its sam-
pling. BF has a weak internal pullup resistor; see the data
sheet for details.

Details Table 5-7 shows the ratios between the processor clock and the
bus clock (CLK) for the High and Low values of BF. BF may be
tied High or Low. Due to the internal pullup resistor, the lower
ratio is selected if BF is left unconnected.

TABLE 5-7. Processor-to-Bus Clock Ratios

State of BF Input Processor-Clock to Bus-Clock Ratio

BF = 1 1.5x

BF = 0 2.0x
Notes:

1. The default processor-to-clock ratios are shown in Table 5-7. Specific mod-
els of the AMD5K86 processor may implement different ratios for the High
and Low values of BF. For authorative information, see the data sheet for
each AMD5K86 processor model.

5-38 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.10 BOFF (Backoff)

Input

Summary When system logic asserts BOFF, the processor floats the bus
and continues to float it until BOFF is negated. If the processor
is driving a bus cycle when BOFF is asserted, the cycle is
aborted and restarted after BOFF is negated. The processor
does not acknowledge BOFF. While BOFF is asserted, another
bus master can drive cycles on the bus, including inquire
cycles to the processor.

Sampled The processor samples BOFF in every clock. When BOFF is
asserted, the processor floats the cycle-driving outputs on the
bus in the next clock and continues to float them until BOFF is
negated.

BOFF is sampled during memory cycles (including cache
writethroughs and writebacks), I/O cycles, inquire cycles,
locked cycles, special bus cycles, and interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086) and in SMM; in the Shutdown, Halt, or Stop
Grant states; or while AHOLD, RESET, INIT, or PRDY is
asserted. BOFF is sampled but not effective when HLDA is
asserted. BOFF is not sampled during the Stop Clock state.

Details The assertion of BOFF, like HOLD but unlike AHOLD, forces
the processor to relinquish the full address and data bus to
another bus master. The signal can be used for the following
purposes:

■ Bus Turnaround—Another bus master can assert BOFF to
the processor to obtain control of the bus, allowing the
other bus master to drive any type of bus cycles.

■ Inquire Cycles—In multi-master systems with shared mem-
ory, another bus master typically drives an inquire cycle to
the processor or its L2 cache prior to driving a read or write
cycle to any memory locations shared by both masters. Such
inquire cycles can be driven while BOFF is asserted.

■ Deadlock Resolution—When an inquire cycle by one master
hits a modified cache line in another processor, neither mas-
ter can proceed until the target of the inquire cycle gets the
bus. In such a case, system logic would back the inquiring
master off the bus by asserting BOFF to it, so that the mas-
ter with the modified line can write it back to memory.

Signal Descriptions 5-39

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

BOFF provides the fastest response of the three bus-hold
inputs. Because of its ability to help resolve deadlock prob-
lems, it is required in almost all systems with multiple-caching
masters. In such designs, system logic typically drives separate
BOFF signals to each bus master in the system. See Section
6.2.5 on page 6-14 for system configurations using BOFF.

Unlike AHOLD and HOLD, BOFF does not permit an in-
progress bus cycle to complete. It forces the processor off the
bus in the next clock, aborting any in-progress bus cycle that
the processor has begun. A writeback can occur while AHOLD
is asserted, but a pending writeback during the assertion of
BOFF or HOLD waits until after BOFF or HOLD is negated.

The processor floats the bus one clock after the assertion of
BOFF. All output and bidirectional signals used for memory or
I/O accesses are floated. Table 5-8 shows the signals floated.
The same set of signals is floated with HLDA.

The processor supports only one in-progress bus cycle, no
pending bus cycles are buffered. If the processor is driving a
bus cycle when BOFF is asserted the processor retains the data
that had been transferred up to the clock in which BOFF was
asserted but ignores the data transferred with or after BOFF
was asserted. BOFF has no effect on writes to the processor
store buffer, except to delay them. (The store buffer is situated
between the execution units and the data cache. It is used for
speculative stores prior to being written to the data cache.)

The bus master asserting or causing the assertion of BOFF
must wait two clocks after asserting BOFF before driving its
first bus cycle because the processor does not float its outputs
until one clock after the assertion of BOFF. System logic or

TABLE 5-8. Outputs Floated When BOFF is Asserted

Address and
Address Parity

Cycle
Definition

and Control

Data and
Data Parity

Cache
Control

A31–A3 D/C D63–D0 CACHE

ADS LOCK DP7–DP0 PCD

ADSC M/IO N/A PWT

AP SCYC N/A N/A

BE7–BE0 W/R N/A N/A

5-40 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

another bus master may continue asserting BOFF for as long as
it wants. The processor has no way of breaking the hold. While
the processor is backed off, it continues to execute out of its
instruction and data caches, if possible. If it can no longer
operate out of its caches, it holds BREQ asserted continuously.

As early as one clock after BOFF is negated, the processor
restarts—from the beginning—any bus cycle that was aborted
when BOFF was asserted. This is unlike BOFF on the 486 pro-
cessor, which restarts only the transfers that did not complete
when BOFF was asserted. The processor can drive another
cycle with ADS as early as two clocks after any aborted cycle
completes. This allows one idle clock (also called a dead clock)
between any two bus cycles. If BOFF was asserted when ADS
was also asserted, however, ADS remains Low (floats asserted)
after BOFF is negated. In such a case, system logic must prop-
erly interpret the state of ADS when it negates BOFF.

If BOFF is asserted during a locked operation, only the cycle(s)
aborted before their last BRDY and the cycles not yet run are
restarted after BOFF is negated. Thus, system logic must keep
track of all cycles in the locked operation that have completed
before the assertion of BOFF and must continue the locked
operation immediately after BOFF is negated, except that if a
writeback is pending when BOFF is negated, the writeback
takes precedence over the restarting of the aborted cycles in
the locked operation.

The processor responds to inquire cycles while BOFF is
asserted and drives HIT and HITM in response to such cycles.
During the BOFF-initiated inquire cycles, BOFF can be
negated as early as one clock after EADS is asserted. If HITM
is asserted, which would occur two clocks after EADS is
asserted, the writeback is performed after BOFF is negated. If
a processor cycle was aborted by the assertion of BOFF, that
cycle is restarted as soon as BOFF is negated, except that if an
inquire cycle hits a modified line while BOFF was asserted, the
writeback is driven first when BOFF is negated, before an
aborted cycle is restarted. Multiple inquire cycles are not per-
mitted to hit modified lines. The processor implements this
restriction by ignoring EADS while HITM is asserted; when
HITM is asserted, it is held asserted until the last BRDY of the
writeback.

Signal Descriptions 5-41

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

If BOFF is asserted when BUSCHK is asserted, BOFF is recog-
nized and BUSCHK is ignored. For a list of signals recognized
while BOFF is asserted, see Table 5-2 on page 5-9.

5-42 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.11 BRDY (Burst Ready)

Input

Summary For bus cycles that transfer data, system logic must assert
BRDY to indicate that it has received a data transfer on D63–
D0 during a write and to indicate that it has placed valid data
on D63–D0 during a read. Up to eight bytes of data—the width
of the D63–D0 data bus—are validated with each BRDY. For
special bus cycles, system logic must assert BRDY either to val-
idate data or as a simple handshake.

Sampled The processor samples BRDY every clock, from one clock after
ADS until the last expected BRDY of the bus cycle.

BRDY is sampled during memory cycles (including cache
writethroughs and writebacks), I/O cycles, locked cycles, spe-
cial bus cycles, and interrupt acknowledge operations in the
normal operating modes (Real, Protected, and Virtual-8086)
and in SMM, or while PRDY is asserted. While AHOLD is
asserted, BRDY is sampled only to complete a bus cycle that
had been initiated before AHOLD was asserted, or for inquire
cycle writebacks. During the Shutdown, Halt, and Stop Grant
states, BRDY is sampled only for inquire cycle writebacks.
BRDY is not sampled when the processor is not driving an
external bus cycle; or during the Stop Clock state; or while
BOFF, HLDA, RESET, or INIT is asserted.

If BRDY is asserted simultaneously with BOFF, BOFF is recog-
nized and BRDY is not, but if BRDY is asserted simultaneously
with HOLD, BRDY is recognized and the HOLD waits until the
bus cycle associated with the BRDY completes.

Details BRDY is associated with a transfer of one to eight bytes on the
D63–D0 data bus. During memory and I/O reads, the processor
samples and latches the bytes on D63–D0 and the parity bits on
DP7–DP0 that are enabled by BE7–BE0 when system logic
asserts BRDY. During memory and I/O writes, the processor
waits for system logic to return BRDY before transferring
more data on D63–D0 or before starting another bus cycle.
Delays in returning the BRDY for a transfer (and delays in
returning EWBE for a write cycle) are said to add wait states to
the transfer, although these states are nothing more than the
absence of an expected BRDY.

Signal Descriptions 5-43

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The processor samples BRDY during all types of bus cycles,
including the following:

■ Single-transfer reads

■ Single-transfer writes (including cache writethroughs)

■ Burst reads (cache line fills)

■ Burst writebacks

■ Special bus cycles

■ Interrupt acknowledge cycles

The number of BRDYs expected by the processor depends on
the type of bus cycle, as follows:

■ One BRDY for an aligned single-transfer cycle, a special
bus cycle, or each of two cycles in an interrupt acknowledge
operation. Additional BRDYs are needed for misaligned
cycles.

■ Four BRDYs, one for each data transfer in a burst cycle.
BRDY may be held asserted throughout the four transfers
of the burst.

All data transfers that are not performed as bursts are per-
formed as one or more single-transfer cycles. For write cycles,
EWBE must be asserted either with or after BRDY in order for
any further writes or certain other operations to be performed
(see the description of EWBE on page 5-63). If system logic
returns more BRDYs than the processor expects for a single-
transfer cycle or a burst cycle, the processor ignores them.

The processor samples the following inputs in the clock in
which system logic asserts BRDY:

■ D63–D0—Every BRDY, for all bus cycles.

■ DP7–DP0—Every BRDY, for all bus cycles.

■ BUSCHK—Every BRDY, for all bus cycles.

■ EWBE—Every BRDY, for write cycles.

■ KEN—First BRDY or NA, whichever occurs first, for read
cycles.

■ PEN—Every BRDY for read cycles, and second BRDY of
interrupt acknowledge operations.

■ WB/WT—First BRDY or NA, whichever occurs first, for
read and write cycles.

5-44 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The assertion of NA acts as an assertion of BRDY only when
the processor samples KEN or WB/WT.

The processor drives or asserts the following outputs relative
to the assertion of BRDY:

■ D63–D0—For single-transfer write cycles, the processor
drives data from one clock after ADS until BRDY is
returned. For burst transfers, the processor drives data
from one clock after ADS until the first BRDY is returned,
and thereafter from each BRDY until the next BRDY.

■ DP7–DP0—Same as D63–D0.

■ PCHK—Two clocks after every BRDY for writes.

In addition to the above uses of BRDY on the 486 processor,
BRDY on the AMD5K86 and Pentium processors is used for
both single-transfer and burst cycles, and it terminates special
bus cycles.

Unlike BRDY on the 486 processor, BRDY on the AMD5K86
and Pentium processors is used for both single-transfer and
burst cycles, and it terminates special bus cycles. On the 486
processor, single-transfer cycles and special bus cycles use
RDY; BRDY is used only for burst cycles. The BLAST output
on the 486 processor is not implemented on the AMD5K86 and
Pentium processors, which instead use the CACHE output to
indicate cacheability. However, unlike the 486 processor,
which can terminate a burst cycle prematurely by negating
BLAST, the AMD5K86 and Pentium processors cannot termi-
nate a burst prematurely.

Signal Descriptions 5-45

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.12 BRDYC (Burst Ready)

Input

Summary BRDYC is an identical copy of BRDY, except that BRDYC has
an internal pullup resistor whereas BRDY does not. In systems
that would otherwise place large capacitive loads on BRDY,
the BRDYC output can be used in place of BRDY to distribute
loads, thereby increasing response times.

Sampled BRDYC is sampled with the same timing as BRDY. See the
description of BRDY on page 5-42.

Details See the description of BRDY on page 5-42. Unlike BRDY,
BRDYC has an internal pullup resistor.

At the falling edge of RESET, the states of BRDYC and BUS-
CHK control the drive strength on the A21–A3 (not including
A31–A22), ADS, HITM, and W/R signals. The drive strength is
weak for all states of BRDYC and BUSCHK except when
BRDYC and BUSCHK are both Low, in which case the drive
strength is strong. The A31–A22 signals use the weak drive
strength at all times. See the data sheet for details.

5-46 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.13 BREQ (Bus Request)

Output

Summary The processor asserts BREQ to indicate that it is either driving
a cycle on the bus, performing certain types of cache accesses,
or needs access to the bus in order to continue operating.

Driven The processor asserts BREQ on the first clock of every proces-
sor-initiated bus cycle, with ADS, and in the first clock of every
cache store and cache-tag recovery. The processor asserts
BREQ continuously while it being held off the bus and can no
longer operate out of its cache.

BREQ is driven during memory cycles (including cache
writethroughs and writebacks), I/O cycles, locked cycles, spe-
cial bus cycles, and interrupt acknowledge operations in the
normal operating modes (Real, Protected, and Virtual-8086)
and in SMM; or while AHOLD, BOFF, HLDA, or PRDY is
asserted. BREQ is not driven in the Shutdown, Halt, Stop
Grant, or Stop Clock states; or while RESET or INIT is
asserted.

Details The processor observes a bus-parking protocol. It continues to
drive the bus without an arbitration sequence in the absence of
AHOLD, BOFF or HOLD. System logic can use the assertion of
BREQ to arbitrate bus access among competing bus masters. If
the processor asserts BREQ only on the first clock of a cache
access or bus cycle, system logic need not take action, whether
or not the processor is being held off the bus. If the processor
can no longer operate out of cache, it holds BREQ asserted
until system logic negates the signal that is holding it off the
bus (AHOLD, BOFF, or HOLD). One clock after the negation of
that signal, the processor drives a bus cycle with ADS.

Signal Descriptions 5-47

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.14 BUSCHK (Bus Check)

Input

Summary System logic can assert BUSCHK if it determines that the cur-
rent bus cycle has or will have any type of error. In response,
the processor stores information about the aborted bus cycle
and (optionally) generates a machine check exception. If
machine check exceptions are not enabled, the processor
attempts to continue execution after the assertion of BUSCHK.
The signal is also used to set the drive strength of the A21–A3,
ADS, HITM, and W/R signals at RESET.

Sampled The processor samples BUSCHK with every BRDY, including
the BRDYs of writeback cycles, and recognizes it at the next
instruction boundary. BUSCHK is a level-sensitive interrupt
with an internal pullup resistor. However, unlike other level-
sensitive interrupts, BUSCHK is sampled with every BRDY
and is not acknowledged.

BUSCHK is sampled during memory cycles (including cache
writethroughs and writebacks), I/O cycles, locked cycles, spe-
cial bus cycles, and interrupt acknowledge operations in the
normal operating modes (Real, Protected, and Virtual-8086)
and in SMM; or in the Shutdown, Halt, or Stop Grant states.
While AHOLD is asserted, the processor samples BUSCHK
only to complete a bus cycle that had been initiated before
AHOLD was asserted, or during writebacks that result from
inquire cycle hits. BUSCHK is not sampled when the processor
is not driving an external bus cycle; or during the Stop Clock
state; or while BOFF, HLDA, RESET, INIT, or PRDY is
asserted.

At the falling edge of RESET, the states of BRDYC and BUS-
CHK control the drive strength on the A21–A3 (not including
A31–A22), ADS, HITM, and W/R signals. The drive strength is
weak for all states of BRDYC and BUSCHK except BRDYC and
BUSCHK both Low, in which case drive strength is strong.
A31–A22 use the weak drive strength at all times. See the data
sheet for details.

BUSCHK is the highest-priority external interrupt. For details
on its relationship to other interrupts and exceptions, see Sec-
tion 5.1.3 on page 5-14 and Table 5-3 on page 5-17.

5-48 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Details Bus cycle errors such as parity can be reported to the processor
on BUSCHK if this reporting is not done on NMI. The BUSCHK
signal is not used in most PC systems, although higher-end sys-
tems may find uses for it in special situations.

Upon recognizing a BUSCHK interrupt at the instruction
boundary, the processor performs the following actions, in the
order shown:

1. Latch Cycle Information—The processor latches the physi-
cal address and cycle definition of the failed bus cycle in its
64-bit machine check address register (MCAR) and 64-bit
machine check type register (MCTR). These registers can
be read during a service routine with the RDMSR instruc-
tion (ECX = 0 for the MCTR, ECX = 1 for the MCTR). See
Section 3.3.5 on page 3-35 for details on this instruction.

2. Machine Check Exception (Optional)—If system software has
set the MCE bit in CR4 to 1, the processor waits for the last
BRDY of the failed bus cycle, then invalidates all instruc-
tions remaining in the pipeline, saves its state, and gener-
ates a machine check exception (12h).

If the MCE bit is cleared to 0, the processor continues exe-
cution with the next instruction.

After asserting BUSCHK, system logic must nevertheless
return all BRDYs that the processor expects for the type of bus
cycle that experienced the error: one BRDY for single-transfer
cycles; four BRDYs for burst cycles. If BUSCHK is asserted
during a locked operation or inquire cycle, an enabled
machine check exception will not be acted upon until after the
last BRDY of the locked operation or after a writeback caused
by an inquire cycle. If BUSCHK is asserted during the Halt or
Stop Grant state, the signal is sampled with BRDY but held
pending until after the processor exits the Halt or Stop Grant
state, at which point an enabled machine check exception will
be acted upon.

If BOFF is asserted when BUSCHK is asserted, BOFF is recog-
nized and BUSCHK is ignored. The processor does not recog-
nize BOFF or HOLD while BUSCHK is asserted, but it does
recognize AHOLD if that signal is asserted for the cycle caus-
ing the bus check. The processor latches the assertion of any
edge-triggered interrupt (FLUSH, SMI, INIT, NMI) while

Signal Descriptions 5-49

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

BUSCHK is asserted and recognizes latched interrupts in prior-
ity order when BUSCHK is negated.

The MCE bit in CR4, which enables machine check exceptions
during BUSCHK, also enables machine check exceptions dur-
ing data parity errors that are indicated on PCHK while PEN is
asserted.

5-50 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.15 CACHE (Cacheable Access)

Output

Summary The processor drives CACHE to specify that the current bus
cycle is a burst cycle. If CACHE is asserted for a read cycle, the
cycle is a four-transfer burst and fills a cache line. If CACHE is
asserted for a write cycle, the cycle is a four-transfer burst
writeback of a modified cache line. CACHE is not asserted for
writethroughs, so the signal is not asserted for all cycles involv-
ing cacheable locations.

Driven and Floated The processor drives CACHE from ADS until the last expected
BRDY of the bus cycle.

CACHE is driven during memory cycles, I/O cycles, locked
cycles, special bus cycles, and interrupt acknowledge opera-
tions in the normal operating modes (Real, Protected, and Vir-
tual-8086) and in SMM. CACHE is not driven in the Shutdown,
Halt, or Stop Grant states, except for writebacks due to inquire
cycles, and CACHE is never driven during the Stop Clock state
or while BOFF, HLDA, RESET, INIT, or PRDY is asserted.

The processor floats CACHE one clock after system logic
asserts BOFF and in the same clock that the processor asserts
HLDA.

Details The processor asserts CACHE for certain types of unlocked
memory reads, as specified by the operating system, and for all
writebacks (writes of lines cached in the M state). The asser-
tion of CACHE indicates the processor’s intent to drive the
read or write cycle as a 32-byte burst and, in the case of read
cycles, to cache the data or instructions. During reads, system
logic can use the assertion of CACHE to initiate a table lookup
of cacheable addresses. To enable caching in the processor’s
instruction or data cache, system logic must assert KEN during
the first BRDY or NA of the bus cycle, whichever comes first. If
either CACHE or KEN is negated when KEN is sampled, the
processor performs a non-cacheable, single-transfer read.

The only type of write cycle for which the processor asserts
CACHE are 32-byte writebacks of modified data. Writebacks
can be caused by (a) externally initiated inquire cycles or
FLUSH operations, (b) processor-initiated internal snoops or
cache line replacements, or (c) program-initiated WBINVD
instructions. By contrast, the processor drives writethroughs

Signal Descriptions 5-51

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

during write hits to shared cache lines and during write misses,
but writethroughs are driven as single transfers of 1 to 8 bytes.
CACHE is not asserted during writethroughs.

CACHE is partially determined by the PCD bit maintained by
the operating system (in Protected mode, for example, the
PCD bit is maintained in the page directory and page table
entries for the accessed page). This is the bit that fully deter-
mines the processor’s page cache disable (PCD) output. PCD
indicates a non-cacheable page. Thus, the states of CACHE and
PCD are very often the same. CACHE is never asserted when
PCD is asserted. PCD indicates the cacheability of an entire
page, and CACHE indicates the burstability of a particular bus
cycle; burstability is a necessary but insufficient condition for
determining cacheability. The cacheability of a particular bus
cycle is determined during read cycles when system logic
asserts KEN while the processor asserts CACHE. KEN is not a
factor in determining the state of the PCD or CACHE signals.
The processor drives both PCD and CACHE before it knows
the state of KEN. For details, see the descriptions of KEN and
PCD on pages 5-90 and 5-100.

The MESI state of a cache line is determined at the time of the
line-fill by the states of the CACHE, KEN, PWT and WB/WT
signals. Table 5-9 shows the relationship between these signals
and the data cache MESI states during reads. Read misses with
CACHE or KEN negated are non-cacheable and are driven as
single-transfer cycles on the bus. Read misses with both
CACHE and KEN asserted in the first transfer of the bus cycle
are cacheable, are driven as burst cycles on the bus, and have
their resulting MESI state determined by PWT and WB/WT.
Read hits have their resulting MESI state determined entirely
by their prior MESI state.

For data cache MESI state transitions during writes, see the
description of the WB/WT signal on page 5-134. For more
details on data-cache MESI state transitions and control, and
the correspondence between MESI states and writeback or
writethrough states, see Section 5.2.56 on page 5-134 and Sec-
tion 6.2 on page 6-8.

5-52 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

CACHE is not asserted for the following types of memory reads
(M/IO = 1):

■ Locked reads (that is, while LOCK is asserted)

■ TLB reads

■ Any read with PCD asserted (PCD is a factor in determining
the state of CACHE)

On the 486 processor, by comparison, the CACHE output does
not exist, but the BLAST output (in conjunction with KEN)
serves to determine cacheability. Although bursts are typically
four 32-bit transfers on the 486 processor, they can be longer
with narrower-width memories.

TABLE 5-9. MESI-State Transitions for Reads

Signal or Event

Result of Cache Lookup

Read Miss
Read Hit

shared exclusive modified

CACHE, PCD1 1 — 0 0 0 — — —

KEN — 1 0 0 0 — — —

PWT — — 1 — 0 — — —

WB/WT — — — 0 1 — — —

Cache Line Fill
(32 bytes)

no no yes yes yes no no no

State After Read2 — — shared shared exclusive shared exclusive modified

Notes:
— Don’t care or not applicable.
1. The PCD bit is one determinant of the state of CACHE.
2. Transition occurs after any line fill. Lines in “shared” MESI state are said to be in “writethrough” state. Those in “exclusive” or “mod-

ified” MESI states are said to be in “writeback” state.

Signal Descriptions 5-53

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.16 CLK (Bus Clock)

Input

Summary CLK, in conjunction with the state of BF at RESET, determines
the frequency of the processor’s internal clock.

Sampled The processor always samples CLK. The clock must have
begun oscillating prior to the assertion of RESET during
power-up.

Details All processor signals are driven and sampled relative to the ris-
ing edge of CLK, except the edge-triggered interrupts FLUSH
and SMI, which are sampled on the falling edge of CLK.

The processor’s internal clock runs at a multiple of CLK that is
determined by the state of the BF input during RESET. A digi-
tal phase-locked loop generates the internal clock from CLK.

Power consumption can be reduced to its minimum when sys-
tem logic turns CLK off. The processor enters its Stop Clock
state when system logic asserts STPCLK (thus entering the
Stop Grant state) and subsequently turns CLK off (thus enter-
ing the Stop Clock state). In the Stop Clock state, the proces-
sor’s phase-lock loop and I/O buffers are disabled, except for
the I/O buffers on CLK and the TAP signals. While the proces-
sor is in the Stop Clock state, system logic should not change
the state of any signals other than CLK without first restarting
CLK. When CLK is restarted, the processor returns to the Stop
Grant state and responds to inputs in the next clock, but can-
not drive bus cycles until its phase-lock loop is synchronized.
The latter takes several clocks (see the data sheet for this spec-
ification). For details on STPCLK and the Stop Clock state, see
page 5-123.

While the processor operates with the Test Access Port (TAP),
all TAP events are timed relative to TCK rather than to CLK.

5-54 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.17 D/C (Data or Code)

Output

Summary The processor drives D/C to indicate whether it is accessing
data or executable code on the bus. The signal is driven at the
same time as the other two cycle definition signals: M/IO and
W/R. A specific encoding of D/C, M/IO, and W/R identifies one
of several special bus cycles.

Driven and Floated The processor drives D/C from ADS until the last expected
BRDY of the bus cycle.

D/C is driven with the other cycle definition outputs (M/IO and
W/R) and with the BE7–BE0 byte-enable outputs during mem-
ory cycles (including cache writethroughs and writebacks), I/O
cycles, locked cycles, special bus cycles, and interrupt
acknowledge operations in the normal operating modes (Real,
Protected, and Virtual-8086) and in SMM, or while PRDY is
asserted. While AHOLD is asserted, D/C is driven only to com-
plete a bus cycle that had been initiated before AHOLD was
asserted, or for inquire cycle writebacks. During the Shut-
down, Halt, and Stop Grant states, D/C is driven only for
inquire cycle writebacks. D/C is not driven during the Stop
Clock state, or while BOFF, HLDA, RESET, or INIT is asserted.

The processor floats D/C one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

Details The processor drives D/C according to whether the access is
initiated by the processor’s prefetch or branch logic (indicating
a code access) or its load/store logic (indicating a data access).
In the AMD5K86 processor, code accesses can be done specula-
tively, but data accesses are not. Only data (not code) can be
read from the I/O address space, because the cycle definition
for an I/O code read (D/C = 0, M/IO = 0, W/R = 0) defines an
interrupt acknowledge cycle.

Before the processor fetches an instruction or reads or writes a
data operand, it checks the descriptor for the segment contain-
ing the code or data to verify that such action is allowed. The
execute (E) bit in the segment descriptor distinguishes
between data and code segments. A general-protection excep-
tion is generated if the E bit does not match the D/C type.

Signal Descriptions 5-55

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

During special bus cycles, the processor drives D/C = 0, M/IO =
0, and W/R = 1. The cycles are then differentiated by BE7–BE0
and A31–A3.

5-56 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.18 D63–D0 (Data Bus)

Bidirectional

Summary The processor drives and samples up to eight bytes on D63–D0
during memory or I/O accesses. System logic must decode the
source and destination of these transfers using the address bus
and various control signals.

Driven, Sampled, and
Floated

As Outputs: For single-transfer writes (including cache
writethroughs), the processor drives D63–D0 valid from one
clock after ADS until BRDY. For writebacks (the only type of
burst write), the processor drives D63–D0 valid from one clock
after ADS until the first BRDY, and thereafter from one clock
after each BRDY until the next BRDY of the bus cycle.

The processor floats D63–D0 one clock after system logic
asserts BOFF in the clock that the processor asserts HLDA.

As Inputs: While BOFF or HLDA is asserted, the processor sam-
ples D63–D0 with every BRDY of the bus cycle.

D63–D0 is driven or sampled during memory cycles (including
cache writethroughs and writebacks), I/O cycles, locked cycles,
special bus cycles, and interrupt acknowledge operations in
the normal operating modes (Real, Protected, and Virtual-
8086) and in SMM, or while PRDY is asserted. While AHOLD is
asserted, D63–D0 is driven or sampled only to complete a bus
cycle that had been initiated before AHOLD was asserted, or
for inquire cycle writebacks. During the Shutdown, Halt, and
Stop Grant states, D63–D0 is driven only for inquire cycle
writebacks. D63–D0 is not driven or sampled during the Stop
Clock state, or while BOFF, HLDA, RESET, or INIT is asserted.

Details Data is transferred between the processor and memory or I/O
on up to eight bytes of the D63–D0 data bus. The BE7–BE0
byte-enable signals specify the validity of each byte on D63–
D0. Table 5-10 shows the relation between D63–D0 and BE7–
BE0. System logic must interpret BE7–BE0 for data byte vali-
dation during single-transfer memory reads and writes and for
all I/O reads and writes. However, for burst reads (cache line
fills) and writes (cache writebacks)—that is, when the proces-
sor asserts CACHE—the processor expects data to be valid
and will drive valid data on all eight bytes of the data bus with-
out regard to the state of BE7–BE0.

Signal Descriptions 5-57

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

During burst reads the processor drives BE7–BE0 to identify
only the byte address of the next desired operand. The byte
indication does not change throughout the burst; it continues
to be driven on BE7–BE0 during all four transfers. The memory
subsystem must ignore BE7–BE0 during the second, third, and
fourth transfers of a burst and return all eight bytes corre-
sponding to the eight-byte address on A31–A3. Furthermore,
the memory subsystem must determine the successive
addresses, depending on the starting address that the proces-
sor drives on A31–A3, as described in Table 5-4 on page 5-22.

During writebacks the processor drives all bits of BE7–BE0
Low to indicate that all eight bytes on D63–D0 are valid. Write-
backs are addressed by A31–A3, but they are always aligned to
32-byte boundaries so that A4–A3 are always 0.

If memory reads, memory writes, or I/O reads are misaligned,
the Pentium processor transfers the highest-addressed portion
followed by the lowest-addressed portion. The AMD5K86 pro-
cessor runs such cycles in the opposite order from the Pentium
processor. I/O writes, however, are performed in the same
order on both processors.

TABLE 5-10. Relation Between D63–D0, BE7–BE0, and DP7–DP0

Byte On Data Bus Byte Enable Output Data Parity Bits

D63–D56 BE7 DP7

D55–D48 BE6 DP6

D47–D40 BE5 DP5

D39–D32 BE4 DP4

D31–D24 BE3 DP3

D23–D16 BE2 DP2

D15–D8 BE1 DP1

D7–D0 BE0 DP0

5-58 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.19 DP7–DP0 (Data Parity)

Bidirectional

Summary DP7–DP0 carry the even-parity bits for each byte driven and
sampled on the D63–D0 data bus. While DP7–DP0 are outputs,
system logic can use the signals to check parity. While DP7–
DP0 are inputs, the processor uses them to determine the state
of the PCHK output.

Driven, Sampled, and
Floated

DP7–DP0 are driven, sampled, and floated with the same tim-
ing as D63–D0. See the description for D63–D0 on page 5-56.

Details DP7 corresponds to the high byte on the data bus (D63–D56)
and DP0 corresponds to the low byte on the data bus (D7–D0).
To determine data parity, the bit values driven for each byte
on DP7–DP0 are considered with the bit values driven for each
byte on D63–D0. For example, if the total number of 1 bits for
the byte on D63–D56 is even for DP7 and D63–D56, the address
is considered free of error (thus the term even parity). If the
number of 1 bits is odd, the byte is considered to have an error.

During single-transfer read cycles, parity is only checked for
enabled bytes as specified by BE7–BE0. During burst reads,
parity is checked for all eight bytes, regardless of BE7–BE0. If
a parity error is detected on a read, the processor asserts
PCHK.

Systems that do not implement data parity generation and
checking should tie DP7–DP0 either High or Low and ignore
the PCHK output. In addition to generating and checking data
parity, the processor also generates and checks address parity
using the AP and APCHK signals. See page 5-32 and 5-33 for
details.

Signal Descriptions 5-59

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.20 EADS (External Address Strobe)

Input

Summary While system logic holds the processor off the address bus, sys-
tem logic can assert EADS and drive a cache line address to
initiate an inquire cycle. Inquire cycles cause the processor to
snoop its internal caches.

Sampled The processor samples EADS every clock, beginning two clocks
after the assertion of AHOLD or BOFF, or one clock after the
assertion of HLDA; except while the processor drives A31–A3,
while it asserts HITM, and one clock after EADS.

While AHOLD is asserted, EADS is sampled while the proces-
sor finishes an in-progress memory cycle (including a cache
writethrough or writeback), I/O cycle, locked cycle, special bus
cycle, or interrupt acknowledge operation in the normal oper-
ating modes (Real, Protected, and Virtual-8086) and in SMM.
While AHOLD, BOFF, or HLDA is asserted, EADS is always
sampled while the processor operates out of its cache or is idle;
or is in the Shutdown, Halt, or Stop Grant state; or while INIT
or PRDY is asserted. EADS is not sampled in the Stop Clock
state or while RESET is asserted.

If BOFF and EADS are both asserted in the same clock that
AHOLD is negated, EADS is not recognized. If EADS is
asserted on the same clock that HOLD is negated, both the
AMD5K86 and the Pentium processors recognize this as a valid
inquire cycle and process it correctly. However, if EADS is
asserted on the clock following the negation of HOLD, the
AMD5K86 processor does not recognize this as a valid inquire
cycle.

Details Inquire cycles cause the processor to compare a physical
address driven by system logic with the processor’s physical
address tags for its instruction and data caches. Inquire cycles
can occur in parallel with the processor’s own cache accesses,
which are done through a separate set of linear address tags.

Inquire cycles are sometimes called snoop cycles, although the
term snoop means at least three different things: (a) external
snoop cycles that are occasionally driven on the bus by system
logic, such as an inquire cycle, (b) internal snoops that are
done automatically whenever the processor accesses its cache,
such as when the processor compares the address of a write to

5-60 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

its data cache with the addresses in the instruction cache, and
(c) automatic bus watching, in which a caching device con-
stantly compares addresses being driven by any other device
on the address bus with its own cached addresses. The
AMD5K86 and Pentium processors only support the first two
types of snooping, not the third.

There are three methods by which system logic can obtain con-
trol of the address bus prior to running one or more inquire
cycles: AHOLD, BOFF or HOLD. While it has control of at least
the address bus, system logic can drive inquire cycles using
EADS, A31–A5, INV, and (optionally) AP.

The system logic’s sequence for driving inquire cycles is as fol-
lows:

1. Assert AHOLD, BOFF, or HOLD to obtain at least the
address bus.

2. Assert EADS two clocks after asserting AHOLD or BOFF, or
one clock after the processor asserts HLDA, and simulta-
neously drive INV and a cache-line address on A31–A5. The
processor latches the address on A31–A5 when EADS is
asserted.

3. Wait two clocks, watching for HITM and/or HIT to be
asserted:

• If neither HIT nor HITM are asserted at the end of two
clocks, or if only HIT is asserted, the inquire cycle termi-
nates. EADS can be asserted again in the same clock
that HITM is negated.

• If HITM is asserted, a writeback follows and the proces-
sor does not recognize EADS again until one clock after
the last BRDY of the writeback. The timing of the write-
back depends on whether AHOLD, BOFF or HOLD was
asserted to gain access to the bus: if AHOLD was used,
the processor begins driving the four-transfer burst
writeback as early as two clocks after asserting HITM,
whether or not AHOLD is still asserted. If BOFF or
HOLD was used, the processor delays the writeback un-
til after BOFF or HLDA is negated.

To prevent multiple inquire cycles from hitting modified lines,
and causing a backlog of writebacks, the processor does not
recognize another EADS while HITM is asserted. HITM is

Signal Descriptions 5-61

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

negated one clock after the last BRDY of the writeback, at
which time another EADS can be asserted.

If AHOLD is held asserted throughout an inquire cycle, system
logic must latch the inquire cycle address when EADS is
asserted. This is required so that, if the inquire cycle hits a
modified line, the address used for the writeback need not be
driven by the processor when the processor asserts ADS for the
writeback; instead, system logic must use its latched copy of
the inquire cycle address. By contrast, if system logic always
negates AHOLD before the writeback, the processor will drive
the writeback address when it asserts ADS for the writeback,
and system logic need not latch a copy of the inquire cycle
address.

If EADS is asserted in the same clock that HOLD is negated,
the processor recognizes this as a valid inquire cycle. However,
if EADS is asserted in the clock following the negation of
HOLD, the processor does not recognize this as a valid inquire
cycle.

Inquire cycles can be implemented for every memory access by
another caching master. To do this, system logic can generate
EADS to the processor using the equivalent of ADS from the
other caching master.

An inquire cycle can hit a line that is in the process of being
written back for a reason other than the inquire, such as when
the writeback is being done to make room in the cache for a
new line (called a replacement writeback) or when the
WBINVD (writeback and invalidate) instruction is being exe-
cuted. If this occurs, the in-progress writeback completes but
the system must recognize that this writeback was for the same
line that was the subject of the inquire cycle. The processor
will not repeat the writeback, but it will assert HITM.

If an inquire cycle occurs during a Branch-Trace Message spe-
cial cycle, the branch-address information driven by the pro-
cessor on A31–A3 can be overwritten by the inquiring bus
master. In such cases, system logic should latch A31–A3 when
ADS is asserted (that is, before asserting AHOLD, BOFF or
HOLD).

EADS should not be asserted at the same time the processor is
running a BIST (INIT asserted on the falling edge of RESET) or

5-62 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

while the TAP instruction, RUNBIST, is executed. The proces-
sor accesses the physical tag array during both BISTs and
inquire cycles via EADS, and these accesses can conflict.

The 486 processor without writeback cache samples EADS in
every clock, including while the processor drives the address
bus. It can thus support inquire cycles every clock. The
AMD5K86 and Pentium processors, by comparison, can sample
EADS every other clock, and the maximum inquire or invalida-
tion rate with inquire cycles is one every two clocks, because
HIT and HITM change state two clocks after EADS, and EADS
can be asserted in the same clock in which HITM is negated.
The AMD5K86 processor does not sample EADS in the clock
after a valid EADS assertion.

Signal Descriptions 5-63

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.21 EWBE (External Write Buffer Empty)

Input

Summary The processor delays cache writes and certain serializing
instructions if system logic negates EWBE during external
writes.

Sampled The processor samples EWBE with the BRDY of external write
cycles and in every clock thereafter until EWBE is asserted.

Details All writes on the AMD5K86 processor—whether to cache,
memory, or I/O—are performed in program order, regardless
of the state of EWBE. The only effect of EWBE on writes is to
hold off additional writes when the signal is negated.

The processor expects EWBE to be asserted with or after the
last BRDY of each write cycle. Thus for writebacks, the proces-
sor expects EWBE to be asserted with or after the BRDY of the
fourth transfer. System logic should assert EWBE when all
external write buffers are empty, thus indicating that the write
to memory or I/O has completed and that writes to the cache
can take place. Most systems tie EWBE Low (asserted), thus
allowing the speed of writes to be controlled only by BRDY.

If EWBE is sampled negated with the BRDY of an external
write cycle, the processor does not do any of the following:

■ Write store-buffer entry to data cache

■ Write to memory (single-transfer or burst), including locked
write to Accessed (A) bit after TLB load

■ Execute serializing instructions like MOV to CR0, MOV to
CR4, WBINVD, INVLPG, and CPUID:

■ Respond to the following interrupts:

• FLUSH

• SMI

■ Respond to any other interrupts or exceptions that cause a
write to memory, such as pushing state onto the stack or set-
ting the Accessed bit in a segment descriptor. This may
include the BUSCHK, NMI, and INTR interrupts.

For interrupts that do not write to memory (R/S, INIT, and
STPCLK), the state of EWBE has no effect on the processor’s
recognition of or response to such interrupts. The processor

5-64 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

latches any edge-triggered interrupt that may not be recog-
nized while EWBE is negated (FLUSH, SMI, NMI) and recog-
nizes them in priority order when EWBE is asserted.

If system logic implements memory-mapped I/O as non-cache-
able memory (the standard method), EWBE on the AMD5K86
processor has the same effect on writes to memory-mapped I/O
as does EWBE on the Pentium processor—neither processor
reorders reads ahead of writes.

For more details on the function of EWBE, see the following
sections:

■ BRDY—Page 5-42.

■ HITM—Page 5-74.

■ SMI—Page 5-117.

■ SMIACT—Page 5-122.

■ STPCLK—Page 5-123.

Signal Descriptions 5-65

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.22 FERR (Floating-Point Error)

Output

Summary The processor asserts FERR to report floating-point errors in a
manner compatible with floating-point software written for
287 and 387 coprocessors. The IGNNE input controls the
behavior of FERR.

Driven The processor drives FERR every clock during memory cycles
(including cache writethroughs and writebacks), cache hits of
all types, I/O cycles, and locked cycles in the normal operating
modes (Real, Protected, and Virtual-8086) and in SMM. FERR
is not driven during the Shutdown, Halt, Stop Grant, or Stop
Clock states, or while RESET, INIT, or PRDY is asserted.

Details FERR and IGNNE support backward compatibility with float-
ing-point software designed for 287 and 387 coprocessors on
PC systems running DOS. Contemporary floating-point soft-
ware typically observes these same conventions and requires
these signals.

If software has set the numeric error (NE) bit in CR0 to 1, the
processor reports unmasked floating-point exception condi-
tions in the way specified for 287 and 387 coprocessors—the
processor asserts FERR to report the error externally while
internally the processor generates a numeric error exception
(10h) while executing the next WAIT instruction or at the
beginning of the next computational floating-point instruction.
The IGNNE input plays no part in error reporting if the NE bit
in CR0 is set to 1.

If software has cleared the numeric error (NE) bit in CR0 to 0,
unmasked floating-point exception reporting depends on the
state of the IGNNE input, as follows:

■ If the IGNNE input is negated, the processor reports
unmasked floating-point exception conditions in a way that
is compatible with IBM-compatible PC/AT systems—the
processor asserts FERR to report the error externally to a
busy latch (FERR is analogous to the ERROR output on 287
and 387 coprocessors). The external busy latch generates
IRQ13 if FERR is asserted, and the service routine for
IRQ13 can then assert IGNNE to permit continued process-
ing of floating-point instructions.

5-66 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

■ If the IGNNE input is asserted, FERR is negated and the pro-
cessor does not report unmasked floating-point exception
conditions externally.

DOS and Windows®-based PCs typically clear the NE bit to 0.
Only higher-end operating systems such as the Windows NT™
operating system set the NE bit to 1.

Signal Descriptions 5-67

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.23 FLUSH (Cache Flush)

Input

Summary FLUSH causes the processor to writeback (if necessary) and
invalidate each line in its data and instruction caches. The pro-
cessor generates a flush-acknowledge special bus cycle at the
end of the entire operation. The signal is also used to invoke an
output-float test at RESET.

Sampled and
Acknowledged

The processor samples FLUSH every clock and recognizes it at
the next instruction boundary. FLUSH is a falling-edge-trig-
gered interrupt and is latched when sampled. When FLUSH is
recognized, the processor acknowledges it by driving a flush-
acknowledge special bus cycle after all modified lines in the
data cache are written back and after all lines in both caches
are invalidated.

FLUSH is sampled during memory cycles (including cache
writethroughs and writebacks), cache accesses, I/O cycles,
locked cycles, special bus cycles, and interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086) and in SMM; or in the Shutdown, Halt, or
Stop Grant states; or while AHOLD, BOFF, HLDA, or RESET is
asserted. FLUSH is not sampled in the Stop Clock state, or
while INIT or PRDY is asserted.

If asserted at the falling edge of RESET, FLUSH invokes the
processor’s three-state (float) test. System logic can drive the
signal either synchronously or asynchronously (see the data
sheet for synchronously driven setup and hold times).

FLUSH is the third-highest-priority external interrupt. For
details on its relationship to other interrupts and exceptions,
see Section 5.1.3 on page 5-14 and Table 5-3 on page 5-17.

Details FLUSH allows system logic to control the data that the proces-
sor sees during cache accesses after changing operating modes
or data environments. It also provides control for special cache
coherency purposes. For example, FLUSH may be asserted
when the processor enters SMM or in systems running
extended memory managers if there is any change that may
affect physical addresses. Depending on how an L2 cache
serves the processor and other caching devices, system logic
may want to cause the L2 cache to invalidate its same locations
when system logic asserts FLUSH to the processor, or it may

5-68 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

use the Flush-Acknowledge special bus cycle to initiate such
action.

Entry into SMM may require the assertion of FLUSH. If the
SMM physical memory space overlaps physical main memory
that is cacheable, FLUSH must be asserted with SMI (the
FLUSH will be performed first, because it is a higher-priority
interrupt). If this is not done, accesses to the SMM memory
space after entering SMM may hit cached locations in the main
memory space. In addition, if SMM memory is itself cacheable,
the SMM service routine should execute the WBINVD (write-
back and invalidate) instruction when leaving SMM, just prior
to executing the RSM instruction.

The processor performs the FLUSH operation using the same
microcode that executes for the WBINVD (writeback and inval-
idate) instruction. The only difference is the special bus cycle
driven upon completion of the operation. A writeback and
invalidation operation can be time consuming because all mod-
ified lines in the data cache are written back to memory. If
writebacks are not required, the INVD instruction or RESET
can be used to invalidate all contents of the caches.

When FLUSH is recognized at an instruction boundary, the
processor performs the following actions in the order shown:

1. Flush Pipeline—The processor invalidates all instructions
remaining in the pipeline.

2. Writeback and Invalidate—The processor writes back any
modified lines in the data cache, and then (after all write-
backs) simultaneously invalidates all lines in the instruc-
tion and data caches. The invalidations are done by clearing
the valid bits in both the linear and physical tag directories.

3. Acknowledge—After the writeback and invalidation com-
pletes, the processor drives a FLUSH-acknowledge special
bus cycle. This cycle is identified by D/C = 0, M/IO = 0, W/R
= 1, BE7–BE0 = EFh and A31–A3 = 0. System logic must
return BRDY in response to this cycle.

AHOLD, BOFF, and HOLD are all recognized and behave nor-
mally while FLUSH is asserted, and they will intervene in an
in-progress FLUSH operation. For example, if BOFF is
asserted while a FLUSH operation is writing modified lines
back to memory, an in-progress writeback will be aborted.

Signal Descriptions 5-69

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

When BOFF is subsequently negated, the writeback is
restarted and the FLUSH operation continues from where it
left off. Any writebacks that completed before BOFF was
asserted are not affected by BOFF’s intervention.

If FLUSH is asserted while AHOLD, BOFF, or HLDA is
asserted, the outcome of the flush depends on whether the
flush causes writebacks of modified lines. If no writebacks are
needed, the processor invalidates all lines but does not per-
form the FLUSH-acknowledge cycle until the processor gets
control of the bus again. If a writeback is needed, the processor
stops at that writeback, without having invalidated any lines,
waits until control of the bus is returned to the processor, then
completes the FLUSH operation. If FLUSH is asserted during
the Stop Grant state, the signal is held pending until after the
processor exits the Stop Grant state, at which point it is acted
upon.

No other interrupt or exception will intervene in a flush opera-
tion because such interrupts are not recognized until after the
FLUSH-Acknowledge special bus cycle, which occurs at the
end of all writebacks and invalidations. The processor latches
the assertion of any edge-triggered interrupt (FLUSH, SMI,
INIT, NMI) while FLUSH is asserted and recognizes latched
interrupts in priority order when FLUSH is negated.

The Three-State (float) Test mode, entered if FLUSH is
asserted during RESET, causes the processor to float all of its
output and bidirectional signals. In this isolated state, system
board traces and connections can be tested for integrity and
driveability. The Float-Test mode can only be exited by assert-
ing RESET again.

On the AMD5K86 and Pentium processors, FLUSH is an edge-
triggered interrupt. On the early 486 processors, however, the
signal is a level-sensitive input.

5-70 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.24 FRCMC (Functional-Redundancy Check Master/Checker)

Input

Summary If FRCMC is asserted at RESET, the processor enters Func-
tional-Redundancy Checking mode, as the checker, and
reports checking errors on the IERR output. If FRCMC is
negated at RESET, the processor operates normally, although
it also behaves as the master in a functional-redundancy check-
ing arrangement with a checker.

Sampled The processor samples FRCMC at the falling edge of RESET.
The processor does not sample FRCMC at any other time.

System logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously driven setup
and hold times).

Details In the Functional-Redundancy Checking mode, two processors
have their signals tied together. One processor (the master)
operates normally. The other processor (the checker) has its
output and bidirectional signals (except for TDO and IERR)
floated to detect the state of the master’s signals. The master
controls instruction fetching and the checker mimics its behav-
ior by sampling the fetched instructions as they appear on the
bus. Both processors execute the instructions in lock step. The
checker compares the state of the master’s output and bidirec-
tional signals with the state that the checker itself would have
driven for the same instruction stream. Errors detected by the
checker are reported on the checker’s IERR output. On the
AMD5K86 processor, the IERR output is reserved solely for
functional-redundancy checking; no other errors are reported
on that output.

Functional-redundancy checking is typically implemented on
single-processor, fault-monitoring systems (which actually
have two processors). The master processor runs the opera-
tional programs and the checker processor is dedicated
entirely to constant checking. In this arrangement, the test of
accurate operation consists solely of reporting one or more
errors; the particular type of error or the instruction causing
an error is not reported. The arrangement works because the
processor is entirely deterministic. Speculative prefetching,
speculative execution, and cache replacement all occur in
identical ways and at identical times on both processors, if

Signal Descriptions 5-71

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

their signals are tied together so that they run the same pro-
gram.

The Functional-Redundancy Checking mode can only be
exited by the assertion of RESET. Functional-redundancy
checking cannot be done in the Hardware Debug Tool (HDT)
mode. The assertion of FRCMC is not recognized while PRDY
is asserted.

5-72 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.25 HIT (Inquire-Cycle Hit)

Output

Summary The processor asserts HIT to indicate that an inquire cycle hit
a valid line in the processor’s instruction or data cache.

Driven The processor drives HIT every clock. The signal changes state
two clocks after the assertion of EADS and retains that state
until two clocks after the next EADS.

HIT is driven at all times, except while the processor is in the
Stop Clock state, or while RESET or INIT is asserted.

Details The processor asserts HIT if an inquire cycle address matches
the address of a valid line in the processor’s instruction cache
in the shared state, or of a shared, exclusive, or modified line in
the processor’s data cache (called a cache hit). The processor
holds HIT negated if the inquire cycle address does not match
any valid address in either cache (called a cache miss).

Table 5-11 shows the relationship between HIT, HITM, and
INV. Inquire cycle logic in systems with look-aside caches can
be simplified by monitoring only HITM and ignoring HIT. This
works because the resulting state of a hit line is determined
only by the state of the INV input during the assertion of
EADS:

■ If INV is negated during a hit, the hit line—whether shared,
exclusive, or modified—transitions to the shared state. Thus,
the inquiring master can safely cache the same data in the
shared state without knowing whether the inquire cycle hit
in the processor’s cache (and thus, without system logic
monitoring HIT).

■ If INV is asserted during a hit, the hit line—whether shared,
exclusive, or modified—transitions to the invalid state. If the
line was modified before the inquire, HITM is also asserted
and the line is written back before the invalidation; if the
line was shared or exclusive before the inquire, no writeback
occurs before the invalidation.

■ If the inquire cycle misses, regardless of the state of INV,
the inquiring master can cache the target data in the shared
state, although it will not have enough information to cache
that line in the exclusive state (this requires that HIT be
monitored).

Signal Descriptions 5-73

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Inquire cycle logic in systems with look-through caches, how-
ever, normally monitor both HIT and HITM because such sys-
tems often implement the write-once cache protocol. The
write-once protocol requires caching in the exclusive state at
certain transitions, and the exclusive state can only be identi-
fied if both HIT and HITM are monitored. For details on this
protocol, see Section 6.2.6 on page 6-19.

Inquire cycles can be driven while LOCK is asserted, if
AHOLD is used to obtain the bus for the inquire cycle. An
inquire cycle cannot hit a line that is involved in a locked oper-
ation (LOCK asserted). The processor prevents this by always
checking its cache tags prior to a locked operation. If the loca-
tion is cached, it is written back (if necessary) and invalidated
prior to the locked operation.

The Pentium processor does not recognize an inquire cycle hit
on an in-progress cache line fill prior to the first BRDY, and it
will cache that line in the exclusive state if PWT = 0 and WB/
WT = 1. This may cause the line to be cached in the exclusive
state in two separate caches if the system supports other cach-
ing masters. In such cases, the AMD5K86 processor asserts HIT
and caches the line in the shared state or does not cache it,
depending on the state of the INV signal.

TABLE 5-11. MESI-State Transitions for Inquire Cycles

Signal or Event

Result of Cache Lookup

Inquire Miss
Inquire Hit

shared or exclusive modified

HIT 1 0 0 0 0

HITM1 12 1 1 0 0

INV — 1 0 1 0

Write to Memory no no no
writeback
(32 bytes)

writeback
(32 bytes)

State After Inquire3 — invalid shared invalid shared

Notes:
— Don’t care or not applicable.
1. Asserted only for data cache hits to modified lines. Instruction cache lines can only be in the shared or invalid state.
2. HITM is never asserted while HIT is negated.
3. Transition occurs after any write to memory. Lines in “shared” MESI state are said to be in “writethrough” state. Those in “exclusive”

or “modified” MESI states are said to be in “writeback” state.

5-74 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.26 HITM (Inquire Cycle Hit To Modified Line)

Output

Summary The processor asserts HITM to indicate that an inquire cycle
hit a modified line in the processor’s data cache. If this occurs,
the processor writes the line back to memory during or after
the bus-hold tenure, depending on which signal is holding the
processor off the bus. HIT is always asserted whenever HITM
is asserted.

Driven The processor drives HITM every clock. The signal changes
state two clocks after the assertion of EADS. If the inquire
cycle misses the cache or hits an exclusive or shared line in the
cache, the processor holds HITM negated and another inquire
cycle can begin in that clock (two clocks after EADS). If the
inquire cycle hits a modified line in the data cache, the proces-
sor asserts HITM and holds it asserted until one clock after the
last BRDY of the writeback, then negates it.

HITM is driven at all times, except while the processor is in the
Stop Clock state, or while RESET or INIT is asserted.

Details The processor asserts HITM when an inquire cycle address
matches the address of a modified line in the processor’s data
cache. The processor then attempts to drive a four-transfer
burst writeback of the modified line. If INV was asserted at the
time EADS was asserted for the inquire cycle, a hit leaves the
written-back line in the invalid state. If INV was negated at the
time EADS was asserted, a hit leaves the written-back line in
the shared state. For a comparison of the states that HITM,
HIT, and INV can assume, see Table 5-11 on page 5-73.

System logic can use HITM to inhibit access to the bus by other
masters (via BOFF or HOLD) until the writeback associated
with the hit has completed. The time at which the writeback
occurs depends on which input signal was used to hold the pro-
cessor off the bus for the inquire cycle:

■ If AHOLD was used, the processor drives the writeback as
early as two clocks after asserting HITM, whether or not
AHOLD is still asserted at that time.

■ If BOFF or HOLD was used, the processor delays the write-
back until after BOFF or HLDA is negated. In the case of
BOFF, the writeback is driven before any aborted bus cycle
is restarted.

Signal Descriptions 5-75

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The processor drives writebacks by asserting ADS and either
reusing the inquire cycle address (if AHOLD is held asserted
throughout the writeback) or driving the address itself (if
AHOLD is negated for the writeback, or if BOFF or HOLD was
used to obtain the bus). If AHOLD is held asserted throughout
an inquire cycle and a subsequent writeback, system logic
must latch the inquire cycle address when it asserts EADS and
use the latched copy during the writeback. By contrast, if sys-
tem logic always negates AHOLD before the writeback, the
processor drives the writeback address when it asserts ADS for
the writeback, and system logic need not latch a copy of the
inquire cycle address.

Inquire cycles can be driven while LOCK is asserted, if
AHOLD is used to obtain the bus for the inquire cycle. An
inquire cycle cannot hit a line involved in a locked operation.
Cached locations that are about to be accessed in locked opera-
tions are written back and invalidated before the locked opera-
tion occurs. If such an inquire cycle hits a modified location
that is different than the one involved in the locked operation,
the writeback is done in the middle of the locked operation,
between the two locked cycles, and LOCK is asserted during
the writeback. This is the only case in which another operation
can intervene in a locked operation. System logic must recog-
nize this case and know that the inquire cycle is snooping a dif-
ferent location than the one that is locked.

At the falling edge of RESET, the states of BRDYC and BUS-
CHK control the drive strength on the A21–A3 (not including
A31–A22), ADS, HITM, and W/R signals. The drive strength is
weak for all states of BRDYC and BUSCHK except when
BRDYC and BUSCHK are both Low, in which case the drive
strength is strong. The A31–A22 signals use the weak drive
strength at all times. See the data sheet for details.

5-76 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.27 HLDA (Bus-Hold Acknowledge)

Output

Summary When system logic asserts HOLD, the processor completes any
in-progress bus cycle, floats its cycle-driving outputs, and
asserts HLDA as an acknowledgment. While HLDA is asserted,
another bus master can drive cycles on the bus, including
inquire cycles to the processor.

Driven The processor drives HLDA every clock. The processor floats
the cycle-driving outputs on the bus and asserts HLDA two
clocks after the last BRDY of an in-progress bus cycle, if such a
cycle is in progress when HOLD is asserted, or two clocks after
the assertion of HOLD, whichever comes last. The processor
continues to float the bus and assert HLDA until two clocks
after HOLD is negated.

HLDA is driven during cache hits in the normal operating
modes (Real, Protected, and Virtual-8086) and in SMM, but
writebacks wait until HLDA is negated. HLDA is also driven in
the Shutdown, Halt, Stop Grant, and Stop Clock states; or
while AHOLD, BOFF, RESET, INIT, or PRDY is asserted.
HLDA is not driven during processor-originated bus cycles,
because any such pending bus cycle completes before the pro-
cessor asserts HLDA.

Details HLDA is the processor’s acknowledgment to HOLD. HLDA
indicates that any in-progress bus cycle has completed and that
the output and bidirectional signals used for memory or I/O
accesses are floating. Table 5-12 shows the signals floated. The
same set of signals is floated with BOFF.

TABLE 5-12. Outputs Floated When HLDA is Asserted

Address and
Address Parity

Cycle Definition
and Control

Data and
Data Parity

Cache
Control

A31–A3 D/C D63–D0 CACHE

ADS LOCK DP7–DP0 PCD

ADSC M/IO BE7–BE0 PWT

AP SCYC N/A N/A

N/A W/R N/A N/A

Signal Descriptions 5-77

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Unlike BOFF, the assertion of HOLD does not abort an in-
progress cycle. If the processor is not driving a bus cycle when
HOLD is asserted, the bus master asserting or causing the
assertion of HOLD can begin driving its first bus cycle in the
clock after HLDA is asserted, which occurs two clocks after
HOLD is asserted. The processor supports only one in-progress
bus cycle. Unlike the Pentium processor, no pending bus cycles
are held in write buffers between the data cache and the bus
interface on the AMD5K86 processor.

The processor can assert ADS in the clock after HOLD is
asserted (but before asserting HLDA) and drive a bus cycle
before acknowledging HOLD with HLDA. System logic may
assert EADS for an inquire cycle as early as one clock after the
processor asserts HLDA.

The processor continues driving HLDA until two clocks after
HOLD is negated, at which time the processor may again drive
its own cycles with ADS in the next clock after it negates
HLDA. The processor responds to inquire cycles while HLDA
is asserted and will assert HIT and HITM in response to such
cycles. If HITM is asserted, the writeback is performed imme-
diately after HLDA is negated. Multiple inquire cycles are not
permitted to hit modified lines. The processor implements this
restriction by ignoring EADS while HITM is asserted; when
HITM is asserted, it is held asserted until one clock after the
last BRDY of the writeback.

For a list of signals recognized while HLDA is asserted, see
Table 5-2 on page 5-9. See the description of HOLD on page 5-
78 for additional details about the HOLD/HLDA protocol.

5-78 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.28 HOLD (Bus-Hold Request)

Input

Summary When system logic asserts HOLD, the processor completes any
in-progress bus cycle, floats its cycle-driving outputs, and
asserts HLDA to acknowledge the HOLD.

Sampled and
Acknowledged

The processor samples HOLD every clock. It acknowledges
HOLD by floating the cycle-driving outputs on the bus and
asserting HLDA two clocks after the last BRDY of an in-
progress bus cycle, if such a cycle is in progress when HOLD is
asserted, or two clocks after the assertion of HOLD, whichever
comes last. The processor continues to float the bus and assert
HLDA until two clocks after HOLD is negated.

HOLD is sampled during memory cycles (including cache
writethroughs and writebacks), I/O cycles, inquire cycles, and
special bus cycles in the normal operating modes (Real, Pro-
tected, and Virtual-8086) and in SMM; in the Shutdown, Halt,
Stop Grant, and Stop Clock states; or while AHOLD, BOFF,
RESET, INIT, or PRDY is asserted. HOLD is not sampled dur-
ing locked cycles or interrupt acknowledge operations.

Details The assertion of HOLD, like BOFF but unlike AHOLD, forces
the processor to relinquish the full address and data bus to
another bus master. The signal can be used for the following
purposes:

■ Bus Turnaround—Another bus master can assert HOLD to
the processor to obtain control of the bus, allowing the
other bus master to drive any type of bus cycles.

■ Inquire Cycles—In multi-master systems with shared mem-
ory, another bus master typically drives an inquire cycle to
the processor or its L2 cache prior to driving a read or write
cycle to any memory locations shared by both masters. Such
inquire cycles can be driven while HOLD is asserted.

HOLD provides the slowest response of the three bus-hold
inputs and is normally useful only in single-bus (non-bridged),
single-processor systems with a look-aside L2 cache. For exam-
ple, a DMA controller may use HOLD to obtain the bus, run
inquire cycles, and perform memory reads and writes. See
Section 6.2.5 on page 14 for system configurations using
HOLD.

Signal Descriptions 5-79

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Like AHOLD but unlike BOFF, HOLD allows the processor to
complete an in-progress bus cycle before the processor floats
its cycle-driving outputs. Such an in-progress cycle may consist
of a single-transfer cycle, burst cycle, sequence of locked
cycles (such as an interrupt acknowledge operation), or a spe-
cial bus cycle. The processor supports only one in-progress bus
cycle; no pending bus cycles are buffered. Like BOFF, HOLD
has no effect on writes to the processor’s store buffer, except to
delay them. (The store buffer is situated between the execu-
tion units and the data cache, and it is used for speculative
stores prior to being written in non-speculative state to the
data cache.)

When HOLD is asserted, system logic may continue asserting
HOLD for as long as it wants. The processor has no way of
breaking the hold. The processor continues driving HLDA until
two clocks after HOLD is negated, at which time the processor
may again drive its own cycles with ADS in the next clock after
it negates HLDA. During the time HOLD is asserted, the pro-
cessor attempts to operate out of its cache. If it can no longer
do so, it asserts BREQ continuously.

There are three methods by which system logic can obtain con-
trol of the address bus to drive an inquire cycle: AHOLD,
BOFF, or HOLD. AHOLD obtains control only of the address
bus and allows another master to drive only inquire cycles,
whereas BOFF and HOLD obtain control of the full bus
(address and data), allowing another master to drive not only
inquire cycles but also read and write cycles. Unlike BOFF,
AHOLD and HOLD both permit an in-progress bus cycle to
complete, but writebacks can occur while AHOLD is asserted,
whereas pending writebacks during the assertion of HOLD
occur after HOLD is negated, which is similar to BOFF.

If EADS is asserted on the same clock that HOLD is negated,
the processor recognizes this as a valid inquire cycle and han-
dles it correctly. However, if EADS is asserted on the clock fol-
lowing the negation of HOLD, the AMD5K86 processor does not
recognize this as a valid inquire cycle.

See the description of HLDA on page 5-76 for additional
details about the HOLD/HLDA protocol.

5-80 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.29 IERR (Internal Error)

Output

Summary The processor drives IERR only in Functional-Redundancy
Checking mode. If the processor is the checker and it detects a
difference in signal outputs between the master and itself, it
asserts IERR. No other errors are reported with IERR.

Driven The processor drives IERR every clock while the processor is
operating as the checker in the Functional-Redundancy Check-
ing mode. If an error is detected, IERR is asserted for one
clock, starting two clocks after the detection of the error.

IERR is only driven in Functional-Redundancy Checking mode
when the processor is the checker, including while PRDY is
asserted within this mode.

Details The processor enters Functional-Redundancy Checking mode
as the checker if FRCMC is asserted at RESET. In this mode,
all of the processor’s output and bidirectional signals (except
IERR and TDO) are floated and tied to those of the master pro-
cessor. Both processors execute the same instructions, and the
checker compares the state of the master’s output and bidirec-
tional signals with the state that the checker itself would have
driven for the same instruction stream.

If a mismatch occurs on such a comparison, the checker asserts
IERR for one clock, two clocks after the detection of the error.
Both the master and the checker continue running the check-
ing program after an error occurs. No action other than the
assertion of IERR is taken by the processor.

No other errors are reported with IERR. Unlike the Pentium
processor, the AMD5K86 processor does not report parity
errors on IERR for every cache or TLB access. Instead, the
AMD5K86 processor fully tests cache parity during the built-in
self test (BIST), which is invoked by asserting INIT during
RESET.

Signal Descriptions 5-81

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.30 IGNNE (Ignore Numeric Error)

Input

Summary The IGNNE input, together with the numeric error (NE) bit in
CR0, controls the behavior of the FERR output where the pro-
cessor reports errors for DOS-compatible, floating-point pro-
grams.

Sampled The processor samples IGNNE every clock during memory
cycles (including cache writethroughs and writebacks), cache
hits of all types, I/O cycles, locked cycles, special bus cycles,
and interrupt acknowledge operations in the normal operating
modes (Real, Protected, and Virtual-8086) and in SMM; or
while AHOLD, BOFF, or HLDA is asserted. IGNNE is not sam-
pled in the Shutdown, Halt, Stop Grant, or Stop Clock states; or
while RESET, INIT, or PRDY is asserted.

System logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously driven setup
and hold times).

Details The FERR and IGNNE signals are designed for backward-com-
patibility with floating-point software designed for 286 and 386
IBM-compatible PC/AT systems running DOS.

If software has cleared the numeric error (NE) bit in CR0 to 0,
unmasked floating-point exception reporting depends on the
state of the IGNNE input, as follows:

■ If the IGNNE input is negated, the processor reports
unmasked floating-point exception conditions in a way that
is compatible with PC/AT systems—the processor asserts
FERR to report the error externally to a busy latch. The
external busy latch generates IRQ13 if FERR is asserted,
and the service routine for IRQ13 can then assert IGNNE to
permit continued processing of floating-point instructions.

■ If the IGNNE input is asserted, FERR is negated and the pro-
cessor does not report unmasked floating-point exception
conditions externally.

IGNNE plays no part in error reporting if the NE bit in CR0 is
set to 1. DOS and Windows-compatible PCs typically clear the
NE bit to 0. Operating systems like Windows NT set the NE bit
to 1. For additional details on the relation between FERR and
IGNNE, see the description of the FERR signal on page 5-65.

5-82 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.31 INIT (Initialization)

Input

Summary The assertion of INIT causes the processor to reinitialize its
system registers and certain other resources, but it preserves
the contents of the caches, the floating-point state, and certain
other resources. If INIT is asserted at RESET, it invokes the
processor’s built-in self test (BIST).

Sampled The processor samples INIT every clock and recognizes it at
the next instruction boundary. INIT is a rising-edge-triggered
interrupt and is latched when sampled. However, in order to
be recognized reliably, the signal must be negated for two
clocks prior to assertion.

INIT is sampled during memory cycles (including cache
writethroughs and writebacks), cache accesses, I/O cycles,
locked cycles, special bus cycles, and interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086); or in the Shutdown, Halt, or Stop Grant
states; or while AHOLD, BOFF, HLDA, or RESET is asserted.
INIT is not sampled in the Stop Clock state or while PRDY is
asserted.

If INIT is asserted on the falling edge of RESET, the processor
performs its built-in self test (BIST) before initialization and
code fetching begin. System logic can drive the signal either
synchronously or asynchronously (see the data sheet for syn-
chronously driven setup and hold times).

If INIT is asserted at the same time as RESET, RESET is recog-
nized but INIT is not. If INIT and NMI are both asserted during
the Stop Grant state (not necessarily simultaneously), the
AMD5K86 processor recognizes the INIT after leaving the Stop
Grant state, then it recognizes the NMI prior to fetching any
instructions. The Pentium processor does not recognize the
NMI.

INIT is the fifth-highest-priority external interrupt. For details
on its relationship to other interrupts and exceptions, see Sec-
tion 5.1.3 on page 5-14 and Table 5-3 on page 5-17.

Details INIT is typically asserted after power-up in response to a BIOS
interrupt that writes to an I/O port. This is often, for example,
in response to the operator’s pressing Ctrl-Alt-Del. The BIOS

Signal Descriptions 5-83

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

writes to a port (such as port 64h in the keyboard controller)
that asserts INIT.

INIT is also used to support 286 software that must return to
Real mode after accessing extended memory in Protected
mode. The 286 processor does not have an INIT input; a transi-
tion from Protected mode to Real mode can only be made on
the 286 processor by asserting RESET. With the INIT signal,
however, the operating system, through a BIOS interrupt, can
cause the transition without loss of cache contents or floating-
point state.

Upon recognizing an INIT interrupt at the next instruction
retirement boundary, the processor performs the following
actions, in the order shown:

1. Flush Pipeline—The processor invalidates the:

• Instruction pipeline

• Translation look-aside buffer (TLB)

2. Reinitialize—The processor reinitializes the following
resources to reset values:

• General-purpose registers

• System registers

3. Jump To BIOS—The processor jumps to the BIOS at address
FFFF_FFF0h, the same entry point used after RESET. (See
the description of RESET on page 5-110 for details on the
aliasing of this boot address.)

Unlike RESET, INIT does not reinitialize the data and instruc-
tion caches, floating-point registers, model-specific registers,
or cache disable (CD) and not-writethrough (NW) bits in CR0.

A20M should not be asserted during the first code fetch follow-
ing the INIT cycle. The operating system alone is responsible
for controlling the state of A20M by writing to an external reg-
ister provided for this purpose. (See the description of A20M
on page 5-19.)

INIT can only be driven at a predictable time, relative to pro-
gram order, by using an I/O write. Due to the signal’s recogni-
tion on an instruction boundary, if initialization is to be
performed immediately after an I/O write, INIT must be held

5-84 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

asserted three clocks before the BRDY of that write in order to
prevent another cycle from starting.

INIT invokes the processor’s built-in self test (BIST) if asserted
at the falling edge of RESET. The BIST runs a series of tests on
the internal hardware that exercise the following resources—
all cache tags (linear and physical) and cache arrays, the entry-
point and instruction-decode PLAs, and the microcode ROM.
At the end of the BIST, a value representing the result of the
tests is stored in the EAX register. Zero means passed and any
other value means failed. The processor continues with its nor-
mal boot process after the BIST completes, whether the BIST
passed or failed.

The processor recognizes BOFF, HOLD, AHOLD, and R/S while
INIT is asserted, but these signals will not intervene in the ini-
tialization process except that they will prevent the first code
fetch (jump to BIOS) after the registers are initialized.

No other exceptions or interrupts will intervene in the initial-
ization process. The first code fetch after the registers are ini-
tialized will occur before another interrupt or exception is
recognized. The processor latches the assertion of any edge-
triggered interrupt (FLUSH, SMI, INIT, NMI) while INIT is
asserted and recognizes latched interrupts in priority order
when INIT is negated. If INIT is asserted during the Stop Grant
state, the signal is held pending until after the processor exits
the Stop Grant state, at which point it is acted upon.

Signal Descriptions 5-85

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.32 INTR (Maskable Interrupt)

Input

Summary The assertion of INTR, if enabled by software (unmasked),
causes the processor to acknowledge the interrupt and enter
an interrupt service routine. The routine is specified by the
vector obtained during the acknowledgment.

Sampled and
Acknowledged

The processor samples INTR every clock and recognizes it at
the next instruction boundary. INTR is a level-sensitive inter-
rupt and must be held asserted until recognized. When recog-
nized, the processor acknowledges it by driving an interrupt
acknowledge bus operation (a cycle pair).

INTR is sampled during memory cycles (including cache
writethroughs and writebacks), cache accesses, I/O cycles,
locked cycles, special bus cycles, and interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086) and in SMM; or in the Halt state. INTR is not
sampled in the Shutdown, Stop Grant, or Stop Clock states; or
while AHOLD, BOFF, or HLDA, RESET, INIT, or PRDY is
asserted.

INTR is the seventh-highest-priority external interrupt. For
details on its relationship to other interrupts and exceptions,
see Section 5.1.3 on page 5-14 and Table 5-3 on page 5-17.

System logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously driven setup
and hold times).

Details In typical PC systems, maskable interrupts are driven to the
processor on INTR from external interrupt-control logic that
prioritizes the interrupts from several I/O devices. The proces-
sor only recognizes INTR if it is enabled in software by setting
the interrupt flag (IF) in the EFLAGS register to 1.

Upon recognizing an INTR interrupt at the next instruction-
retirement boundary, the processor performs the following
actions, in the order shown:

1. Flush Pipeline—The processor invalidates all instructions
remaining in the pipeline.

5-86 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

2. Acknowledge—Drives an Interrupt acknowledge operation
(a cycle pair) on the bus. System logic must return a BRDY
in response to both cycles. Table 5-13 shows the signal val-
ues driven during the first and second bus cycles. Both bus
cycles are reads, but any data returned on the first cycle is
ignored. On the second cycle, the processor samples only
the enabled data byte (D7–D0) to obtain the interrupt vec-
tor. (The interrupt vector is an offset into an interrupt table
containing gate or segment descriptors.) The bus cycles are
driven as a locked pair, with a minimum of one idle clock
between the cycles and with LOCK asserted throughout.
System logic may respond as quickly as it is able; BRDY
operates in the normal manner to terminate each of the two
cycles. The first cycle is provided only for compatibility
with the original protocol; it carries no useful information.

3. Disable Interrupts—The processor clears the IF bit in the
EFLAGS register if (a) the processor is in Real mode, or (b)
the processor is in Protected mode and the interrupt vector
points to an interrupt gate or to a task gate that references
a TSS that has its IF bit cleared. (For details on how the IF
bit is managed in Virtual-8086 mode, see page 3-12.)

4. Service Interrupt—Using the interrupt vector as an entry
point, the processor saves its state and accesses a data
structure set up by the operating system. In Real mode, the
processor accesses the interrupt vector table (IVT); in Pro-
tected mode, it accesses the interrupt descriptor table
(IDT). The vector identifies one of 256 gates (descriptors) in

TABLE 5-13. Interrupt Acknowledge Operation Definition

Processor
Outputs

First Bus Cycle Second Bus Cycle

D/C 0 0

M/IO 0 0

W/R 0 0

BE7–BE0 EFh FEh (low byte enabled)

A31–A3 0 0

D63–D0 (ignored)
Interrupt vector expected from
interrupt controller on D7–D0

Signal Descriptions 5-87

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

the table. The IDT, for example, can contain interrupt, trap,
or task gates, all of which point indirectly to the entry point
of an interrupt service routine.

The interrupt service routine, upon entry, may re-enable inter-
rupts by setting the IF bit in the EFLAGS before servicing the
interrupt. This is typically done if the routine is lengthy, so
that the processor can respond to higher-priority interrupts
while the current interrupt is being serviced, thus allowing
nested interrupts. Upon return from the service routine via an
IRET instruction, the processor pops the contents of the CS,
EIP, and EFLAGS registers (at a minimum) from the stack and
continues where it left off.

System logic typically is not able to determine the instruction
boundary on which the processor recognizes INTR. Thus, as a
practical matter, system logic should hold INTR asserted until
the beginning of the interrupt acknowledge operation, or until
there is some other evidence that the interrupt service routine
has been entered (for example, the access to the IDT address).

The processor disables INTR interrupts during all software
interrupts by clearing the IF bit in EFLAGS. Software may re-
enable INTR interrupts by setting IF to 1 again on entering the
service routine. In this context, software interrupts include:

■ In Real mode, any INTn instruction

■ In Protected mode, any INTn instruction that vectors to an
IDT entry that is an interrupt gate, or that is a task gate
which references a TSS with the interrupt flag (IF) cleared
in its EFLAGS image. (INTn instructions that vector to a
trap gate are not considered software interrupts because
the processor does not clear IF in such cases).

If system logic can leave the INTR signal asserted after the
INTR service routine is entered, the interrupt vector returned
by system logic during the interrupt acknowledge operation
must (in Protected mode) be for an interrupt gate, or for a task
gate that references a TSS with its IF cleared. If the returned
vector is not one of these two types, the processor will again
respond to INTR prior to executing the first instruction of the
service routine, causing an infinite loop.

The processor recognizes BOFF, HOLD, and AHOLD while
INTR is asserted, and these signals will intervene in the INTR

5-88 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

service routine. Other interrupts can intervene in the INTR
interrupt on entry into the INTR service routine.

INTR is not recognized if asserted while AHOLD, BOFF, or
HLDA is asserted, because the processor cannot drive the
interrupt acknowledge operation and therefore cannot obtain
the interrupt vector.

Signal Descriptions 5-89

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.33 INV (Invalidate Cache Line)

Input

Summary During an inquire cycle, the state of INV determines whether
the addressed cache line, if found in the processor’s instruction
or data cache, transitions to the invalid or shared state.

Sampled INV is sampled with the same timing as EADS. See the descrip-
tion of EADS on page 5-59.

Details If INV is asserted when EADS is asserted at the beginning of
an inquire cycle, the processor transitions the line (if found) to
the invalid state, regardless of the state in which the cache line
was found; such cycles are sometimes called invalidate cycles,
or simply invalidations. If INV is negated when EADS is
asserted, the processor transitions the line (if found) to the
shared state. In either case, if the line is found in the modified
state, the processor writes it back to memory before changing
its state.

INV is typically asserted during a write by another caching
master. In such cases, INV can be generated by watching W/R
from another bus master and asserting INV to the processor,
along with EADS, only on writes. This method invalidates a
copy that the processor may have cached, whether modified or
not, for the same location being written by the other bus mas-
ter. The processor’s assertion of HITM and/or HIT does not
influence how INV affects a line found in the cache. Those two
outputs simply indicate whether the line was found (HIT) and
whether a writeback will follow (HITM). If INV is asserted dur-
ing the inquire, the resulting state of the line (invalid) is
entirely determined by INV, without reference to HITM and/or
HIT. If INV is negated during the inquire, the resulting state of
a hit line (shared) is also entirely determined by INV, but sys-
tem logic will not know whether a writeback is imminent with-
out monitoring HITM, and another bus master will not be able
to cache the line in the exclusive state without monitoring HIT.

For a comparison of the states that HITM, HIT, and INV can
assume, see Table 5-11 on page 5-73.

5-90 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.34 KEN (External Cache Enable)

Input

Summary System logic overrides the cacheability of read cycles with
KEN. If KEN is negated during a read cycle, the data returned
to the processor will not be cached. If KEN is asserted at that
time, cacheability and the MESI state of cached lines depends
on the states of the CACHE and PWT outputs and the WB/WT
input.

Sampled The processor samples KEN in the same clock as the first
BRDY of the read cycle or NA, whichever comes first.

KEN is sampled only during memory reads in the normal oper-
ating modes (Real, Protected, and Virtual-8086) and in SMM.
KEN is not sampled during memory writes, inquire cycles, I/O
cycles, locked cycles, special bus cycles, or interrupt acknowl-
edge operations; during the Shutdown, Halt, Stop Grant, or
Stop Clock states; or while BOFF, HLDA, RESET, INIT, or
PRDY is asserted. While AHOLD is asserted, KEN is sampled
only to complete a bus cycle already begun before the asser-
tion of AHOLD.

Details System logic typically maintains a specification of address
cacheability in external registers that are written by BIOS at
boot time. The BIOS does this by knowing or determining the
address ranges of memory-mapped I/O ports and other loca-
tions that should be noncacheable. For example, video and net-
work boards are normally mapped by BIOS to the high-memory
area between 640 Kbyte and 1 Mbyte, an area that is non-
cacheable for both functional and security reasons. (The pro-
cessor would not be able to detect changes in the state of mem-
ory-mapped network or semaphore I/O ports that are cached,
and video frames written to a writeback cache would not be
visible on a display.)

In Protected mode (paging enabled), the operating system can
map linear addresses to physical addresses using pages that it
knows to be cacheable or non-cacheable. But in non-paging
modes, the operating system has no control over cacheability
and the external cacheability registers are the only available
mechanism for determining whether an address is cacheable or
non-cacheable.

Signal Descriptions 5-91

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The processor’s CACHE output can be used to initiate an
address lookup in the external cacheability registers, and the
result of the lookup can be used to drive KEN.

If the address of an access falls within a cacheable range, KEN
must be asserted during the first BRDY or NA of the bus cycle,
whichever comes first. If KEN and CACHE are both asserted
during a memory read, the processor performs the read cycle
as a four-transfer burst that fills a cache line, and four BRDYs
must be returned with the data. If either KEN or CACHE is
negated during the first BRDY or NA of the cycle, the proces-
sor ends the cycle at that BRDY or NA, with only a single quad-
word transfer. The processor ignores KEN during writes or
while CACHE is negated. For details on data-cache MESI state
transitions during reads, see Table 5-9 on page 5-52.

If all of the cache ways in which a potential line fill can be
cached are already filled with valid entries, the processor
selects a line to replace during the line fill. In the data cache, if
the selected line is in the modified state, the processor writes
the modified line back to memory before filling the vacated
cache line with the new contents.

If BOFF is asserted after the first eight bytes, BRDY and KEN
of a cache-line fill are returned, the processor uses the first
eight bytes but it does not cache them, and the line fill is
aborted. When BOFF is negated, the entire bus cycle is
restarted from the beginning and the system must again drive
KEN in the same state that was sampled before the backoff.
Thus, system logic cannot use BOFF to change the state of KEN
and therefore the cacheability status of a line.

On the 486 processor, KEN is sampled twice (on the first and
last transfer of a burst) and must be asserted at both times for
a burst read to be treated as a cache-line fill. On the AMD5K86
and Pentium processors, however, KEN is sampled only on the
first clock of a transfer, during BRDY or NA, whichever is first.

5-92 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.35 LOCK (Bus Lock)

Output

Summary The processor asserts LOCK during certain sequences of bus
cycles that require integrity. To preserve the processor’s han-
dling of these sequences, system logic should prevent other
bus masters from intervening in locked cycles.

Driven and Floated For locked operations, the processor asserts LOCK with ADS
and holds it asserted until the last expected BRDY of the last
bus cycle in the locked operation. The processor negates LOCK
for at least one clock (called a dead or idle clock) between
sequential locked operations.

LOCK is driven during memory cycles and interrupt acknowl-
edge operations in the normal operating modes (Real, Pro-
tected, and Virtual-8086) and in SMM. LOCK is not driven or
not meaningful during cache writethroughs or writebacks, I/O
cycles, or special bus cycles; in the Shutdown, Halt, Stop Grant,
or Stop Clock states; or while BOFF, HLDA, RESET, INIT, or
PRDY is asserted. While AHOLD is asserted, LOCK is driven
only to complete a locked cycle that had been initiated before
AHOLD was asserted.

The processor floats LOCK one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

Details The processor always locks the following types of memory
operations:

■ Interrupt Acknowledge Operations—These are a pair of read
cycles used to obtain an interrupt vector in response to the
assertion of INTR.

■ Descriptor-Table Accesses—These involve segment descrip-
tors in the global descriptor table (GDT), local descriptor
table (LDT) or interrupt descriptor table (IDT) and occur in
Protected mode. The processor performs them during a seg-
ment load to ensure that the Accessed (A) bit in code and
data descriptors is set to 1, or to test and set the Busy (B) bit
in TSS descriptors. The sequence is as follows: (1) the pro-
cessor drives an unlocked read of the descriptor to see if
the relevant bit is set to 1, (2) if the bit is cleared to 0, the
processor then drives a locked read-modify-write to set the
bit to 1. During updates to the Accessed and Busy bits, the
AMD5K86 processor drives a locked four-byte read and

Signal Descriptions 5-93

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

four-byte write sequence. The Pentium processor, however,
drives a locked eight-byte read and one-byte write
sequence.

Independent of these actions by the processor, the operat-
ing system can clear the Accessed or Busy bits to 0 for book-
keeping purposes. The operating system may do this
however it wishes, but if locking is to be used for the mem-
ory accesses it is the operating system’s responsibility to
initiate locking with an XCHG or a LOCK instruction pre-
fix.

■ Page Directory and Page Table Accesses—The processor per-
forms these accesses during each TLB miss to set the
Accessed (A) bit to 1 in the relevant page directory and/or
page table entry, and during each write access to set the
Dirty (D) bit to 1 in the relevant page table entry, if those
bits are not already set. These accesses work in a manner
similar to descriptor table accesses, described immediately
above, except that the operating system typically clears the
Accessed and Dirty bits before the processor sets them, so
that the operating system can thereafter identify pages that
have been accessed and updated.

■ XCHG Instruction—When XCHG is used to swap a register
with a memory location, the access is unconditionally
locked.

■ LOCK Prefix—Applications programs can add the LOCK
prefix to the following instructions if the destination oper-
and resides in memory: ADC, ADD, AND, BT, BTC, BTR,
BTS, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, and XCHG
(redundant). The locking applies only to the bus cycle gen-
erated by that single instruction. Other uses of the LOCK
prefix generate an undefined opcode fault.

Locked operations normally consist of pairs of bus cycles, typi-
cally read followed by write, except in the case of interrupt
acknowledge pairs which are read-read. If the locked cycles
are misaligned, the processor runs multiple pairs of bus cycles,
during which LOCK and SCYC are both asserted throughout.
For example, a misaligned, locked, read-modify-write sequence
appears on the bus as two read cycles followed by two write
cycles. Thus, up to four bus cycles can occur for misaligned
accesses. (The AMD5K86 processor runs certain misaligned bus
cycles in the opposite order from the Pentium processor; see
the description of SCYC on page 5-115 for details.)

5-94 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The processor always negates LOCK for at least one idle clock
between sequential locked operations. For example, if a read-
modify-write is followed by another read-modify-write, there is
an unlocked idle clock (sometimes called a dead clock)
between the two sequences to allow system logic to reallocate
the bus to another bus master. During this idle clock, the pro-
cessor responds to all signals and pending interrupts.

The processor responds to AHOLD and BOFF while LOCK is
asserted, and it recognizes but does not respond to HOLD until
the clock after the last BRDY of the locked operation. The pro-
cessor recognizes all other inputs and outputs used for memory
cycles except KEN, NA, and WB/WT.

Inquire cycles can be driven while LOCK is asserted if AHOLD
is used to obtain the bus for the inquire cycle. If such an
inquire cycle occurs before the last write of the locked opera-
tion and the inquire hits a modified cache location, the write-
back is done in the middle of the locked operation between the
two locked cycles with LOCK asserted during the writeback.
System logic must recognize this case and know that the
inquire cycle is snooping and writing back a different location
than the one that is locked.

Locked operations cannot be performed on cached locations,
and an inquire cycle cannot hit a line that is involved in the
locked operation. The processor prevents this by always check-
ing its cache tags prior to a locked operation. If the location is
cached, it is written back (if necessary) and invalidated prior
to the locked operation. This policy is necessary to support reli-
able semaphores for multiple caching devices, because such
semaphores must never be cached and should only be accessed
using locked operations.

If system logic asserts AHOLD while the processor is complet-
ing a locked cycle already begun before the assertion of
AHOLD, the system must not allow accesses by other bus mas-
ters to lock the same address that the processor is locking.

If BOFF is asserted during a locked operation, only the cycle(s)
aborted before their last BRDY and the cycles not yet run are
restarted after BOFF is negated. Thus, system logic must keep
track of all cycles in the locked operation that have completed
before the assertion of BOFF and must continue the locked
operation immediately after BOFF is negated, except that if a

Signal Descriptions 5-95

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

writeback is pending when BOFF is negated, the writeback
takes precedence over the restarting of the aborted cycles in
the locked operation.

For purposes of interrupts and exceptions, locked operations
are treated by the processor as if the entire multi-cycle opera-
tion were a single instruction. Thus, interrupts and exceptions
are not recognized during locked operations. The processor
samples BUSCHK if it is asserted with any BRDY of a locked
operation, but the processor does not generate an enabled
machine check interrupt for the BUSCHK until after the
locked operation completes, and thus the exception will not
intervene in the locked operation. If an edge-triggered inter-
rupt (FLUSH, SMI, INIT, or NMI) is asserted during a locked
operation, the interrupt is latched and recognized after the
locked operation completes, even if the interrupt signal is not
held asserted until the locked operation completes.

5-96 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.36 M/IO (Memory or I/O)

Output

Summary The processor drives M/IO to indicate whether it is accessing
memory or I/O on the bus. The signal is driven at the same time
as the other two cycle definition signals, D/C and W/R. A spe-
cific encoding of D/C, M/IO, and W/R identifies one of several
special bus cycles.

Driven and Floated M/IO is driven and floated with the same timing as D/C. See the
description of D/C on page 5-54.

Details The processor accesses I/O when it executes an I/O instruction
(any of the INx or OUTx instructions). The processor accesses
memory when it fetches instructions or executes an instruction
that loads or stores data. Accesses to memory-mapped I/O ports
appear on the bus as memory accesses.

Only data (not code) can be read or written from the I/O
address space; the cycle definition for an I/O code read (D/C =
0, M/IO = 0, W/R = 0) defines an interrupt acknowledge cycle,
and the cycle definition for an I/O code write (D/C = 0, M/IO =
0, W/R = 1) defines a special bus cycle.

The processor specifies all special bus cycles with D/C = 0,
M/IO = 0, and W/R = 1. The cycles are then differentiated by
BE7–BE0 and A31–A3.

Signal Descriptions 5-97

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.37 NA (Next Address)

Input

Summary The assertion of NA indicates that external memory is pre-
pared for a pipelined cycle.

Sampled The processor samples NA from one clock after ADS until the
first expected BRDY of a bus cycle.

NA is sampled during memory cycles and writethroughs in the
normal operating modes (Real, Protected, and Virtual-8086)
and in SMM. NA is not sampled during writebacks, I/O cycles,
locked cycles, special bus cycles, or interrupt acknowledge
operations; or in the Shutdown, Halt, Stop Grant, or Stop Clock
states; or while BOFF, HLDA, RESET, INIT, or PRDY is
asserted. While AHOLD is asserted, NA is sampled only to
complete a bus cycle already begun before the assertion of
AHOLD.

Details NA is an input that is asserted when external memory is pre-
pared to accept a pipelined cycle. The AMD5K86 processor
drives the pending ADS two clocks after NA is sampled active.
NA does not generate pipelined cycles when LOCK is asserted,
during writeback cycles, or when there are no pending internal
cycles. Furthermore, locked or writeback cycles are not pipe-
lined. KEN and WB/WT are sampled when NA or BRDY is
asserted, whichever comes first.

Refer to the appropriate data sheet for model-specific details
regarding the operation of NA.

5-98 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.38 NMI (Non-Maskable Interrupt)

Input

Summary The assertion of NMI causes the processor to enter an interrupt
service routine using a predefined interrupt vector.

Sampled The processor samples NMI every clock and recognizes it at the
next instruction boundary. NMI is a rising-edge-triggered inter-
rupt and is latched when sampled. The signal must be negated
for at least four clocks before being asserted.

NMI is sampled during memory cycles (including cache
writethroughs and writebacks), cache accesses, I/O cycles,
locked cycles, special bus cycles, or interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086) and in SMM; in the Shutdown, Halt, or Stop
Grant states; or while AHOLD, BOFF, or HLDA is asserted.
NMI is not sampled in the Stop Clock state, or while RESET,
INIT, or PRDY is asserted.

If INIT and NMI are both asserted during the Stop Grant state
(not necessarily simultaneously), the AMD5K86 processor rec-
ognizes the INIT after leaving the Stop Grant state, then it rec-
ognizes the NMI prior to fetching any instructions. Current
implementations of the Pentium processor do not recognize the
NMI in such cases, although future implementations may.

NMI is the sixth-highest-priority external interrupt. For details
on its relationship to other interrupts and exceptions, see Sec-
tion 5.1.3 on page 5-14 and Table 5-3 on page 5-17.

System logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously driven setup
and hold times).

Details NMI is normally used by system software to report errors such
as parity, low battery, I/O channel check, board removal, time-
out, and other system states that require operator attention. If
such an error occurs, system software can, for example, display
a screen message and wait for the operator to continue opera-
tion, if possible. In this sense, the applications for NMI are sim-
ilar to those for BUSCHK and the Shutdown state, although the
three are not functionally related. In typical PC systems, the
signal is controlled by a system software interrupt to BIOS or a
write to an I/O port (such as port 61h and/or 92h). In spite of its

Signal Descriptions 5-99

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

name, some PC systems allow the interrupt to be masked with
a write to an I/O port (such as port 70h).

Upon recognizing an NMI interrupt at the next instruction
retirement boundary, the processor performs the following
actions, in the order shown:

1. Flush Pipeline—The processor invalidates all instructions
remaining in the pipeline.

2. Service Interrupt—The processor saves its state and
accesses vector 2 in the interrupt vector table (IVT) or
interrupt descriptor table (IDT), depending on whether the
processor is running in Real mode or Protected mode. The
vector identifies a gate descriptor in the table. The IDT, for
example, can contain interrupt, trap, or task gates, all of
which point indirectly to the entry point of an interrupt ser-
vice routine.

The processor recognizes BOFF, HOLD, and AHOLD while
NMI is asserted and these signals will intervene in the NMI ser-
vice routine. The processor latches the assertion of any edge-
triggered interrupt (FLUSH, SMI, INIT, NMI) while BUSCHK
is asserted and recognizes latched interrupts in priority order
when BUSCHK is negated. If NMI is asserted during the Stop
Grant state, the signal is held pending until after the processor
exits the Stop Grant state, at which point it is acted upon.

During SMM, the Pentium processor does not respond to NMI
until the beginning of its response to the first INTR or software
interrupt (INTn) to occur after entering SMM. NMIs can thus
be enabled by using a dummy interrupt. When an INTR or soft-
ware interrupt is recognized, the processor first responds to a
pending NMI interrupt before executing the first instruction of
the INTR handler. By contrast, the AMD5K86 processor recog-
nizes a pending NMI interrupt after returning (via the IRET
instruction) from a prior interrupt.

5-100 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.39 PCD (Page Cache Disable)

Output

Summary The processor drives PCD to indicate the operating system’s
specification of cacheability for the entire current page. Sys-
tem logic can use PCD to control external caching.

Driven and Floated The processor drives PCD from the clock in which ADS is
asserted until the last expected BRDY of the bus cycle.

PCD is driven during memory cycles (including cache
writethroughs and writebacks) and locked cycles in the normal
operating modes (Real, Protected, and Virtual-8086) and in
SMM. While AHOLD is asserted, PCD is driven only to com-
plete a bus cycle that had been initiated before AHOLD was
asserted. PCD is not driven during special bus cycles, or inter-
rupt acknowledge operations; or in the Shutdown, Halt or Stop
Grant states, except for writebacks due to inquire cycles; and
PCD is never driven during the Stop Clock state, or while
BOFF, HLDA, RESET, INIT, or PRDY is asserted.

The processor floats PCD one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

Details If PCD is negated during read misses, the page being accessed
may or may not be cacheable, depending on the state of other
signals. If PCD is asserted during any type of access, the page
is noncacheable. The PCD output affects the processor’s cach-
ing of data only during read misses. It has no effect on the pro-
cessor during read hits, write misses, or write hits, as shown in
Tables 5-17 and 5-18 on page 5-136.

The state of the PCD output is a page-level specification of
cacheability based on the state of several bits written by the
operating system. In Protected mode, the PCD output specifies
the cacheability of the entire page being accessed. The bits
that determine the PCD output are stored in one of the proces-
sor’s control registers or its TLB. Those bits include the cache
disable (CD) bit in CR0, the paging enable (PG) bit in CR0, and
the page cache disable (PCD) bit in one of three locations. The
selection of bits depends on the processor’s operating mode
and the type of access, as follows:

Signal Descriptions 5-101

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

■ In Real mode, or in Protected and Virtual-8086 modes while
paging is disabled (PG bit in CR0 cleared to 0):

PCD output = CD bit in CR0

(Thus, whenever the CD bit in CR0 is set to 1, the PCD out-
put is asserted and the access is non-cacheable.)

■ In Protected and Virtual-8086 modes while caching is
enabled (CD bit in CR0 cleared to 0) and paging is enabled
(PG bit in CR0 set to 1):

For accesses to I/O space, page directory entries, and other
non-paged accesses:

PCD output = PCD bit in CR3

For accesses to 4-Kbyte page table entries or 4-Mbyte
pages:

PCD output = PCD bit in page directory entry

For accesses to a 4-Kbyte pages:

PCD output = PCD bit in page table entry

The method of selecting the PCD bit is similar to that for the
PWT bit, described on page 5-106. The cache disable (CD) and
not-writethrough (NW) bits in CR0 are cleared to 0 for normal,
cacheable operation. If a location is already cached before the
operating system sets a PCD bit to 1, any access to that location
will hit in the cache regardless of the state of the PCD bit or
signal.

CACHE is partially determined by the PCD bit. Thus, the
states of CACHE and PCD are very often the same. CACHE is
never asserted when PCD is asserted. PCD indicates the cache-
ability of an entire page, and CACHE indicates the burstability
of a particular bus cycle; burstability is a necessary but insuffi-
cient condition for determining cacheability. The cacheability
of a particular bus cycle is determined during read cycles when
system logic asserts KEN while the processor asserts CACHE.
KEN not a factor in determining the state of the PCD or
CACHE signals. The processor drives both PCD and CACHE
before it knows the state of KEN. For details, see the descrip-
tions of CACHE and KEN on pages 5-50 and 5-90.

5-102 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.40 PCHK (Parity Status)

Output

Summary The processor asserts PCHK during reads if it detects an even
parity error on one or more bytes of D63–D0 during a read
cycle.

Driven The processor drives PCHK for one clock, two clocks after each
BRDY during read cycles.

PCHK is driven for memory and I/O reads, locked reads, and
interrupt acknowledge operations in the normal operating
modes (Real, Protected, and Virtual-8086) and in SMM, or
while PRDY is asserted. PCHK is not driven during any type of
write cycles or special bus cycles; or during the Shutdown,
Halt, Stop Grant, or Stop Clock states; or while BOFF, HLDA,
RESET, or INIT is asserted. While AHOLD is asserted, PCHK
is driven only to complete a bus cycle already begun before the
assertion of AHOLD.

Details To determine data parity, the bit value driven on DP7–DP0 is
considered with the bit values driven on D63–D0. If the total
number of 1 bits is even for DP7–DP0 and D63–D0, the byte is
considered free of error (thus the term even parity). If the num-
ber of 1 bits is odd, the byte is considered to have an error.
During burst reads, the processor checks all eight bytes of
D63–D0 for errors, with respect to the even parity bit sampled
on DP7–DP0. During single-transfer reads, only the enable
bytes on D63–D0 and the enabled parity bits on DP7–DP0 (as
specified by BE7–BE0) are checked.

If PEN is asserted during the BRDY for a read cycle, and the
processor reports a data parity error on PCHK for that cycle,
the processor latches the physical address and cycle definition
of the failed bus cycle and (optionally) generates a machine
check exception. See the description of PEN on page 5-103 for
details.

If an error is reported on PCHK, the system must nevertheless
return all remaining BRDYs for that bus cycle—one BRDY for
single-transfer cycles and four BRDYs for burst cycles. Systems
that do not implement data parity generation and checking
should tie DP7–DP0 either High or Low and ignore the PCHK
output.

Signal Descriptions 5-103

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.41 PEN (Parity Enable)

Input

Summary System logic can assert PEN to enable cycle information latch-
ing and (optionally) machine check exception generation for
data bus parity errors during read cycles.

Sampled The processor samples PEN every BRDY during read cycles.

PEN is sampled for memory and I/O reads, locked reads, and
interrupt acknowledge operations in the normal operating
modes (Real, Protected, and Virtual-8086) and in SMM, or
while PRDY is asserted. PEN is not sampled during any type of
write cycles or special bus cycles; or during the Shutdown,
Halt, Stop Grant, or Stop Clock states; or while BOFF, HLDA,
RESET, or INIT is asserted. While AHOLD is asserted, PEN is
sampled only to complete a bus cycle already begun before the
assertion of AHOLD.

Details If PEN is asserted when a data parity error is reported on
PCHK, the processor latches the physical address and cycle
definition of the failed bus cycle in its 64-bit machine check
address register (MCAR) and its 64-bit machine check type
register (MCTR). These registers can be read with the RDMSR
instruction. See Section 3.3.5 on page 3-35 for details on this
instruction.

In addition to latching the cycle address and definition, the
processor also generates a machine check exception (12h) if
the MCE bit in CR4 is set to 1 while PEN is asserted. System
logic must then handle the error externally. Typical PC sys-
tems provide a mechanism for asserting NMI during a parity
error.

If PEN is negated, neither the address and cycle definition
latching nor the machine check exception generation occur.

The MCE bit in CR4 also enables the generation of a machine
check exception during bus cycle errors that are indicated on
the BUSCHK input. The machine check mechanism is not, how-
ever, used for address parity errors indicated on APCHK.

5-104 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.42 PRDY (Probe Ready)

Output

Summary The processor asserts PRDY to acknowledge the system logic’s
assertion of R/S or execution of the Test Access Port (TAP)
instruction, USEHDT, and to indicate the processor’s entry
into the Hardware Debug Tool (HDT) mode for debugging.

Driven The processor drives PRDY every clock in response to either
R/S or the TAP instruction, USEHDT. The processor asserts
PRDY at the next instruction boundary after R/S is sampled
Low or when the USEHDT instruction is executed. The latter
causes the processor to assert PRDY without a transition on
R/S. After PRDY is asserted by either means, the processor
negates PRDY on the later of (a) the clearing of the TAP
instruction register, (b) a TAP reset, or (c) after a Low-to-High
transition on R/S.

PRDY is driven in memory cycles (including writethroughs and
writebacks), cache accesses, and I/O cycles in the normal oper-
ating modes (Real, Protected, and Virtual-8086) and in SMM;
in the Shutdown, Halt or Stop Grant states; or while AHOLD,
BOFF, HLDA, or RESET is asserted. PRDY is not driven dur-
ing locked cycles, special bus cycles, or interrupt acknowledge
operations; during the Stop Clock state; or while INIT is
asserted.

Details The HDT is entered either when external debug logic drives
R/S Low or loads the TAP instruction register with the USE-
HDT instruction. If R/S is used to initiate the HDT, the debug
logic must hold R/S Low throughout the debug session. If the
USEHDT instruction is used to initiate the HDT, the processor
asserts PRDY without a transition on R/S.

The processor negates PRDY and begins fetching instructions
for normal operation one clock after a Low-to-High transition
on R/S, or when the TAP instruction register is cleared, or the
TAP is reset.

Debug software can force the processor into SMM, but the pro-
cessor does not recognize SMI or any other interrupts while
PRDY is asserted. If system hardware or software wishes to
assert RESET, it must exit the HDT before asserting RESET.

Signal Descriptions 5-105

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Documentation on the HDT is available under nondisclosure
agreement to test and debug developers. For information, con-
tact your AMD sales representative or field application engi-
neer.

5-106 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.43 PWT (Page Writethrough)

Output

Summary The processor drives PWT to indicate the operating system’s
specification of writeback or writethrough state for the entire
current page. PWT, together with WB/WT, specifies the data-
cache MESI state of cacheable read misses and write hits.

Driven and Floated The processor drives PWT from the clock in which ADS is
asserted until the last expected BRDY of the bus cycle.

PWT is driven during memory cycles (including cache
writethroughs and writebacks), and locked cycles in the nor-
mal operating modes (Real, Protected, and Virtual-8086), and
in SMM, and when PRDY is asserted. If AHOLD is asserted,
PWT is driven only to complete a bus cycle that had been initi-
ated before AHOLD was asserted. PWT is not driven during
special bus cycles or interrupt acknowledge operations; or in
the Shutdown, Halt or Stop Grant states, except for writebacks
due to inquire cycles; and PWT is never driven during the Stop
Clock state, or while BOFF, HLDA, RESET, or INIT is asserted.

The processor floats PWT one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

Details As Table 5-14 shows, lines in the modified or exclusive MESI
state are said to be in the writeback state, which corresponds to
PWT = 0. Lines in the shared MESI state are said to be in the
writethrough state, which corresponds to PWT = 1.

System logic can use PWT output, along with its WB/WT input,
to determine how the processor will control internal caching.
Tables 5-17 and 5-18 on page 5-136 show how the state of PWT
and WB/WT determine the MESI state of a line in the data
cache after a cache-line fill or writeback. If WB/WT is Low or
PWT is High during a read miss or a write hit to a shared line,

TABLE 5-14. PWT, Writeback/Writethrough, and MESI

MESI State Writeback/Writethrough State PWT State

modified writeback 0

exclusive writeback 0

shared writethrough 1

invalid invalid —

Signal Descriptions 5-107

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

the accessed line is cached in, transitions to, or remains in the
shared state after the access. If PWT is Low and WB/WT is
High, the accessed line is cached in, transitions to, or remains
in the exclusive state after a read miss or the first write hit. A
subsequent write to an exclusive line changes it to modified.

The state of the PWT output is based on the state of several
bits written by the operating system. In Protected mode, the
PWT output applies to the entire current page rather than to
the specific bus cycle that the WB/WT output applies to, and it
is the operating system’s (rather than the processor hard-
ware’s) determination of writeback or writethrough state.

The bits that determine the PWT output are stored in a proces-
sor control register or the TLB. Those bits include the paging
enable (PG) bit in CR0 and the page writethrough (PWT) bit in
one of three locations. The selection of bits depends on the pro-
cessor’s operating mode and the type of access, as follows:

■ In Real mode, and in Protected and Virtual-8086 modes
while paging is disabled (PG bit in CR0 cleared to 0):

PWT output = Low (writeback)

■ In Protected and Virtual-8086 modes while paging is
enabled (PG bit in CR0 set to 1):

For accesses to I/O space, page directory entries, and other
non-paged accesses:

PWT output = PWT bit in CR3

For accesses to 4-Kbyte page table entries or 4-Mbyte
pages:

PWT output = PWT bit in page directory entry

For accesses to a 4-Kbyte pages:

PWT output = PWT bit in page table entry

The method of selecting the PWT bit is similar to that for the
PCD bit as described on page 5-100. The cache disable (CD)
and not-writethrough (NW) bits in CR0 are cleared to 0 for nor-
mal, cacheable operation.

In the Hardware Debug Tool (HDT) mode, PWT is only mean-
ingful for cache write misses (PWT = 0 and WB/WT = 1 transi-
tion a shared line to an exclusive line). The signal is not
meaningful during cache read misses in HDT mode, because
the caches are never filled during HDT mode.

5-108 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.44 R/S (Run or Stop)

Input

Summary External hardware and software use R/S to control entry into
and exit from the Hardware Debug Tool (HDT) mode, which
supports access to the processor’s DR7–DR0 debug registers
through an external debug port. The AMD5K86 processor
implements the HDT in a manner different than the Pentium
processor’s Probe mode.

Sampled and
Acknowledged

The processor samples R/S every clock and recognizes it at the
next instruction boundary. R/S is a level-sensitive interrupt
with an internal pullup resistor. It must be held asserted until
recognized. When recognized, the processor acknowledges R/S
by asserting PRDY at the next instruction boundary.

R/S is sampled during memory cycles (including writethroughs
and writebacks), cache accesses, and I/O cycles in the normal
operating modes (Real, Protected, and Virtual-8086) and in
SMM; in the Shutdown, Halt or Stop Grant states; or while
AHOLD, BOFF, HLDA, RESET, or INIT is asserted. R/S is not
sampled during locked cycles, special bus cycles, or interrupt
acknowledge operations; or during the Stop Clock state.

R/S is the second-highest-priority external interrupt. For
details on its relationship to other interrupts and exceptions,
see Section 5.1.3 on page 5-14 and Table 5-3 on page 5-17.

Test logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously driven setup
and hold times).

Details The Hardware Debug Tool (HDT)—sometimes referred to as
the Debug Port or Probe mode—is a collection of signals, regis-
ters, and processor microcode that is enabled when external
debug logic drives R/S Low or loads the processor’s Test Access
Port (TAP) instruction register with the USEHDT instruction.

At the next instruction retirement boundary after system
debug logic drives R/S Low or loads the TAP instruction regis-
ter with the USEHDT instruction, the processor performs the
following actions, in the order shown:

1. Flush Pipeline—The processor invalidates all instructions
remaining in the pipeline.

Signal Descriptions 5-109

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

2. Acknowledge—The processor asserts PRDY to acknowledge
the interrupt and mark entry into the HDT mode. The pro-
cessor does not save its state before asserting PRDY
because it will continue execution at the next instruction
after returning from the debug session, when R/S and
PRDY are negated.

If R/S is used to initiate the HDT, the debug logic must hold R/
S Low throughout the debug session. The processor negates
PRDY and begins fetching instructions for normal operation
one clock after a Low-to-High transition on R/S, or when the
TAP instruction register is cleared or the TAP is reset.

The processor recognizes AHOLD, BOFF, and HOLD while R/S
is Low, and these signals will intervene in the HDT mode when
PRDY is asserted. However, exceptions or interrupts are not
recognized in the HDT mode. The processor latches the asser-
tion of any edge-triggered interrupt (FLUSH, SMI, INIT, NMI)
during the HDT mode and recognizes them in priority order
when PRDY is negated. See Table 5-3 on page 5-17 for the pri-
ority of interrupts and exceptions.

Documentation on the HDT is available under non-disclosure
agreement to test and debug developers. For information, con-
tact your AMD sales representative or field application engi-
neer.

The AMD5K86 processor implements the HDT mode in a man-
ner different than the Pentium processor’s Probe mode. For
details on the processor’s PRDY acknowledgment to R/S, see
page 5-104. For details on TAP testing, see Section 7.8 on page
7-19.

5-110 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.45 RESET (Reset)

Input

Summary The assertion of RESET initializes the processor to the power-
up state.

Sampled The processor samples RESET every clock and recognizes it at
the next instruction boundary. The RESET process begins at
the falling edge of RESET. To be recognized, RESET must be
held asserted for at least 1 ms after VCC and CLK reach specifi-
cation.

The following inputs are sampled on the falling edge of
RESET:

■ BF is sampled to select the frequency ratio between the pro-
cessor’s internal clock and the bus clock (CLK).

■ If FLUSH is asserted, the processor invokes the three-state
(float) test.

■ If FRCMC is asserted, the processor enters Functional-
Redundancy Checking mode as the checker.

■ If INIT is asserted, the processor performs its built-in self
test (BIST) before initialization and code fetching begin.

The processor samples RESET at all times, except in the Stop
Clock state and while INIT or PRDY is asserted. System logic
can drive the signal either synchronously or asynchronously
(see the data sheet for synchronously driven setup and hold
times).

Details RESET is typically asserted at power-up by a power-good sig-
nal from the power supply, which is turned on by a hardware
switch. RESET can also be asserted after power-up. For exam-
ple, pressing a front-panel button can cause a BIOS interrupt to
write to an I/O port (such as port 64h in the keyboard control-
ler). After RESET, the operating system usually determines
the cause of the reset (reset during or after power-up) with
another BIOS interrupt that queries another I/O port (such as
location 0Fh in the CMOS memory at ports 70 and 71h), and it
uses this information to determine whether a full power-on test
(POST) of the system should be run.

Starting at the falling edge of a recognized RESET, the proces-
sor performs the following actions, in the order shown:

Signal Descriptions 5-111

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

1. Flush Pipeline—The processor invalidates the:

• Instruction pipeline

2. Reinitialize—The processor reinitializes the following
resources to reset values:

• General-purpose registers

• System registers

• Floating-point registers

• Model-specific registers (MSRs)

• Data-cache tag directory (linear and physical) and data
array. No writebacks are performed.

• Instruction-cache tag directory (linear and physical) and
instruction array

• Translation look-aside buffer (TLB)

• Branch-prediction bits

• Clears the interrupt flag (IF) in EFLAGS to 0

3. Jump To BIOS—The processor jumps to physical address
FFFF_FFF0h, the same entry point used after INIT, where
it expects to find the BIOS entry point.

The contents of AMD5K86 processor registers at the conclusion
of RESET or INIT is identical to that of the Pentium processor,
except that the CPU ID in EDX is 0000_050xh. The upper byte
of DX (DH) contains 05h and the lower byte of DX (DL) con-
tains 0xh, the processor’s type and stepping identifier.

Table 5-15 shows the contents of registers after RESET or
INIT. Table 5-16 shows the state of the processor’s outputs
after RESET.

TABLE 5-15. Register State After RESET or INIT

Register Contents (hex)

EIP FFFF_FFF0

EFLAGS 0000_0002

EAX 0000_0000

EBX 0000_0000

ECX 0000_0000

EDX 0000_050x

ESI 0000_0000

5-112 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

EDI 0000_0000

EBP 0000_0000

ESP 0000_0000

FPU Stack R7–R0 0000_0000_0000_0000_0000

FPU Exception Pointer 0_0000_0000_0000

CS F000

SS 0000

DS 0000

ES 0000

FS 0000

GS 0000

GDTR base:0000_0000 limit:0000

IDTR base:0000_0000 limit:0000

TR 0000

LDTR 0000

CR0 6000_0010

CR2 0000_0000

CR3 0000_0000

CR4 0000_0000

DR7 0000_0400

DR6 FFFF_0FF0

DR3 0000_0000

DR2 0000_0000

DR1 0000_0000

DR0 0000_0000

TABLE 5-15. Register State After RESET or INIT (continued)

Register Contents (hex)

Signal Descriptions 5-113

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Unlike INIT, RESET reinitializes the processor’s entire state.
In particular, RESET differs by reinitializing the contents of
the caches, floating-point registers, control registers, and
model-specific registers, as well as all other states that are
reinitialized by INIT.

A20M should not be asserted during RESET. The operating
system alone is responsible for controlling the state of A20M
by writing to an external register provided for this purpose.
(See the description of A20M on page 5-19.)

Because the processor boots in Real mode, the memory address
decoder must alias the physical address FFFF_FFF0h to the
physical address 000F_FFF0h, which lies within the 1-Mbyte

TABLE 5-16. Outputs at RESET

Output RESET State

ADS 1

A31–A3 Floating

APCHK 1

BE7–BE0 FFh

BREQ 1

BRDY 1

BRDYC 1

CACHE 1

D/C 0

D63–D0 Floating

DP7–DP0 00h

FERR 1

HIT 1

HITM 1

HLDA 0

LOCK 1

M/IO 0

PCD 0

PCHK 1

PRDY 0

PWT 0

W/R 0

5-114 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

address limit required in Real mode. (The physical address
000F_FFF0h is sometimes written in the selector:offset format
as F000:FFF0.) This reset address behavior of the x86 architec-
ture is due to the special way in which segment translation is
performed on reset. Normally, a Real-mode 16-bit segment
selector is shifted left 4 bits (one hex digit) to form the seg-
ment base, and then added to the 16-bit offset. Thus,
F000:FFF0 in the selector:offset format becomes a segment base
of F0000h added to an offset of FFF0h, yielding the physical
address 000F_FFF0h. When RESET is asserted, however, the
left shift is not done and the high 16 address bits are all set to
1, yielding the physical address FFFF_FFF0h. Thereafter,
address translation only begins to work in the normal Real-
mode manner when the first far jump is executed. This jump
loads the code segment register with a 16-bit segment selector.
This code segment load causes the address translation mecha-
nism to begin working normally. The system logic address
decoder must make this behavior transparent to software by
aliasing the physical address FFFF_FFF0h to the physical
address 000F_FFF0h.

The processor recognizes AHOLD, BOFF, and HOLD while
RESET is asserted, but these signals will not intervene in the
initialization process except that they will prevent the first
code fetch (jump to BIOS) after the registers are initialized.

While RESET is asserted, the processor recognizes or drives
only BF, FLUSH, FRCMC, the hold signals (AHOLD, BOFF,
HOLD, and HLDA), INIT, and R/S.

Unlike the Pentium processor, the AMD5K86 processor does
not recognize RESET in the Hardware Debug Tool (HDT)
mode. System hardware or software must exit the HDT (by
driving R/S High) before asserting RESET.

Signal Descriptions 5-115

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.46 SCYC (Split Cycle)

Output

Summary The processor asserts SCYC during misaligned, locked trans-
fers on the D63–D0 data bus. The processor generates addi-
tional bus cycles to complete the transfer of misaligned data.

Driven and Floated The processor drives SCYC from the clock in which ADS is
asserted until the last expected BRDY of the bus cycle.

SCYC may be driven during any memory and I/O cycles,
whether locked or not, but it is only meaningful during locked
memory cycles in the normal operating modes (Real, Pro-
tected, and Virtual-8086) and in SMM. SCYC is not driven or is
not meaningful during unlocked memory cycles, I/O cycles,
inquire cycles, special bus cycles, or interrupt acknowledge
operations; in the Shutdown, Halt, Stop Grant, or Stop Clock
states; while BOFF, HLDA, RESET, or INIT is asserted; or
while PRDY is asserted. While AHOLD is asserted, SCYC is
driven only to complete a locked memory cycle already begun
before the assertion of AHOLD.

The processor floats SCYC one clock after system logic asserts
BOFF and in the same clock that the processor asserts HLDA.

Details For purposes of bus cycles, the term aligned means:

■ 2- and 4-byte transfers lie within 4-byte address boundaries

■ 8-byte transfers lie within 8-byte address boundaries

(For purposes of exceptions, the term aligned means situated
on the natural boundaries of an instruction or operand. Thus, a
2-byte transfer that crosses a 2-byte address boundary may
incur an alignment exception, but it will be performed as an
aligned bus cycle.)

If data on D63–D0 is misaligned, the processor generates addi-
tional bus cycles to complete the transfer. For example, if a 4-
byte transfer begins at address x07h, one byte is transferred
during the first bus cycle and the remaining three bytes are
transferred during a second bus cycle, which normally occurs
immediately after the first bus cycle (unless intervened, such
as by an interrupt or bus backoff). If the misaligned transfer is
run as a locked cycle, the processor asserts both LOCK and
SCYC throughout the misaligned sequence of bus cycles.

5-116 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

If memory reads, memory writes, or I/O reads are misaligned,
the AMD5K86 processor runs the bus cycles in the opposite
order of the Pentium processor. The AMD5K86 processor trans-
fers the low-address portion followed by the high-address por-
tion instead of the high-address portion followed by the low-
address portion.

I/O writes, however, are performed in the same order on both
processors.

Signal Descriptions 5-117

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.47 SMI (System Management Interrupt)

Input

Summary The assertion of SMI causes the processor to enter System
Management Mode (SMM). In this mode, which can be trans-
parent to standard system and application software, an SMM
interrupt service routine accesses a memory space separate
from main memory. SMM is most commonly used for power
management, although it is not limited to these functions.

Sampled and
Acknowledged

The processor samples SMI every clock and recognizes it at the
next instruction boundary. SMI is a falling-edge-triggered
interrupt with an internal pullup resistor. It is latched when
sampled. When recognized, SMI is acknowledged with SMI-
ACT after the later of (a) the last expected BRDY of any in-
progress bus cycle, or (b) the assertion of EWBE with or follow-
ing the last expected BRDY. SMI must be negated for at least
four clocks before being asserted. It must be asserted at least
three clocks before BRDY if it is to be recognized on the
instruction boundary associated with that BRDY.

SMI is sampled during memory cycles (including cache
writethroughs and writebacks), cache accesses, I/O cycles,
locked cycles, special bus cycles, and interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086) and in SMM; in the Shutdown, Halt, or Stop
Grant states; or while AHOLD, BOFF, or HLDA is asserted.
SMI is not sampled in the Stop Clock state, or while RESET,
INIT, or PRDY is asserted.

SMI is the fourth-highest-priority external interrupt. For
details on its relationship to other interrupts and exceptions,
see Section 5.1.3 on page 5-14 and Table 5-3 on page 5-17.

System logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously-driven setup
and hold times).

Details SMI is typically driven by a power management block of sys-
tem logic that monitors activity on processor outputs, such as
the address and cycle definition signals in conjunction with a
timer. An SMM interrupt service routine in firmware controls
events during SMM. The most common applications involve
power management via clock and/or I/O device control. For
example, the external power management logic may notice

5-118 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

that an I/O device has not been accessed for several minutes.
The power management logic can then assert SMI, and the
SMM service routine can obtain relevant information from the
power management logic with which to make power-down deci-
sions under program control. These decisions can be communi-
cated back to the power management logic, which in turn can
power the I/O device down and assert STPCLK to the proces-
sor.

Upon recognizing an SMI interrupt at the next instruction
retirement boundary, the processor performs the following
actions, in the order shown:

1. Flush Pipeline—The processor invalidates all instructions
remaining in the pipeline.

2. Complete In-Progress Cycle—If the processor had begun a
bus cycle when SMI was asserted, the processor completes
the bus cycle and waits until the system asserts the last
expected BRDY and also asserts EWBE.

3. Acknowledge—After sampling EWBE asserted, the proces-
sor asserts SMIACT to acknowledge the interrupt. At that
point, system logic must ensure that all memory accesses
during SMM are to the SMM memory space.

4. Save Processor State—The processor saves its state in a 512-
byte SMM state-save area at the top of the 32-Kbyte SMM
memory area, starting at default physical location
0003_FFFFh and filling down.

5. Disable Interrupts and Debug Traps—The processor disables
maskable interrupts by clearing the interrupt flag (IF) in
EFLAGS, disables NMI interrupts, clears the trap flag (TF)
in EFLAGS, and clears the DR7–DR6 debug control and sta-
tus registers.

6. Service Interrupt—The processor jumps to the entry point of
the SMM service routine at the SMM base physical address,
whose default is 0003_8000h in SMM memory. The SMM
base address can be rewritten with another address while
the processor is in SMM. The new address is written to the
SMM base slot in the SMM state-save area and is stored
internally in the processor.

The processor does not assert SMIACT until it sees EWBE
asserted. This ensures that any write data in external write
buffers is written to the proper memory space (main memory,

Signal Descriptions 5-119

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

not SMM memory) before address decoding switches memory
references to the SMM memory space. If no bus cycle is in
progress when SMI is asserted, or if the system does not imple-
ment external write buffers, system logic may assert EWBE at
the same time as SMI or at some later time. If a bus cycle is in
progress when SMI is asserted, EWBE must be asserted with
the last expected BRDY or later.

The default physical location for the 64-Kbyte SMM memory
area is between 0003_0000h and 0003_FFFFh, of which a mini-
mum 32-Kbyte region between 0003_8000h and 0003_FFFFh
must be populated with RAM. The memory controller normally
uses the processor’s assertion of SMIACT to enable SMM mem-
ory. The BIOS and system logic typically remap the SMM mem-
ory area from its default location in low memory to high or
extended memory. System logic must ensure that, during
SMM, all memory accesses are to this SMM memory area or a
remapped location.

In general, system designs that do not overlap the address
space of SMM memory and main memory are simpler and may
perform better. However, if SMM memory space overlaps main
memory space that is cacheable, FLUSH must be asserted
when SMI is asserted so that memory accesses in SMM do not
hit locations cached from main memory. The FLUSH is per-
formed first, because it is a higher-priority interrupt.

If SMM memory is to be cacheable, FLUSH should also be
asserted with SMI when entering SMM, and the SMM service
routine should execute the WBINVD instruction to invalidate
the caches when leaving SMM, just prior to executing the RSM
instruction. If SMM memory is to be noncacheable, KEN must
be negated when FLUSH and SMI are asserted.

SMM addresses and operands default to 16 bits, addresses are
translated in the same manner as in Real mode, and the full 4
Gbytes can be accessed without a segment limit violation.
Unlike the Pentium processor, the AMD5K86 processor does
not recognize A20M in SMM. The processor exits SMM (that is,
the SMM service routine) when it executes the RSM instruc-
tion. This instruction causes the processor to copy the contents
of the SMM state-save area into the processor’s registers and
flush the instruction pipeline. Then, the processor continues
executing instructions at the location specified by the CS:EIP
value from the state-save area (which will be where the proces-

5-120 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

sor left off when it recognized SMI, unless the value is altered
by the SMM service routine).

If the assertion of SMI was recognized on the boundary of an
I/O instruction, the I/O trap restart feature of SMM can option-
ally be used to restart the I/O instruction when returning from
SMM. The SMM service routine can implement this restart fea-
ture by writing the value 00FFh into the I/O trap restart slot of
the SMM state-save area. If the value is 00FFh (rather than its
default, 0000h) upon return from SMM, the processor decre-
ments the instruction pointer and re-executes the I/O instruc-
tion. This is useful, for example, if an I/O write to disk finds the
disk powered down. The external power management logic
monitoring such an access can assert SMI. In this case, the
SMM service routine would query power management logic,
find a failed I/O write, take action to power up the I/O device,
enable the I/O restart feature by writing the value FFh into the
I/O trap restart slot, and return.

During a simultaneous SMI I/O trap (for I/O instruction restart)
and debug breakpoint trap, the AMD5K86 processor responds
to the SMI first and postpones writing the exception-related
information to the stack until after the return from SMM via
the RSM instruction. (If debug registers DR3–DR0 are used in
SMM, they must be saved and restored by the SMM software;
the processor automatically saves and restores DR7–DR6.) If
the I/O trap restart slot in the SMM state-save area is written
with the value FFh when the RSM instruction is executed, the
debug trap does not occur until after the I/O instruction is re-
executed.

The processor recognizes AHOLD, BOFF, and HOLD while
SMIACT is asserted and these signals will intervene in the
SMM service routine. After assertion of SMI, subsequent asser-
tions of SMI are masked so as to prevent recursive entry into
SMM. Any other type of exception or interrupt, however, will
intervene in the SMM service routine, although the INTR and
NMI interrupts are managed in a special way as described in
the paragraph below. If SMI is asserted during the Stop Grant
state, the signal is held pending until after the processor exits
the Stop Grant state, at which point it is acted upon.

When SMM is entered, the processor disables both INTR and
NMI interrupts. On both the AMD5K86 and Pentium proces-
sors, INTR interrupts are disabled by clearing the IF flag in

Signal Descriptions 5-121

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

EFLAGS. But the mechanism by which NMI interrupts are dis-
abled and subsequently recognized differs between the
AMD5K86 and Pentium processors.

During SMM, the Pentium processor does not respond to NMI
until the beginning of its response to the first INTR or software
interrupt (INTn) to occur after entering SMM. NMIs can thus
be enabled by using a dummy interrupt. When an INTR or soft-
ware interrupt is recognized, the processor first responds to a
pending NMI interrupt before executing the first instruction of
the INTR handler. By contrast, the AMD5K86 processor recog-
nizes a pending NMI interrupt after returning (via the IRET
instruction) from a prior interrupt.

The same dummy interrupt used on the Pentium processor to
enable NMI recognition during SMM works on the AMD5K86
processor. The only difference is that the AMD5K86 processor
responds to the NMI after the IRET of the dummy interrupt
whereas the Pentium processor responds at the beginning of
the dummy interrupt.

During debugging using the R/S and PRDY protocol, the
debugger can force the processor into SMM but the processor
will not recognize SMI in the Hardware Debug Tool (HDT)
mode.

For further details on the System Management Mode, see
Chapter 6.

5-122 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.48 SMIACT (System Management Interrupt Active)

Output

Summary The processor acknowledges the assertion of SMI with the
assertion of SMIACT. The acknowledgment signifies the pro-
cessor’s readiness to enter System Management Mode (SMM)
and begin executing the service routine for that interrupt
mode.

Driven The processor drives SMIACT from after the later of (a) the
last expected BRDY of any in-progress bus cycle, or (b) the
assertion of EWBE with or following the last expected BRDY,
until the return from the SMM interrupt handler via the RSM
instruction.

SMIACT is driven during memory cycles (including cache
writethroughs and writebacks), cache accesses, I/O cycles,
locked cycles, special bus cycles, and interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086) and in SMM; in the Shutdown, Halt, or Stop
Grant states; or while AHOLD, BOFF, HLDA, or PRDY is
asserted. SMIACT is not driven in the Stop Clock state, or
while RESET is asserted.

Details The memory controller normally uses the assertion of SMIACT
to enable SMM memory, so that the first memory access in
SMM is to the base of the state-save area in the SMM memory
space.

The processor remains in SMM, continuing to assert SMIACT,
until it executes the RSM instruction. For more information
regarding SMM, see the description of SMI on page 5-117, Sec-
tion 6.1.4 on page 6-5, and Section 6.3 on page 6-23.

Signal Descriptions 5-123

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.49 STPCLK (Stop Clock)

Input

Summary The assertion of STPCLK causes the processor to complete any
in-progress bus cycle and enter the Stop Grant state (proces-
sor’s internal clock stopped), from which it can subsequently
transition to the Stop Clock state (bus clock stopped). These
low-power clock states can be entered from the normal operat-
ing modes, system management mode (SMM), or the Halt state.

Sampled and
Acknowledged

The processor samples STPCLK every clock and recognizes it
at the next instruction boundary. STPCLK is a level-sensitive
interrupt with an internal pullup resistor. The signal must be
held asserted until recognized. When STPCLK is recognized
and EWBE is asserted, the processor acknowledges it by driv-
ing a Stop Grant special bus cycle, waits for BRDY, then stops
its internal clock and floats D63–D0 and DP7–DP0.

STPCLK is sampled during memory cycles (including cache
writethroughs and writebacks), cache accesses, I/O cycles,
locked cycles, special bus cycles, and interrupt acknowledge
operations in the normal operating modes (Real, Protected,
and Virtual-8086) and in SMM; or in the Shutdown, Halt, or
Stop Grant states. STPCLK is not sampled in the Stop Clock
state, or while RESET, INIT, or PRDY is asserted. STPCLK is
not meaningful if it is asserted while AHOLD, BOFF, or HLDA
is asserted, because the processor cannot drive the Stop Grant
special bus cycle.

STPCLK is the lowest-priority external interrupt. For details
on its relationship to other interrupts and exceptions, see Sec-
tion 5.1.3 on page 5-14 and Table 5-3 on page 5-17.

System logic can drive the signal either synchronously or asyn-
chronously (see the data sheet for synchronously driven setup
and hold times).

Details In typical PC systems that implement power control, the STP-
CLK, CLK, and SMI signals are driven by external power man-
agement logic. This logic monitors activity on the address and
cycle definition signals. In a typical case, the power manage-
ment logic may notice that, after having initiated SMM to
power down one or more I/O devices, another several minutes
have elapsed without activity. Power management logic can
again assert SMI, the SMM service routine would obtain the

5-124 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

relevant information and decide to power itself (the processor)
down, and the decision would be communicated to the power
management logic, which would assert STPCLK to the proces-
sor and, optionally, stop driving CLK to the processor and
other logic.

Upon recognizing a STPCLK interrupt at the next instruction
retirement boundary, the processor performs the following
actions, in the order shown:

1. Flush Pipeline—The processor invalidates all instructions
remaining in the pipeline.

2. Complete In-Progress Cycle—If the processor had begun a
bus cycle or locked operation when STPCLK was asserted,
the processor completes the bus cycle and waits until the
system asserts the last expected BRDY and also asserts
EWBE. If no bus cycle is in progress, system logic must
assert EWBE at the same time or at some time after it
asserts STPCLK.

3. Acknowledge—After sampling both EWBE asserted, the pro-
cessor drives a Stop Grant special bus cycle. This cycle is
identified by D/C = 0, M/IO = 0, W/R = 1, BE7–BE0 = FBh
and A31–A3 = 10h. System logic must respond with BRDY.

4. Stop Internal Clock—When system logic returns BRDY for
the Stop Grant special bus cycle, the processor stops its
internal clock and floats D63–D0 and DP7–DP0.

5. (Optional) Stop Bus Clock—After returning BRDY in
response to the Stop Grant special bus cycle, power man-
agement logic can transition to the Stop Clock state by stop-
ping CLK while STPCLK is held asserted. This reduces
power consumption to its minimum.

STPCLK must be held asserted throughout the Stop Grant and
(if entered) Stop Clock states. Within less than 10 clocks after
STPCLK is negated, the processor returns to the state from
which it entered Stop Grant and can recognize any latched
interrupts or drive ADS.

The processor enters the Halt state from the normal operating
modes (Real, Protected or Virtual-8086) or SMM when it exe-
cutes the HLT instruction. The processor leaves the Halt state
and returns to its prior operating mode when RESET, SMI,
INIT, NMI, or INTR is asserted. If STPCLK is asserted within

Signal Descriptions 5-125

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

the Halt state, the processor transitions to the Stop Grant
state; it then returns to the Halt state when STPCLK is
negated. No processor registers are saved before entering the
Halt state because the processor returns to the next unexe-
cuted instruction in program order when it returns to its prior
operating mode. Within the Halt state, the processor disables
the majority of its internal clock distribution and (if STPCLK
is asserted) the internal pullup resistor on STPCLK. However,
its phase-lock loop still runs, its key internal logic is still
clocked, most of its inputs and outputs retain their last state
(except D63–D0 and DP7–DP0, which are floated), and it still
responds to input signals.

The assertion of STPCLK causes the processor to enter the
Stop Grant state. The processor can enter the Stop Grant state
from the normal operating modes (Real, Protected or Virtual-
8086), SMM, or the Halt state. When STPCLK is negated, the
processor leaves the Stop Grant state and returns to the mode
from which it entered. If the Stop Grant state was entered from
the Halt state, negation of STPCLK returns the processor to
the Halt state. Otherwise, negation of STPCLK or assertion of
RESET returns the processor to a normal operating mode
(Real, Protected or Virtual-8086) or SMM. If INIT is asserted in
the Stop Grant state, the signal is latched and acted upon after
STPCLK is negated. No processor registers are saved before
entering the Stop Grant state because the processor returns to
the next unexecuted instruction in program order when it
returns to its prior operating mode. Within the Stop Grant
state (as in the Halt state) the processor disables the majority
of its internal clock distribution and (if STPCLK is asserted)
the internal pullup resistor on STPCLK. However, its phase-
lock loop still runs, its key internal logic is still clocked, most
of its inputs and outputs retain their last state (except D63–D0
and DP7–DP0, which are floated), and it still responds to input
signals.

An inquire cycle driven while the processor is in the Stop
Grant state or the Halt state causes the processor to transition
to the Stop Grant Inquire state. As for inquire cycles driven
from any other state, system logic must assert AHOLD, BOFF,
or HOLD to obtain the address bus before driving EADS, INV,
and the inquire address. The processor responds normally by
driving HITM and/or HIT and performing any necessary cache-
state transition. If HITM is asserted, the processor drives a nor-

5-126 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

mal writeback (immediately if AHOLD is asserted, or delayed
if BOFF or HOLD are asserted) and returns to the state from
which it entered the Stop Grant Inquire state in the clock in
which it negates HITM. If HITM is not asserted, the processor
returns two clocks after EADS.

The processor enters the Stop Clock state when system logic
turns off CLK while STPCLK is asserted. This is the minimum-
power state and it can only be entered from the Stop Grant
state after BRDY has been returned for the Stop Grant special
bus cycle. In the Stop Clock state, the processor’s phase-lock
loop and I/O buffers are disabled, except for the I/O buffers on
CLK and the Test Access Port (TAP) signals. System logic
should not change the state of any signals, and the processor
does not recognize any signal edges in the Stop Clock state.
When CLK is restarted, the processor returns to the Stop Grant
state, responds to inputs in the next clock, but cannot drive bus
cycles until its phase-lock loop is synchronized. The latter
takes several clocks (see the data sheet for this specification).
The CLK can be driven with a different frequency, and/or the
bus-to-processor clock ratio can be changed on the BF input
upon restarting CLK.

Thus, when CLK is restarted, the processor can:

■ Respond to AHOLD, BOFF, or HOLD in the next clock after
CLK restarts, and

■ Transition to the Stop Grant Inquire state as early as two
clocks after the assertion of AHOLD, two clocks after the
assertion of BOFF, or one clock after the assertion of HLDA
(if system logic drives an inquire cycle with EADS, INV and
an inquire address) and

■ Drive HITM and/or HIT two clocks after EADS.

However, if the inquire cycle hits a modified line, the processor
does not drive the writeback until several clocks after CLK
restarts (see the data sheet). In this case, the only indication
system logic receives of the writeback is the ADS that initiates
it.

Thus, the processor recognizes AHOLD, BOFF, and HOLD dur-
ing the Stop Grant and Stop Grant Inquire states but not dur-
ing the Stop Clock state. When asserted in the Stop Grant
state, these signals cause the processor to restart its internal
clock and transition to the Stop Grant Inquire state. When the

Signal Descriptions 5-127

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

processor is in the Stop Clock state, however, CLK must be
restarted before any other signals are changed.

STPCLK is the lowest-priority interrupt, as shown in Table 5-3
on page 5-17. R/S is the only interrupt or exception that is
acted upon while STPCLK is asserted, but R/S is only acted
upon in the Stop Grant state, not the Stop Clock state. Edge-
triggered interrupts (FLUSH, SMI, INIT, NMI) are not latched
in the Stop Clock state; however, they are latched in the Stop
Grant state and are recognized after STPCLK is negated.

The AMD5K86 and Pentium processors differ in their support
for STPCLK in the following ways:

■ In the Halt state, the AMD5K86 processor responds to STP-
CLK by entering the Stop Grant state. The Pentium proces-
sor ignores STPCLK in the Halt state.

■ The Pentium processor guarantees that at least one instruc-
tion will be executed between the negation of STPCLK and
a subsequent reassertion of STPCLK. The AMD5K86 proces-
sor does not guarantee this.

■ In the Halt or Stop Grant states, the AMD5K86 processor
cannot enter a low-power state if it does not have the bus
(that is, if AHOLD, BOFF or HLDA is asserted). The same
may not be true of the Pentium processor.

For further details on clock control and power management,
see Section 6.4 on page 6-33 and Section 6.6 on page 6-40.

5-128 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.50 TCK (Test Clock)

Input

Summary TCK is the clock for boundary-scan testing using the Test
Access Port (TAP).

Sampled The processor always samples TCK, except while RESET or
INIT is asserted. The signal has an internal pullup resistor.

Details Data and state definition are clocked into the processor on the
rising edge of TCK. The outputs on TDO are driven valid on the
falling edge of TCK. When TCK stops on its falling edge, the
state of test latches in the processor are held.

Section 7.8 on page 7-19 summarizes the implementation of
TAP testing on the AMD5K86 processor. System logic should
tie TCK High if TAP testing is not implemented.

See the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1) specification for details on how the
TAP signals and instructions are used for testing. The TAP is
often called the Joint Test Action Group (JTAG) port, after the
committee that proposed the IEEE TAP standard.

Signal Descriptions 5-129

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.51 TDI (Test Data Input)

Input

Summary TDI carries input test data and instructions for testing on the
Test Access Port (TAP).

Sampled The processor samples TDI every rising TCK edge, but only
during the shift_IR and shift_DR states. TDI has an internal
pullup resistor.

TDI is always sampled, except while RESET or INIT is
asserted.

Details Instructions are shifted into the processor on TDI during the
shift_IR TAP state. Data are shifted into the processor on TDI
during the shift_DR TAP state.

See the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1) specification for a description of
how the TAP signals and instructions are used for testing.

5-130 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.52 TDO (Test Data Output)

Output

Summary TDO carries output data for testing on the Test Access Port
(TAP).

Driven and Floated The processor drives TDO every falling TCK edge, but only
during the shift_IR and shift_DR states. It is floated at all other
times.

TDO is always driven, except when floated and while RESET
or INIT is asserted.

Details Instructions are shifted out of the processor on TDO during the
shift_IR TAP state. Data are shifted out of the processor on
TDO during the shift_DR TAP state.

See the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1) specification for a description of
how the TAP signals and instructions are used for testing.

Signal Descriptions 5-131

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.53 TMS (Test Mode Select)

Input

Summary TMS specifies the test function and sequence of test changes
for testing on the Test Access Port (TAP).

Sampled The processor samples TMS every rising TCK edge. TMS has
an internal pullup resistor.

TMS is always sampled, except while RESET or INIT is
asserted.

Details If TMS is asserted for five or more clocks, the TAP controller
enters its test-reset-logic state, regardless of the controller
state. This action is the same as that achieved by asserting
TRST.

See the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1) specification for a description of
how the TAP signals and instructions are used for testing.

5-132 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.54 TRST (Test Reset)

Input

Summary The assertion of TRST initializes the Test Access Port (TAP) by
resetting its state machine.

Sampled TRST is an asynchronous input. Unlike other asynchronous
inputs, no synchronous setup and hold time are specified for
TRST. TRST has an internal pullup resistor.

TRST is always sampled, except while RESET or INIT is
asserted.

Details When TRST is asserted, the TAP controller enters its test-
reset-logic state, regardless of the controller state. This action
is the same as that achieved by holding TMS asserted for five
or more clocks. The assertion of TRST is unnecessary at
RESET because the processor performs the TAP reset auto-
matically at that point.

See the IEEE Standard Test Access Port and Boundary-Scan
Architecture (IEEE 1149.1) specification for a description of
how the TAP signals and instructions are used for testing.

Signal Descriptions 5-133

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.2.55 W/R (Write or Read)

Output

Summary The processor drives W/R to indicate whether it is performing
a write or read cycle on the bus. The signal is driven at the
same time as the other two cycle definition signals: D/C and
M/IO. A specific encoding of D/C, M/IO and W/R identifies one
of several special bus cycles.

Driven and Floated W/R is driven and floated with the same timing as D/C. See the
description of D/C on page 5-54.

Details The processor drives W/R according to whether the access is
initiated by the processor’s fetch logic (which can initiate only
reads) or its load/store logic (which can initiate reads or writes
of operands). Such accesses can be done speculatively. Before
the processor fetches an instruction or reads or writes a data
operand, it checks the associated code or data segment
descriptor to verify that such action is permitted. The execute
(E) bit in the segment descriptor maintained by the operating
system distinguishes between data and code segments, and the
(R/W) bit specifies the segment’s read and write properties.
Code segments can only be read; data and stack segments can
read-only or read-write.

The processor specifies all special bus cycles with D/C = 0,
M/IO = 0 and W/R = 1. The cycles are then differentiated by
BE7–BE0 and A31–A3.

At the falling edge of RESET, the states of BRDYC and BUS-
CHK control the drive strength on the A21–A3 (not including
A31–A22), ADS, HITM, and W/R signals. The drive strength is
weak for all states of BRDYC and BUSCHK except when
BRDYC and BUSCHK are both Low, in which case the drive
strength is strong. The A31–A22 signals use the weak drive
strength at all times. See the data sheet for details.

5-134 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.2.56 WB/WT (Writeback or Writethrough)

Input

Summary WB/WT, together with PWT, specifies the data-cache MESI
state of cacheable read misses and write hits.

Sampled The processor samples WB/WT in the same clock as the first
BRDY of a bus cycle or NA, whichever comes first.

WB/WT is sampled during memory reads and writes, including
writebacks, in the normal operating modes (Real, Protected,
and Virtual-8086) and SMM, and when PRDY is asserted. WB/
WT is not sampled during I/O cycles, locked cycles, special bus
cycles, or interrupt acknowledge operations; or during the
Shutdown, Halt, Stop Grant, or Stop Clock states; or while
BOFF, HLDA, RESET, or INIT is asserted. While AHOLD is
asserted, WB/WT is sampled only to complete a bus cycle
begun before the assertion of AHOLD.

Details Lines in the shared MESI state are said to be in the
writethrough state. Those in the exclusive or modified MESI
state are said to be in the writeback state. When a write access
either misses the data cache or hits a shared line in the data
cache, the processor drives a 1-to-8-byte write cycle (called a
writethrough) on the bus. When an inquire cycle, internal
snoop, FLUSH operation, or WBINVD instruction hits a modi-
fied line in the data cache, the processor drives a 32-byte burst
write cycle (called a writeback) on the bus. Table 2-2 on page 2-
19 shows the relationships between cache accesses,
writethroughs, and writebacks.

WB/WT and PWT determine the MESI state of a cache line
after a read miss (and resulting cache-line fill) or a write hit.
During read misses, these two signals are interpreted along
with the states of the CACHE output and the KEN input. Dur-
ing write hits, WB/WT and PWT alone determine the resulting
MESI state of a cache line. Tables 5-17 and 5-18 shows the rela-
tionship between WB/WT and PWT for reads (Table 5-17) and
writes (Table 5-18). If WB/WT is Low or PWT is High during a
read miss or write hit, the accessed line is cached in, transi-
tions to, or remains in the shared state after the read or write.
If PWT is Low and WB/WT is High, the accessed line is cached
in, transitions to, or remains in the exclusive state after a read
miss or the first write hit to that line. If the line transitions to

Signal Descriptions 5-135

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

the exclusive state, a subsequent write hit to the same line tran-
sitions the line to the modified state. During write hits, the
states of PWT and WB/WT can only change a line from shared
to exclusive; it cannot change an exclusive line to a shared line.

TABLE 5-17. MESI-State Transitions for Reads

Signal or Event

Result of Cache Lookup

Read Miss
Read Hit

shared exclusive modified

CACHE, PCD1 1 — 0 0 0 — — —

KEN — 1 0 0 0 — — —

PWT — — 1 — 0 — — —

WB/WT — — — 0 1 — — —

Cache-Line Fill
(32 bytes)

no no yes yes yes no no no

State After Read2 — — shared shared exclusive shared exclusive modified

Notes:
— Don’t care or not applicable.
1. The PCD bit is one determinant of the state of CACHE.
2. Transition occurs after any line fill. Lines in shared MESI state are said to be in writethrough state. Those in exclusive or modified

MESI states are said to be in writeback state.

5-136 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

In single-processor systems with no other caching master, WB/
WT is typically tied High. This allows the processor to cache all
cacheable reads in the exclusive state, and all cacheable writes
update only the cache. In systems with multiple caching mas-
ters, WB/WT can be generated after inquire cycles to all other
caching masters by the logical OR of HIT from all of the mas-
ters. This allows the processor to cache reads in the exclusive or
modified state only if no other master has a copy.

While the writeback configuration usually supports higher per-
formance, the writethrough configuration is required for cer-
tain transitions in the write-once cache protocol. For details on
this protocol, see Section 6.2.6 on page 6-19.

During the Hardware Debug Tool (HDT) mode, WB/WT is only
meaningful for cache write misses (PWT = 0 and WB/WT = 1
transition a shared line to an exclusive line). The signal is not
meaningful during cache read misses in the HDT mode,
because the caches are never filled in the HDT mode.

For more details on data-cache MESI state transitions during
reads, see Table 5-9 on page 5-52 and Section 6.2.2 on page 6-9.

TABLE 5-18. MESI-State Transitions for Writes

Signal or Event

Result of Cache Lookup

Write Miss

Write Hit

shared exclusive
or modified

CACHE, PCD1 — — — — —

KEN — — — — —

PWT2 — 1 — 0 —

WB/WT — — 0 1 —

Cache Update no yes yes yes yes

Write to Memory writethrough
(1 to 8 bytes)

writethrough
(1 to 8 bytes)

writethrough
(1 to 8 bytes)

writethrough
(1 to 8 bytes) no

State After Write3 — shared shared exclusive modified

Notes:
— Don’t care or not applicable.
1. The PCD bit is negated and CACHE is asserted during a write hit, but these states do not affect the hit.
2. The PWT bit in the page table entry or CR3.
3. Transition occurs after any write to memory. Lines in shared MESI state are said to be in writethrough state. Those in exclusive or

modified MESI states are said to be in writeback state.

Bus Cycle Overview 5-137

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.3 Bus Cycle Overview

The bus signals described in the previous section combine to
form various types of bus transactions, or bus cycles. This sec-
tion summarizes the general features of the bus cycles: cycle
definition, addressing, alignment, and priorities. Section 5.4
describes the signal timing for specific types of bus cycles.

5.3.1 Cycle Definitions

The processor begins driving a bus cycle when it asserts ADS.
Concurrent with ADS, it drives the set of signals indicated in
Table 5-19, which define the type of bus cycle. For memory
reads, memory writes, burst reads, and burst writes, D/C speci-
fies whether the bus cycle accesses code (instructions) or data.
M/IO specifies whether the cycle accesses memory or an I/O
port. W/R specifies whether the cycle is a read or write. The
assertion of CACHE indicates that the processor is writing or is
prepared to read a burst cycle consisting of four consecutive
transfers on the data bus. However, for a read, system logic
must confirm the burst by asserting KEN, or the bus cycle
becomes a single-transfer read. I/O accesses are always non-
burst cycles.

TABLE 5-19. Bus Cycle Definitions

Type of Cycle
Signals

Comments
D/C M/IO W/R CACHE

Single-Transfer Memory
Read or Write

0 or 1 1 0 or 1 1 —

Single-Transfer I/O Read
or Write

1 0 0 or 1 1 —

Burst Memory Read or
Write

0 or 1 1 0 or 1 0
For reads, system logic must
assert KEN with BRDY.

Interrupt Acknowledge 0 0 0 — Pair of locked cycles.

Special 0 0 1 —

Several special cycles distin-
guished by BE7–BE0 and
A31–A3. See Table 5-23 on
page 5-181.

5-138 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Interrupt acknowledge operations consist of a locked pair of
read cycles. Special bus cycles are further differentiated by
the signals shown in Table 5-23 on page 5-181. In addition to
the processor-driven bus cycles shown in Table 5-19, system
logic can drive inquire cycles to the processor. These bus
cycles are described later, in Section 5.4.4 on page 5-157.

The processor samples BRDY during all bus cycles that it
drives. The number of BRDYs expected by the processor
depends on the type of bus cycle, as follows:

■ One BRDY for an aligned single-transfer read or write
cycle, a special bus cycle, and each of two bus cycles in an
interrupt acknowledge operation. One additional BRDY for
each misaligned cycle.

■ Four BRDYs for burst cycles (one BRDY for each of the four
transfers). Burst cycles are always aligned.

The last expected BRDY represents the completion of a proces-
sor-initiated bus cycle. The processor guarantees at least one
idle clock between consecutive bus cycles, whether unlocked
or locked. This means that consecutive locked operations,
which consist of consecutive bus cycles, also have at least one
idle clock between them.

5.3.2 Addressing

The address for a bus cycle is driven on A31–A3 and BE7–BE0.
A31–A3 carry the upper 29 bits of the address, identifying an
aligned 8-byte (quadword) region in memory. BE7–BE0 iden-
tify the accessed bytes in that quadword, in effect indicating
the three least-significant bits of the address and the size (in
bytes) of the desired transfer. For burst and inquire cycles,
A31–A5 are sufficient to identify the memory location of the
cache line. For burst reads, which are four-transfer cache-line
fills, system logic should watch A4–A3 and return the
addressed quadword first, before returning the remainder of
the cache line.

More details on burst-cycle addressing are given in Section
5.4.3 on page 5-150.

Bus Cycle Overview 5-139

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.3.3 Alignment

For purposes of bus cycles, the term aligned means:

■ 2- and 4-byte transfers lie within 4-byte address boundaries

■ 8-byte transfers lie within 8-byte address boundaries

(For purposes of exceptions, the term aligned means situated
on the natural boundaries of an instruction or operand. Thus, a
2-byte transfer that crosses a 2-byte address boundary may
incur an alignment exception, but it will be performed as an
aligned bus cycle.)

If data on D63–D0 are misaligned, the processor generates
additional bus cycles to complete the transfer. For example, if
a 4-byte transfer begins at address x07h, one byte will be trans-
ferred during the first bus cycle and the remaining three bytes
will be transferred during a second bus cycle, which will nor-
mally occur immediately after the first bus cycle (unless inter-
vened by an interrupt or bus backoff). If the misaligned
transfer is run as a locked cycle, the processor asserts both
LOCK and SCYC throughout the misaligned sequence of bus
cycles.

If memory reads, memory writes, or I/O reads are misaligned,
the AMD5K86 processor runs the bus cycles in the opposite
order of the Pentium processor. The AMD5K86 processor trans-
fers the least-significant bytes first followed by the most-signif-
icant bytes. I/O writes, however, are performed in the same
order on both processors: the most-significant bytes first, fol-
lowed by the least-significant bytes.

For a misaligned CMPXCHG8B operation (that is, the operand
does not lie on an 8-byte quadword boundary), the AMD5K86
processor does two split-cycle reads followed by two split-cycle
writes, all with LOCK asserted, for a total of eight bus cycles.
The Pentium processor combines the cycles for a maximum of
four bus cycles.

5-140 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.3.4 Bus Speed and Typical DRAM Timing

The processor can be configured for external bus (CLK) speeds
of 50, 60, or 66 MHz. Main DRAM memory can be built from
Page-mode or EDO (extended data out) DRAM, although faster
memory devices can be used for higher performance.

On a 66-MHz bus, the read cycle time for a DRAM-page hit in
EDO DRAM is 7-2-2-2 (7 clocks for the first transfer and 2
clocks for each remaining transfer) and 10-2-2-2 for a DRAM-
page miss. The read cycle time for a DRAM-page hit in Page-
mode DRAM at 66 MHz is 7-4-4-4 and 10-4-4-4 for a DRAM-page
miss. On a 50-MHz bus, there is no change in timing for EDO
DRAM, but Page-mode DRAM timing becomes 6-3-3-3 for a
DRAM-page hit and 8-3-3-3 for a DRAM-page miss.

5.3.5 Bus-Cycle Priorities

The AMD5K86 processor can support only one on-going bus
cycle at a time—pending bus cycles are not buffered. System
logic maintains the ultimate control over the bus. The proces-
sor asserts BREQ to request control of the bus. System logic
asserts AHOLD, BOFF, or HOLD to take control of the bus.
AHOLD passes control of the address bus to system logic for
use in inquire cycles, but permits completion of in-progress
cycles on the data bus. BOFF forces an in-progress bus cycle to
abort and passes control to system logic. HOLD allows an in-
progress bus cycle to complete before passing control to sys-
tem logic.

Bus Cycle Timing 5-141

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.4 Bus Cycle Timing

The following sections describe and illustrate the timing and
relationship of bus signals during various types of bus cycles.
Only a representative set of bus cycles are illustrated. Many
more combinations are possible.

5.4.1 Timing Diagrams

The timing diagrams show the signals on the external bus as a
function of time, as measured by the bus clock (CLK). Through-
out this chapter, the term clock refers to bus-clock cycles, not
processor-clock cycles, and the term cycle refers to bus cycles
not clocks. A clock extends from one rising CLK edge to the
next rising CLK edge. The processor samples and drives most
signals relative to the rising edge of CLK. The exceptions to
this rule include:

■ FLUSH and SMI—Sampled on the falling edge of CLK

■ BF, FLUSH, FRCMC, and INIT—Sampled on the falling edge
of RESET

■ TDI, TDO, TMS and TRST—Sampled relative TCK

For each signal in the timing diagrams, the High level repre-
sents 1, the Low level represents 0, and the middle level repre-
sents the floating (high-impedance) state. When both the High
and Low levels are shown, the meaning depends on the signal.
For a single signal, it means don’t care. For a bus, it means that
the processor or system logic is driving a value, but this value
may or may not be valid (for example, the value on the address
bus is valid only during the assertion of ADS, although
addresses are also driven on the bus at other times).

The value indicated for the address bus represents the value
driven on lines A31–A3. This value, multiplied by 8, is the byte
address of an 8-byte region in memory. The value for BE7–BE0
indicates which bytes in that region are to be transferred: the
bytes corresponding to the zeros on BE7–BE0 are transferred.

The timing diagrams given in the following sections assume
that the current privilege level (CPL) is always 0.

5-142 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.4.2 Single-Transfer Reads and Writes

The single-transfer memory and I/O bus cycles transfer 1, 2, 4,
or 8 bytes. Misaligned instructions or operands result in a split
cycle, which requires multiple transactions on the bus. During
single-transfer (non-cacheable) code fetches, the AMD5K86
and Pentium processors read 8 bytes, not 16 bytes as the 486
processor does.

Single-Transfer
Memory Read and
Write

Figure 5-2 shows a single-transfer doubleword code fetch
(read) from memory, followed immediately by a single-transfer
doubleword write to memory. For the memory-read cycle, the
processor drives A31–A3, BE7–BE0 (with AP for parity check),
D/C, W/R, and M/IO. Then, somewhat later, it asserts ADS and
BREQ. ADS, which is held asserted for only one clock, vali-
dates the bus cycle. The processor then waits for system logic
to return the data on D63–D0 (with DP7–DP0 for parity check)
and assert BRDY. System logic can return BRDY as early as
one clock after ADS, thus supporting very fast memory
devices.

During the read cycle, the processor drives PCD, PWT, and
CACHE to indicate its caching and cache-coherency intent for
the access. System logic returns KEN and WB/WT to either con-
firm or change this intent. In this example, the processor
asserts PCD and negates CACHE, so the accesses are non-
cacheable, even though system logic asserts KEN during the
BRDYs to indicate its support for cacheability. The processor
(which drives CACHE) and system logic (which drives KEN)
must agree in order for an access to be cacheable. They must
also agree among PWT and WB/WT in order for a cacheable
line to be cached in the writeback state.

The processor can drive another cycle (in this example, a write
cycle) as early as two clocks after the assertion of BRDY. A
dead (or idle) clock is thus guaranteed between any two bus
cycles. As in the read cycle, neither the address nor the cycle-
definition signals are valid until the processor asserts ADS,
and the value driven on A31–A3 is valid only during the asser-
tion of ADS.

This example shows a parity error during the read cycle, as
indicated by the processor’s assertion of PCHK two clocks
after BRDY. Because system logic asserts PEN during the

Bus Cycle Timing 5-143

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

BRDY, the processor latches the physical address and cycle
definition of the failed bus cycle in its 64-bit machine-check
address register (MCAR) and its 64-bit machine-check type
register (MCTR). For details on such parity errors, see the
descriptions of PCHK and PEN on pages 5-102 and 5-103.

While Figure 5-2 shows BRDY returned in the next clock after
ADS, most DRAM-based systems add wait states (idle clocks)
between ADS and BRDY, as described in Section 5.3.4 on page
5-140.

5-144 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-2. Single-Transfer Memory Read and Write

CLK

A31–A3

ADS

AP

BE7–BE0

BRDY

BREQ

CACHE

D/C

D63–D0

DP7–DP0

KEN

M/IO

PCD

PCHK

PEN

PWT

W/R

WB/WT

CLK

WriteRead

Bus Cycle Timing 5-145

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Single-Transfer
Memory Write
Delayed by EWBE
Signal

Figure 5-3 shows two consecutive memory writes. The first
write fills an external write buffer and the second write is
stalled for three clocks by the negation of EWBE.

For writes, system logic can store the address and data in a
write buffer, return BRDY, and perform the store to memory
later. If the number of outstanding writes exceeds the size of
the write buffer, system logic must negate EWBE to prevent
the processor from sending additional writes until EWBE is
asserted. The advantage of negating EWBE as opposed to not
asserting BRDY is that negating EWBE prevents only write
requests, but not asserting BRDY stalls the bus and prevents
all requests.

More specifically, if EWBE is negated with or after the last
BRDY of a write cycle, the processor will not do any of the fol-
lowing:

■ Write a store-buffer entry to the data cache

■ Write to memory (single-transfer or burst), including locked
write to Accessed (A) bit after TLB load

■ Write to I/O (OUTx)

■ Execute the following instructions:

MOV to CR0

MOV to CR4, including during a task switch

WBINVD

INVLPG

CPUID

■ Respond to the following instructions:

FLUSH

SMI

■ Respond to any other interrupts or exceptions that cause a
write to memory, such as pushing state onto the stack or set-
ting the Accessed bit in a segment descriptor. This may
include the BUSCHK, NMI, and INTR interrupts.

For more details, see the description of EWBE on page 5-63.

5-146 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-3. Single-Transfer Memory Write Delayed by EWBE Signal

CLK

A31–A3

ADS

BE7–BE0

BRDY

D/C

D63–D0

EWBE

M/IO

W/R

CLK

Write Write
Effective
BRDY

Bus Cycle Timing 5-147

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

I/O Read and Write Figure 5-4 shows an I/O read followed by an I/O write. The pro-
cessor accesses I/O when it executes an I/O instruction (any of
the INx or OUTx instructions). Accesses to memory-mapped
I/O ports appear on the bus as accesses to memory rather than
to the I/O address space.

The I/O-cycle protocol is nearly the same as the protocol for
read and write accesses to memory, shown in Figure 5-2, except
that M/IO = 0. Only data (not code) can be read or written from
the I/O address space. The cycle definition for an I/O code read
(D/C = 0, M/IO = 0, W/R = 0) defines an interrupt acknowledge
cycle, and the cycle-definition for an I/O code write (D/C = 0,
M/IO = 0, W/R = 1) defines a special bus cycle.

The example in Figure 5-4 shows a single wait state separating
ADS and BRDY for the read. In actual systems, however, the
time will typically be longer.

FIGURE 5-4. I/O Read and Write

CLK

A31–A3

ADS

BE7–BE0

BRDY

D/C

D63–D0

M/IO

W/R

CLK

Read Write

5-148 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Single-Transfer
Misaligned Memory
and I/O Transfers

Figure 5-5 shows a misaligned (split) memory read followed by
a misaligned I/O write. (For a definition of misaligned, see Sec-
tion 5.3.3 on page 5-139.) When the processor encounters a mis-
aligned access, it determines the appropriate pair of bus
cycles—each with its own ADS and BRDY—required to com-
plete the access.

In this example, the first pair of bus cycles represents a mem-
ory read of the doubleword at 800Eh. This access crosses a dou-
bleword boundary, so it is misaligned. The processor first reads
the word at 800Eh, followed by the word at 8010h. The second
pair of bus cycles represents a write of a doubleword to I/O
address 8Eh. This transfer also crosses a doubleword bound-
ary, so it is misaligned. The processor writes the word to I/O
address 90h, followed by the word to I/O address 8Eh.

The AMD5K86 processor performs misaligned memory read,
memory write, and I/O read transfers in the reverse order of
the Pentium processor, but misaligned I/O write transfers are
performed in the same order on both processors. Table 5-20
shows the order. Thus, in this example, the I/O write accesses
the most-significant bytes first followed by the least-significant
bytes, the opposite order from the memory accesses and I/O
reads.

The SCYC (Split Cycle) output has no meaning in unlocked
misaligned transfers. It is only meaningful in locked mis-
aligned transfers.

TABLE 5-20. Bus-Cycle Order During Misaligned Transfers

Type of Access
First K5

Cycle
Second K5

Cycle
Pentium

Compatible?

Memory Read LSBs MSBs no

Memory Write LSBs MSBs no

I/O Read LSBs MSBs no

I/O Write MSBs LSBs yes

Bus Cycle Timing 5-149

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-5. Single-Transfer Misaligned Memory and I/O Transfers

CLK

A31–A3

ADS

BE7–BE0

BRDY

D/C

D63–D0

M/IO

SCYC

W/R

CLK

Read Read Write Write

5-150 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.4.3 Burst Cycles

The processor drives burst cycles, which consist of four sequen-
tial eight-byte (quadword) transfers on the data bus, only in
the following cases:

■ Burst Read—Cache-line fills from memory. These burst
reads occur when the processor asserts CACHE during ADS
and system logic asserts KEN during the first BRDY of a
read cycle.

■ Burst Write—Writebacks to memory of modified cache lines.
Writebacks can be caused by (a) externally initiated
inquire cycles or FLUSH operations, (b) processor-initiated
internal snoops or cache-line replacements, or (c) program-
initiated WBINVD instructions.

Writethroughs to memory, which occur in response to write
misses or write hits to shared cache lines, are driven as single-
transfer bus cycles.

Burst Read Figure 5-6 shows two consecutive burst reads. During burst
reads (CACHE and KEN both asserted with the first BRDY of a
memory read), the processor drives BE7–BE0 with ADS to
identify the bytes of the desired instruction or operand. The
processor drives BE7–BE0 with the desired bytes at that time
because it does not yet know whether the read will be a single-
transfer or a burst—this depends on how system logic drives
KEN with the first BRDY. If system logic negates KEN it must
return, as a single transfer, only the bytes specified on BE7–
BE0. If system logic asserts KEN, it must ignore BE7–BE0 dur-
ing all transfers of the burst and return all eight bytes for the
starting address on A31–A3. BE7–BE0 does not change during
the four transfers of the burst. (This behavior is unlike the 486
processor, which drives BE3–BE0 separately for each transfer
of a burst.) System logic must determine the successive quad-
word addresses for each transfer in a burst, depending on the
starting address, as shown in Table 5-21.

Bus Cycle Timing 5-151

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

In the clock after ADS, the processor drives the first of four
sequential eight-byte (quadword) transfers on the data bus.
The processor holds the first transfer on the bus until system
logic returns BRDY, then it transfers the next quadword. In
this example, system logic returns BRDY with no wait states,
and the processor responds by driving the subsequent quad-
word in the next clock. Typical systems, however, add one or
more wait states between the transfers.

For both read cycles, the processor asserts CACHE with ADS
and system logic asserts KEN with the BRDY of the first trans-
fer. Thus, CACHE and KEN agree, and the access is cached.
This agreement between CACHE and KEN is required in order
for a burst read to occur. The processor only drives burst reads
if the access is cacheable. If either CACHE or KEN were
negated during the BRDY of the first transfer, the read would
terminate with the first quadword transfer, thus becoming a
single-transfer read.

In this example, the processor negates PWT (indicating write-
back state) and system logic drives WB/WT High with the
BRDY of the first transfer (also indicating writeback state).
Thus, PWT and WB/WT agree, and the cache line becomes a
writeback line, which is cached in the exclusive MESI state.
Details on the writeback/writethrough and MESI cache-coher-
ency state transitions are given in Table 2-2 on page 2-19.

In Figure 5-7, the two consecutive burst reads are identical to
those in Figure 5-6, except that system logic asserts NA one
clock before it asserts BRDY in the first read cycle of Figure
5-7. This causes KEN and WB/WT to be effective when NA

TABLE 5-21. Address-Generation Sequence During Bursts

Address Driven By
Processor on A31–A3

Addresses of Subsequent Quadwords1
Generated By System Logic

Quadword 1 Quadword 2 Quadword 3 Quadword 4

...00h ...08h ...10h ...18h

...08h ...00h ...18h ...10h

...10h ...18h ...00h ...08h

...18h ...10h ...08h ...00h
Notes:

1. quadword = 8 bytes

5-152 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

(rather than BRDY) is asserted. KEN and WB/WT are validated
by either NA or BRDY, whichever comes first. NA will not gen-
erate a pipelined cycle in the event that there are no pending
internal cycles.

FIGURE 5-6. Burst Reads

CLK

A31–A3

ADS

BE7–BE0

BRDY

BREQ

CACHE

D/C

D63–D0

KEN

M/IO

PWT

W/R

WB/WT

CLK

Read Read

Bus Cycle Timing 5-153

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-7. Burst Read (NA Sampled)

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

KEN

M/IO

NA

PWT

W/R

WB/WT

CLK

Read Read

5-154 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Burst Writeback Figure 5-8 shows a burst read followed by a writeback. Write-
backs are the only type of burst write that the processor per-
forms. They can be initiated by the processor or by system
logic in the following cases:

■ Processor-Initiated Writebacks:

• Replacement—If a cache-line fill is initiated when all
four ways of the cache that could accommodate the in-
coming line are filled with valid entries, the processor
uses a round-robin algorithm to select a line for replace-
ment. Before a replacement is made to a data cache line
in the modified state, the line is written back to memory.

• Internal Snoop—The processor snoops the data cache
whenever an instruction-cache line is read, and it snoops
the instruction cache whenever a data cache line is writ-
ten. This snooping is performed to determine whether
the same address is stored in both caches, a situation
that is taken to imply the occurrence of self-modifying
code. If a snoop hits a data cache line in the modified
state, the line is written back to memory before being in-
validated.

• WBINVD Instruction—When the processor executes a
WBINVD instruction, it writes back all modified lines in
the data cache and then invalidates all lines in both
caches. The action taken in response to the WBINVD in-
struction is essentially the same as the action taken in
response to the FLUSH input signal, except that the ac-
knowledge cycles differ. For details, see page 5-186.

■ System-Initiated Writebacks:

• Inquire Cycle Hits—If an inquire cycle hits a modified
line in the data cache, the processor writes back the line.
For details, see page 5-158.

• FLUSH—If system logic asserts the FLUSH input, the
entire contents of the data cache are written back to
memory before the entire contents of both caches are in-
validated. The action taken in response to the FLUSH
input signal is essentially the same as the action taken in
response to the WBINVD instruction, except that the ac-
knowledge cycles differ. For details, see page 5-184.

During all processor-initiated and system-initiated FLUSH
writebacks, the processor asserts ADS, drives a 32-byte-aligned
starting address on A31–A3, and enables all eight bytes

Bus Cycle Timing 5-155

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

(BE7–BE0 = 00h). Thus, A4–A3 are always 0 for writebacks.
During inquire cycle writebacks, the processor does the same
thing, except that if system logic holds AHOLD asserted
throughout the writeback, the processor lets system logic pro-
vide the address.

The writeback shown in Figure 5-8 is caused by a cache-line
replacement, which occurs when an attempted burst read finds
that all four cache ways for that address are filled with valid
entries. In this case, the processor performs the following
sequence:

1. Copies the prior contents of the replacement line to its 32-
byte writeback buffer (described in Section 2.3.7 on page 2-
23). This is not visible on the bus.

2. Completes the burst read, placing the incoming data into
the cache line. This is the first burst cycle in Figure 5-8.

3. Writes the modified line back to memory. This is the second
burst cycle in Figure 5-8.

During the burst read (Step 2), the states of PWT and WB/WT
are the same as in Figure 5-6 and Figure 5-7.

5-156 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-8. Burst Writeback Due To Cache-Line Replacement

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

EADS

KEN

M/IO

PWT

W/R

WB/WT

CLK

Read Write

Bus Cycle Timing 5-157

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.4.4 Bus Arbitration and Inquire Cycles

The processor bus may be required by another bus master,
which may need to drive its own cycles on the bus, or by system
logic, which may need to drive an inquire cycle to the proces-
sor or resolve bus deadlock. One of three signals can be used
for these purposes: AHOLD, BOFF, or HOLD. AHOLD’s sole
function is to support inquire cycles. It obtains control only of
the address bus and allows another master or system logic to
drive only inquire cycles, whereas BOFF and HOLD obtain
control of the full bus (address and data), allowing another
master to drive not only inquire cycles but also read and write
cycles. BOFF provides the fastest access to the bus and it
aborts any in-progress cycle by the processor. AHOLD and
HOLD both permit an in-progress bus cycle to complete, but a
writeback can occur while AHOLD is asserted whereas a pend-
ing writeback during the assertion of BOFF or HOLD occurs
after the BOFF or HOLD is negated.

In most systems, the choices are between BOFF and AHOLD.
Due to its slow response time, HOLD is usually considered only
when backward-compatibility with prior-generation sub-
systems requires it or when the integrity of in-progress bus
cycles is of paramount importance. Support for BOFF is usu-
ally needed to resolve potential deadlock problems that arise
as a result of inquire cycles, and if BOFF is supported, there is
usually no reason to support HOLD. The sections that follow
further describe these relative advantages and disadvantages.

In systems with multiple caching masters and shared memory,
system logic can maintain cache coherency by driving inquire
cycles to the processor whenever another bus master accesses
shared memory. Such system-initiated bus cycles cause the
processor to compare the physical tags for both its instruction
and data caches with the inquire address, in parallel with any
cache accesses the processor makes via its linear tags. If a
match is found, the processor writes the cache line back to
memory, if modified, and changes the MESI state according to
the state of the INV input signal during the inquire cycle.

The system logic’s sequence for driving inquire cycles is:

1. Assert AHOLD to obtain control of the address bus, or
assert either BOFF or HOLD to obtain control of the entire
bus.

5-158 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

2. Two clocks after the assertion of BOFF or AHOLD, or one
clock after sampling HLDA asserted when HOLD is used,
assert EADS while driving a cache-line address on A31–A5,
and assert or negate INV. The processor latches the address
when it samples EADS asserted.

3. Wait two clocks, watching for HITM and/or HIT to be
asserted:

If neither HIT nor HITM are asserted at the end of two
clocks, or if only HIT is asserted, the inquire cycle termi-
nates.

If HITM is asserted, a writeback follows and the processor
does not recognize EADS again until the last BRDY of the
writeback. The timing of the writeback depends on whether
AHOLD, BOFF, or HOLD was asserted to gain access to the
bus. If AHOLD was used, the processor begins driving the
four-transfer burst writeback as early as two clocks after
asserting HITM, whether or not AHOLD is still asserted. If
BOFF or HOLD was used, the processor delays the write-
back until just after BOFF or HLDA is negated.

The resulting state of a cache line that is hit by an inquire
cycle depends on the state of the INV signal at the time of the
inquire cycle (see Table 5-11 on page 5-73). If INV is negated,
the line remains in or transitions to the shared state. If INV is
asserted, the line is written back, if modified, and transitions to
the invalid state.

AHOLD-Initiated
Inquire Miss

Figure 5-9 shows a burst read, during which system logic
asserts AHOLD to acquire the address bus for an inquire cycle.
The processor floats the address bus one clock after AHOLD is
asserted, although the data bus continues to return data from
the in-progress burst read. (The processor supports only one in-
progress bus cycle. No pending bus cycles are buffered.) Two
clocks after asserting AHOLD, system logic initiates the
inquire cycle by asserting EADS, driving INV (negated in this
example), and driving the inquire address on A31–A5.

Although the inquire cycle misses the cache (HIT is negated
two clocks after EADS), the processor’s assertion of APCHK
two clocks after EADS indicates that a parity error occurred on
the inquire cycle address. Because of this parity error, system
logic should disregard the result of the inquire cycle and per-
form it again.

Bus Cycle Timing 5-159

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

For an AHOLD inquire cycle to be recognized, AHOLD must
have been asserted continuously for two clocks at the time
EADS is asserted. AHOLD and BOFF can be asserted in con-
junction with each other without interfering with EADS recog-
nition, as long as the sampling criteria for at least one of the
signals (AHOLD or BOFF) is met.

FIGURE 5-9. AHOLD-Initiated Inquire Miss

CLK

A31–A3

ADS

AHOLD

AP

APCHK

BE7–BE0

BRDY

BREQ

D/C

D63–D0

EADS

HIT

HITM

INV

M/IO

W/R

CLK

Read Inquire

5-160 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

AHOLD-Initiated
Inquire Hit to Shared
or Exclusive Line

Figure 5-10 shows an example similar to Figure 5-9, minus the
address parity error, but this inquire cycle hits either a shared
or exclusive line in the cache, as indicated by the assertion of
HIT and the negation of HITM two clocks after the assertion of
EADS. The processor invalidates the cache line because sys-
tem logic asserts INV with EADS. The processor may drive a
new bus cycle as early as one clock after system logic negates
AHOLD.

FIGURE 5-10. AHOLD-Initiated Inquire Hit to Shared or Exclusive Line

CLK

A31–A3

ADS

AHOLD

BE7–BE0

BRDY

D/C

D63–D0

EADS

HIT

HITM

INV

M/IO

W/R

CLK

Read Inquire

Bus Cycle Timing 5-161

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

AHOLD-Initiated
Inquire Hit to
Modified Line

Figure 5-11 shows the same sequence as in Figure 5-10, but this
time the inquire cycle hits a modified line. As in Figure 5-10,
system logic asserts INV with EADS. Two clocks later, the pro-
cessor asserts both HIT and HITM. A few clocks later the pro-
cessor drives a writeback for the cache line and then
invalidates its cached copy. The processor holds HITM
asserted until one clock after the last BRDY of the writeback.

If system logic holds AHOLD asserted throughout an inquire
cycle and any required writeback, system logic must latch the
inquire cycle address when it asserts EADS. This is required so
that, if the inquire cycle hits a modified line, the address used
for the writeback need not be driven by the processor when
the processor asserts ADS for the writeback. Instead, A31–A5
remains an input-only bus and system logic must use its
latched copy of the inquire cycle address. By contrast, if sys-
tem logic always negates AHOLD before the writeback, the
processor drives the writeback address when it asserts ADS for
the writeback, and system logic need not retain a copy of the
inquire cycle address. While the processor drives the write-
back address, it drives only the beginning address for the 32-
byte transfer on A31–A5. System logic must determine the
remaining addresses as shown in Table 5-21 on page 5-151.

5-162 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-11. AHOLD-Initiated Inquire Hit to Modified Line

CLK

A31–A3

ADS

AHOLD

BE7–BE0

BRDY

D/C

D63–D0

EADS

HIT

HITM

INV

M/IO

W/R

CLK

Read Inquire Writeback

Bus Cycle Timing 5-163

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Bus Backoff (BOFF) BOFF provides the fastest response of the three bus-hold
inputs. Unlike AHOLD and HOLD, BOFF does not permit an
in-progress bus cycle to complete. It forces the processor off
the bus in the next clock, aborting any in-progress bus cycle
that the processor may have begun.

Figure 5-12 shows a burst read interrupted by BOFF. One clock
after sampling BOFF asserted, the processor aborts the entire
in-progress burst read and floats its bus. All output and bidi-
rectional signals used for memory or I/O accesses are floated.
The processor ignores all data and BRDYs returned by the sys-
tem during the aborted cycle. This is unlike BOFF on the 486
processor, which retains the data that had been transferred up
to the clock in which BOFF was asserted. BOFF has no effect
on writes to the processor’s store buffer, except to delay them.
(The store buffer is situated between the execution units and
the data cache and is used for speculative stores, prior to being
written in non-speculative state to the data cache.)

Another bus master can begin driving cycles as early as two
clocks after BOFF is asserted. System logic or another bus mas-
ter may continue asserting BOFF for as long as it wants. The
processor has no way of breaking the hold. While the processor
is backed off, it continues to execute out of its instruction and
data caches, if possible. If it can no longer operate out of its
caches, it holds BREQ asserted continuously.

As early as one clock after BOFF is negated, the processor
restarts—from the beginning—any bus cycle that was aborted
when BOFF was asserted. This is unlike BOFF on the 486 pro-
cessor, which restarts only the transfers that did not complete
when BOFF was asserted. The processor may drive another
cycle with ADS as early as two clocks after any aborted cycle
completes. This allows one idle clock (also called a dead clock)
between any two bus cycles. If BOFF was asserted when ADS
was also asserted, however, ADS remains Low (floats asserted)
after BOFF is negated. In such a case, system logic must prop-
erly interpret the state of ADS when it negates BOFF.

Because of its ability to help resolve deadlock problems, BOFF
is required in virtually all systems with multiple caching mas-
ters. In such designs, system logic typically drives separate
BOFF signals to each bus master in the system. See Section
6.2.5 on page 6-14 for system configurations using BOFF.

5-164 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-12. Basic BOFF Operation

CLK

A31–A3

ADS

BE7–BE0

BOFF

BRDY

D/C

D63–D0

M/IO

W/R

CLK

Read
(Aborted)

Cycle by
Another Master

Restarted
Read

Bus Cycle Timing 5-165

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

BOFF-Initiated
Inquire Hit to
Modified Line

Figure 5-13 shows a burst read interrupted by the assertion of
BOFF for the purpose of an inquire cycle. One clock after sam-
pling BOFF asserted, the processor aborts the burst read and
floats its bus. Two clocks after asserting BOFF, system logic
initiates the inquire cycle by asserting EADS and INV, and
driving the inquire address on A31–A5. The processor asserts
both HIT and HITM two clocks after EADS, thus indicating
that the inquire hit a modified cache line. The writeback can-
not occur while BOFF is asserted, however, because the proces-
sor has floated its data and control outputs.

After BOFF is negated, the processor writes back the modified
cache line, holding HITM asserted until one clock after the last
BRDY of the writeback. Because INV was asserted with EADS,
the cache line is invalidated after its writeback. Then, the pro-
cessor restarts—from the beginning—the aborted burst read.

For a BOFF inquire cycle to be recognized, BOFF must have
been asserted continuously for two clocks at the time EADS is
asserted. AHOLD and BOFF can be asserted in conjunction
with each other without interfering with EADS recognition, as
long as the sampling criteria for at least one of the signals
(AHOLD or BOFF) is met.

5-166 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-13. BOFF-Initiated Inquire Hit to Modified Line

CLK

A31–A3

ADS

BE7–BE0

BOFF

BRDY

CACHE

D/C

D63–D0

EADS

HIT

HITM

INV

KEN

M/IO

W/R

CLK

Read
(aborted) Inquire Writeback

Restarted
Read

Bus Cycle Timing 5-167

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

HOLD-Initiated
Inquire Hit to Shared
or Exclusive Line

Figure 5-14 shows HOLD asserted in the same clock that the
processor begins a read cycle. The processor completes the
read (which is a burst read) and asserts HLDA two clocks after
the last BRDY of the in-progress cycle. It also floats all output
and bidirectional signals used for memory or I/O accesses at
the same time it asserts HLDA.

In the next clock after sampling HLDA asserted, system logic
initiates an inquire cycle by asserting EADS and INV and driv-
ing an inquire address on A31–A5. The inquire cycle hits a
shared or exclusive line (HIT asserted and HITM negated two
clocks after EADS) and the processor invalidates the cache
line (not visible on the bus). System logic negates HOLD in the
clock after EADS, and two clocks later (one clock after HIT
and HITM transition) the processor negates HLDA and contin-
ues with its other bus cycles.

If EADS is asserted in the same clock that HOLD is negated,
the processor recognizes this as a valid inquire cycle and han-
dles it correctly. However, if EADS is asserted in the clock fol-
lowing the negation of HOLD, the processor does not recognize
this as a valid inquire cycle.

5-168 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-14. HOLD-Initiated Inquire Hit to Shared or Exclusive Line

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

EADS

HIT

HITM

HLDA

HOLD

INV

KEN

M/IO

W/R

CLK

Read Inquire

Bus Cycle Timing 5-169

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

HOLD-Initiated
Inquire Hit to
Modified Line

Figure 5-15 shows an example similar to the one in Figure 5-14,
except that the inquire cycle hits a modified line (both HIT and
HITM asserted two clocks after EADS). System logic negates
HOLD in the clock after EADS, and two clocks later (one clock
after HIT and HITM transition) the processor negates HLDA.
As early as one clock after negating HLDA, the processor
asserts ADS to drive the writeback, after which the processor
invalidates its copy of the line.

FIGURE 5-15. HOLD-Initiated Inquire Hit to Modified Line

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

EADS

HIT

HITM

HLDA

HOLD

INV

KEN

M/IO

W/R

CLK

Read Inquire Writeback

5-170 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.4.5 Locked Cycles

The processor asserts LOCK across certain sequences of mem-
ory bus cycles that require integrity. These include interrupt
acknowledge operations, descriptor-table updates, page-direc-
tory and page-table updates, and exchange operations. In addi-
tion, the processor asserts LOCK during bus cycles initiated by
any instruction that has the LOCK prefix. The processor locks
only memory cycles, not I/O cycles.

LOCK is an indication to system logic that it should maintain
the integrity of the locked bus cycles, either by never interven-
ing in them or by some other system-level memory protection
mechanism that guarantees integrity.

Locked operations generated by the processor typically consist
of a read-write pair of bus cycles with an operand modification
between the two bus cycles (sometimes called read-modify-
write), except that interrupt acknowledge operations, which
are also locked, consist of a pair of read cycles with no operand
modification between the cycles. Locked operations generated
by the LOCK instruction prefix cause LOCK to be asserted
only during bus cycles initiated by that single instruction. The
processor guarantees at least one idle (or dead) clock between
consecutive bus cycles, whether unlocked or locked. This
means that consecutive locked operations, which consist of
consecutive bus cycles, also have at least one idle clock
between them.

Basic Locked
Operation

Figure 5-16 shows a pair of read-write bus cycles. The proces-
sor asserts LOCK with the ADS of the first bus cycle in the
locked operation, and holds it asserted until the last expected
BRDY of the last bus cycle in the locked operation. Between
the locked operations, the processor negates LOCK for at least
one clock.

This example also shows that the value driven on A31–A3 is
valid only during the assertion of ADS. In the clock immedi-
ately preceding the ADS for the write in the first locked opera-
tion, the processor changes the address. If system logic reads
the address in the clock before ADS, an unexpected value may
be returned.

Bus Cycle Timing 5-171

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-16. Basic Locked Operation

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

KEN

LOCK

M/IO

W/R

CLK

Read Write Read Write

5-172 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

TLB Miss
(4-Kbyte Page)

Figure 5-17 shows a TLB miss for a 4-Kbyte page. An overview
of the 4-Kbyte paging mechanism is illustrated in Figure 3-2 on
page 3-5. The paging mechanism for 4-Mbyte pages (Figure 3-3
on page 3-6) is similar but somewhat simpler. The processor
has separate TLBs for the two page sizes.

If an address for an access cannot be found in the processor’s
linearly addressed instruction or data cache, the TLB (which
helps translate linear addresses to physical addresses) is
searched for the entry associated with the accessed page. A
TLB miss occurs if the entry cannot be found. For accesses to a
4-Kbyte page that miss the TLB, the processor accesses first
the page-directory entry (PDE) in memory and then the page-
table entry (PTE) in memory to check, and if necessary set,
their Accessed (A) bits. During a write access (not shown in
this example), the processor also checks and, if necessary, sets
the PTE Dirty (D) bit.

The general sequence, both for PDE and PTE, is as follows for
accesses to a 4-Kbyte page:

■ The processor drives an unlocked read of the PDE or PTE to
see if the relevant bit (A or D) is set.

■ If the bit is cleared (0), the processor then drives a locked
read-modify-write (four-byte read followed by four-byte
write) to set the bit.

The example in Figure 5-17 shows the following specific
sequence:

■ Read The PDE—The A bit in the PDE is set, so nothing fur-
ther is done with the PDE.

■ Read The PTE—The A bit in the PTE is cleared, indicating
that the page has not been previously accessed since the
operating system last cleared the bit

■ Set The Accessed Bit—The processor performs a locked read-
write pair of bus cycles to set the A bit. The diagram shows
these cycles as a 4-byte PTE read followed by a 4-byte PTE
write. It asserts LOCK with the ADS of the read cycle and
holds it asserted until the BRDY of the write cycle.

■ Read The Desired Location (Cache-Line Fill)—The processor
reads the location that caused the TLB miss, filling a cache
line as a result of the access.

Bus Cycle Timing 5-173

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-17. TLB Miss (4-Kbyte Page)

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

EADS

KEN

LOCK

M/IO

W/R

CLK

Read PDE Read PTE Read PTE Write PTE
Read that caused
TLB miss

5-174 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Locked Operation
with BOFF
Intervention

Unlike AHOLD and HOLD, BOFF does not permit an in-
progress bus cycle to complete. It forces the processor off the
bus in the next clock, aborting any in-progress bus cycle that
the processor may have begun. If BOFF is asserted during a
locked operation, only the cycle(s) aborted before their last
BRDY and the cycles not yet run are restarted after BOFF is
negated. Thus, system logic must keep track of all cycles in the
locked operation that have completed before the assertion of
BOFF and must continue the locked operation immediately
after BOFF is negated, except that if a writeback is pending
when BOFF is negated, the writeback takes precedence over
the restarting of the aborted cycles in the locked operation.

Figure 5-18 shows the effect of BOFF intervening in a locked
read-write pair of bus cycles. The example begins with the
read, while LOCK is asserted. System logic asserts BOFF while
the processor is asserting ADS for the write, causing the pro-
cessor to abort the write and float its bus in the next clock.
Another bus master must wait two clocks after the assertion of
BOFF before driving its first bus cycle, because the processor
does not float its outputs until one clock after the assertion of
BOFF.

When system logic relinquishes the bus by negating BOFF, the
processor almost immediately drives the bus again, with LOCK
asserted, and restarts the aborted write access by asserting
ADS as early as one clock after BOFF is negated (although this
example shows two clocks after).

System logic should ensure that the processor results for inter-
rupted and uninterrupted locked cycles are consistent. That is,
system logic must guarantee that the memory accessed by the
processor is not modified during the time another bus master
controls the bus.

Bus Cycle Timing 5-175

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-18. Locked Operation with BOFF Intervention

CLK

A31–A3

ADS

BE7–BE0

BOFF

BRDY

CACHE

D/C

D63–D0

KEN

LOCK

M/IO

W/R

CLK

Read Aborted Write Restarted Write

5-176 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Interrupt
Acknowledge
Operation

Figure 5-19A shows system logic asserting INTR during a burst
read. The figure shows the resulting bus behavior, up to the
start of the interrupt handler. When the processor recognizes
an INTR interrupt at the next instruction-retirement bound-
ary, the processor performs the following actions:

■ Finish In-Progress Bus Cycle—In Figure 5-19A, a burst read is
in progress when system logic asserts INTR. The processor
supports only one such in-progress bus cycle.

■ Flush Instruction Pipeline—This is not visible on the bus.

■ Acknowledge Interrupt—The interrupt acknowledge opera-
tion consists of a locked pair of reads, as shown in Table
5-22. The first read is not functional (a protocol relic). The
second read returns the interrupt vector in D7–D0. (The
interrupt vector is an offset into an interrupt table.) System
logic must return a BRDY in response to both cycles. The
processor inserts at least one idle clock between the locked
reads.

■ System logic will typically not be able to determine the
instruction boundary on which the processor recognizes
INTR. Thus, as a practical matter, system logic should hold
INTR asserted until the beginning of the interrupt acknowl-
edge operation, or until there is some other evidence that
the interrupt service routine has been entered (for exam-
ple, the access to the interrupt-table address).

■ Disable Maskable Interrupts—The processor does this under
certain conditions (see Section 5.2.32 on page 5-85 for
details), and it is not visible on the bus.

TABLE 5-22. Interrupt Acknowledge Operation Definition

Processor
Outputs

First Bus Cycle Second Bus Cycle

D/C 0 0

M/IO 0 0

W/R 0 0

BE7–BE0 EFh FEh (low byte enabled)

A31–A3 0 0

D63–D0 (ignored)
Interrupt vector expected from
interrupt controller on D7–D0

Bus Cycle Timing 5-177

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

As shown in Figure 5-19B and Figure 5-19C, following the inter-
rupt acknowledge operation and a quiet period during which
the processor executes housekeeping microcode, the processor
prepares to service the interrupt by performing the following
accesses on the bus:

■ IDT Lookup—Using the interrupt vector and, in Protected
mode, the base address of the interrupt descriptor table
(IDT), from the interrupt descriptor table register (IDTR),
the processor performs a read on the bus to look up the 8-
byte IDT entry. In Figure 5-19B, this appears as a burst
read, which is cached.

■ GDT Lookup—Using the segment descriptor from the IDT,
the processor performs another read of the global descrip-
tor table (GDT) to look up the 8-byte code segment descrip-
tor. This also appears as a burst read, which is cached.
Alternatively, this read can access the local descriptor table
rather than the global descriptor table.

■ Write to Stack—As shown in Figure 5-19C the processor
saves the EFLAGS, CS, and EIP registers on the stack.
These saves appear as three single writes.

■ Code Fetch for Interrupt Handler—Finally, using the base
address from the GDT descriptor and the offset from the
IDT descriptor, the processor locates the interrupt handler
in the code segment (CS) and begins fetching the code in
cacheable burst reads.

5-178 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-19A. Interrupt Acknowledge Operation Part 1

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

EADS

INTR

KEN

LOCK

M/IO

W/R

CLK

INTR Asserted
Interrupt
Acknowledge
Cycles

Bus Cycle Timing 5-179

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-19B. Interrupt Acknowledge Operation Part 2

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

EADS

INTR

KEN

LOCK

M/IO

W/R

CLK

IDT Lookup GDT Lookup

5-180 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-19C. Interrupt Acknowledge Operation Part 3

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

EADS

INTR

KEN

LOCK

M/IO

W/R

CLK

Write
to stack

Code fetch
for interrupt

Bus Cycle Timing 5-181

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

5.4.6 Special Bus Cycles

The processor drives D/C = 0, M/IO = 0, and W/R = 1 to define a
special bus cycle. The values of these cycle-definition signals
are the same for all special cycles. Only BE7–BE0 and A31–A3
differentiate among the special cycles, as shown in Table 5-23.

This function of BE7–BE0 bears no relationship to the D63–D0
data bus. It is particularly apparent in the case of the branch-
trace message special bus cycle, during which the value of
BE7–BE0 is DFh (1101_1111b) but, in contradiction to the byte-
enable bits, the four bytes on D31–D0 carry valid data during
both cycles of the operation. During the first cycle, D31–D0
carries the EIP value of the source (branch) instruction. Dur-
ing the second cycle, D31–D0 carries the EIP value of the
branch-target instruction.

TABLE 5-23. Encodings For Special Bus Cycles

BE7–B0 A31–A3 Special Bus Cycle1 Cause

FEh ...00h Shutdown Triple fault

FDh ...00h Cache Invalidation INVD instruction

FBh ...10h Stop Grant STPCLK

FBh ...00h Halt HLT instruction

F7h ...00h
Cache Writeback and Inval-
idation

WBINVD instruction

EFh ...00h FLUSH Acknowledge FLUSH

DFh ...00h Branch-Trace Message2

Bit 5 = 1 and bits 3–1 = 001 in the
hardware configuration register
(HWCR). See Section 7.1 on page
7-3 for details.

Notes:
1. For all special bus cycles, D/C = 0, M/IO = 0 and W/R = 1. System logic must return BRDY in response to this cycle.
2. The message in a branch-trace message special bus cycle is different in the AMD5K86 and Pentium processors.

5-182 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Basic Special Bus
Cycle

Figure 5-20 shows a basic special bus cycle, which is defined
during ADS by D/C = 0, M/IO = 0, and W/R = 1 and differenti-
ated by BE7–BE0 and A31–A3. In this example, BE7–BE0
= FBh and A31–A3 = 0, so it is the special cycle the processor
generates after executing a HLT instruction. System logic must
respond with BRDY.

All special bus cycles serialize the pipeline. EWBE is not
checked prior to running special bus cycles (all of which have
W/R = 1), so EWBE has no effect on any special bus cycles.

FIGURE 5-20. Basic Special Bus Cycle (Halt Cycle)

CLK

A31–A3

ADS

BE7–BE0

BRDY

D/C

EWBE

M/IO

W/R

CLK

Bus Cycle Timing 5-183

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Shutdown Cycle Figure 5-21 shows a shutdown and the special cycle that fol-
lows. The processor enters shutdown when an interrupt or
exception occurs during the handling of a double fault (vector
8), which amounts to a triple fault. When the processor encoun-
ters such a triple fault, it stops its activity on the bus and gen-
erates the special bus cycle for shutdown (BE7–BE0 = FEh).
System logic must respond with BRDY.

System logic must assert NMI, INIT, RESET, or SMI to get the
processor out of the Shutdown state.

FIGURE 5-21. Shutdown Cycle

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

INTR

KEN

LOCK

M/IO

W/R

CLK

Shutdown
Occurs

Shutdown
Special
Cycle

…

5-184 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FLUSH-Acknowledge
Cycle

Figure 5-22 shows the FLUSH-acknowledge special bus cycle,
which the processor drives in response to system logic’s asser-
tion of FLUSH. This example shows the processor completing
other unrelated bus cycles following the assertion of FLUSH.
These bus cycles are caused by the execution of instructions
earlier in the pipeline, which are completing execution before
the processor recognizes FLUSH on the next instruction-retire-
ment boundary.

FLUSH causes the processor to write back all modified lines in
its data cache. Only one such writeback is shown in this exam-
ple. After all writebacks complete, the processor invalidates
all lines in both of its caches. Then, the processor generates the
FLUSH-acknowledge special bus cycle (BE7–BE0 = EFh) to
indicate that the writebacks and invalidation have completed.
System logic must respond by asserting BRDY.

FIGURE 5-22. FLUSH-Acknowledge Cycle

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

FLUSH

KEN

LOCK

M/IO

W/R

CLK

Flush Asserted Writeback

… …

Bus Cycle Timing 5-185

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Cache-Invalidation
Cycle (INVD
Instruction)

Figure 5-23 shows the cache-invalidation special bus cycle,
which the processor drives in response to the execution of the
INVD instruction. The INVD instruction causes the processor
to invalidate each line in its instruction and data caches. Modi-
fied lines in the data cache are not written back.

Although the execution of INVD is not visible on the bus, the
lack of activity on the bus as the microcode invalidates the
lines in the internal cache can be seen. When all lines in both
caches are invalidated, the processor drives the cache-invalida-
tion special bus cycle (BE7–BE0 = FDh). System logic must
respond by asserting BRDY. When it does, the processor typi-
cally begins driving one or more burst reads on the bus to refill
its caches.

FIGURE 5-23. Cache-Invalidation Cycle (INVD Instruction)

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

KEN

LOCK

M/IO

W/R

 CLK

INVD
Instruction
Completes

Cache Invalidation
Special Cycle

5-186 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Cache-Writeback
and Invalidation
Cycle (WBINVD
Instruction)

Figure 5-24A and Figure 5-24B show the cache-writeback and
invalidation special bus cycle, followed by the cache-invalida-
tion special bus cycle. The processor drives these two special
cycles after executing the WBINVD instruction.

The execution of WBINVD causes the processor to invalidate
each line in its instruction and data caches. If a data cache line
is in the modified state, the line is written back immediately
before being invalidated. During such writebacks, A31–A5
defines the address of a 32-byte location in memory to which
the modified cache line will be written back. After all modified
lines are written back and all lines in both caches are invali-
dated, the processor first drives the cache-writeback and inval-
idation special bus cycle (BE7–BE0 = F7h) and then the cache-
invalidation special bus cycle (BE7–BE0 = FDh). System logic
must respond by asserting BRDY to each of the two special
cycles as shown in Figure 5-24B.

FIGURE 5-24A. Cache-Writeback and Invalidation Cycle (WBINVD Instruction) Part 1

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

KEN

LOCK

M/IO

W/R

CLK

WBINVD
Instruction
Completes

Writeback

Bus Cycle Timing 5-187

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-24B. Cache-Writeback and Invalidation Cycle (WBINVD Instruction) Part 2

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

KEN

LOCK

M/IO

W/R

CLK

Cache Writeback and
invalidation special cycle

Cache invalidation
special cycle

5-188 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Branch-Trace
Message Cycles

Figure 5-25 shows the two branch-trace message special bus
cycles that the processor generates for each taken branch
when branch tracing is enabled as described in Section 7.6 on
page 7-17. System logic can accumulate the address and data
bus values for debugging or profiling.

The processor drives these special bus cycles immediately
after each taken-branch instruction is executed. Both special
bus cycles have a BE7–BE0 = DFh, and system logic must
respond by asserting BRDY to each of the cycles. The first
cycle identifies the branch source, and the second identifies
the branch target, as shown in Table 5-24.

TABLE 5-24. Branch-Trace Message Special Bus Cycle Fields

Signals First Special Bus Cycle Second Special Bus Cycle

A31 0 = first special bus cycle (source) 1 = second special bus cycle (target)

A30–A29 not valid

Operating Mode of Target:

11 = Virtual-8086 Mode

10 = Protected Mode

01 = Not valid

00 = Real Mode

A28 not valid

Default Operand Size of Target Segment:

1 = 32-Bit

0 = 16-Bit

A27–A20 0 0

A19–A4
Code segment (CS) selector of
branch source

Code segment (CS) selector of branch
target

A3 0 0

D31–A0 EIP of branch source. EIP of branch target.

Bus Cycle Timing 5-189

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-25. Branch-Trace Message Cycle

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

KEN

M/IO

W/R

CLK

Branch-trace
Message special
cycles

5-190 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

5.4.7 Mode Transitions, Reset, and Testing

System logic can control the system-management, clocking,
and initialization states of the processor with SMI, STPCLK,
INIT, and RESET. The following examples shows the proces-
sor’s response to some of the signals.

Transition from
Normal Execution to
SMM

Figure 5-26A and Figure 5-26B shows the transition from one of
the processor’s normal operating modes (Real, Protected, or
Virtual-8086 mode) to System Management Mode (SMM). Sys-
tem logic causes this transition by asserting SMI.

Upon recognizing an SMI interrupt at the next instruction-
retirement boundary, the processor performs the following
actions:

1. Flush Pipeline—The processor invalidates all instructions
remaining in the pipeline. This is not visible on the bus.

2. Complete In-Progress Cycle—If the processor had begun a
bus cycle when SMI was asserted, the processor completes
the bus cycle and waits until the system asserts the last
expected BRDY and also asserts EWBE. In Figure 5-26A, a
burst read is shown completing after SMI is asserted.

3. Acknowledge—After sampling EWBE asserted, the proces-
sor asserts SMIACT to acknowledge the interrupt. This is
visible on the bus after SMI is recognized. At that point, sys-
tem logic must ensure that all memory accesses during
SMM are to the SMM memory space.

4. Save Processor State—The processor saves its state in the
SMM state-save area. These saves appear at the far right of
the example in Figure 5-26B.

5. Disable Interrupts and Debug Traps—The processor disables
maskable interrupts by clearing the interrupt flag (IF) in
EFLAGS, disables NMI interrupts, clears the trap flag (TF)
in EFLAGS, and clears the DR7–DR6 debug control and sta-
tus registers. This is not visible on the bus.

6. Service Interrupt—The processor jumps to the entry point of
the SMM service routine at the SMM base physical address,
whose default is 0003_8000h in SMM memory.

For details on SMM, see Section 6.3 on page 6-23.

Bus Cycle Timing 5-191

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-26A. Transition from Normal Execution to SMM Part 1

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

FLUSH

KEN

LOCK

M/IO

SMI

SMIACT

W/R

CLK

SMI Asserted
SMIACT
Asserted

5-192 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-26B. Transition from Normal Execution to SMM Part 2

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

FLUSH

KEN

LOCK

M/IO

SMI

SMIACT

W/R

CLK

Begin save of
processor state

Bus Cycle Timing 5-193

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Stop-Grant and Stop-
Clock States

Figure 5-27A and Figure 5-27B show the processor’s transition
from normal execution to the Stop-Grant state, then to the
Stop-Clock state, and finally back to normal execution. The
series of transitions begins when system logic asserts STPCLK.
Upon recognizing a STPCLK interrupt at the next instruction-
retirement boundary, the processor performs the following
actions, in the order shown:

1. Flush Pipeline—The processor invalidates all instructions
remaining in the pipeline. This is not visible on the bus.

2. Complete In-Progress Cycle—If the processor had begun a
bus cycle or locked operation when STPCLK was asserted,
the processor completes the bus cycle and waits until the
system asserts the last expected BRDY and also asserts
EWBE. If no bus cycle is in progress, system logic must
assert EWBE at the same time as, or at sometime after, it
asserts STPCLK. In Figure 5-27A, a burst read is shown
completing after STPCLK is asserted.

3. Stop-Grant Cycle—After sampling both EWBE asserted, the
processor drives a Stop-Grant special bus cycle. This cycle
is identified by D/C = 0, M/IO = 0, W/R = 1, BE7–BE0 = FBh
and A31–A3 = 10h. System logic must respond by asserting
BRDY. This is visible on the bus, near the middle of Figure
5-27A.

4. Stop Internal Clock—When system logic returns BRDY for
the Stop-Grant special bus cycle, the processor stops its
internal clock and floats D63–D0 and DP7–DP0. This is on
the bus between Figure 5-27A and Figure 5-27B immedi-
ately after the BRDY of the Stop-Grant special bus cycle.

5. (Optional) Stop Bus Clock—After returning BRDY in
response to the Stop-Grant special bus cycle, power-man-
agement logic can transition to the Stop-Clock state by stop-
ping CLK while STPCLK is held asserted.

STPCLK must be held asserted throughout the Stop-Grant and
(if entered) Stop-Clock states.Figure 5-27B shows the processor
resuming normal execution after system logic negates STP-
CLK.

For details on clock control, see Section 6.4 on page 6-33.

5-194 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 5-27A. Stop-Grant and Stop-Clock Modes Part 1

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

KEN

LOCK

M/IO

STPCLK

W/R

CLK

STPCLK
Asserted

Stop Grant
Special Cycle

Stop
Clock
State

Bus Cycle Timing 5-195

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-27B. Stop-Grant and Stop-Clock Modes Part 2

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

KEN

LOCK

M/IO

STPCLK

W/R

CLK

Normal
State

5-196 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

INIT-Initiated
Transition from
Protected Mode to
Real Mode

Figure 5-28 shows an example in which the operating system
writes to an I/O port, causing system logic to assert INIT. The
assertion of INIT starts an extended microcode sequence that
terminates with a code fetch from the Reset location.

INIT is typically asserted in response to a BIOS interrupt that
writes to an I/O port. This is often, for example, in response to
the operator’s pressing Control-Alt-Del. The BIOS writes to a
port (such as port 64h in the keyboard controller) that asserts
INIT. INIT is also used to support 286 software that must
return to Real mode after accessing extended memory in Pro-
tected mode. The 286 processor does not have an INIT input—
a transition from Protected mode to Real mode can only be
made on the 286 processor by asserting RESET. With the INIT
signal, however, the operating system can cause the transition
through a BIOS interrupt without loss of cache contents or
floating-point state.

Upon recognizing an INIT interrupt at the next instruction-
retirement boundary, the processor performs the following
actions, in the order shown:

1. Flush Pipeline—The processor invalidates the instruction
pipeline and TLB. This is not visible on the bus.

2. Reinitialize—The processor reinitializes the general-pur-
pose and system registers to their reset values. This is also
not visible on the bus, except as an extended period of inac-
tivity.

3. Jump To BIOS—The processor jumps to the BIOS at address
FFFF_FFF0h, the same entry point used after RESET. This
jump is visible on the far-right side of Figure 5-28 as a burst
code read.

Bus Cycle Timing 5-197

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 5-28. INIT-Initiated Transition from Protected Mode to Real Mode

CLK

A31–A3

ADS

BE7–BE0

BRDY

CACHE

D/C

D63–D0

INIT

KEN

M/IO

RESET

W/R

CLK

INIT Asserted
Code fetch
from FFFF_FFF0h

…

5-198 Bus Interface

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Memory 6-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

6
System Design

This chapter summarizes topics that may be of help to system
board designers. The discussions touch on the design of mem-
ory, cache, System Management Mode (SMM), clock control
(power management), and a few other topics. Many of the
details that relate to this subject are also covered in Chapter 5,
which describes the processor’s signals and bus cycles not only
from the processor’s view, but also from the system’s view.

Throughout this chapter, the term clock refers both to the pro-
cessor’s internal clock and to the bus clock (CLK). Thus, each
type of clock is explicitly differentiated in the descriptions
that follow.

6.1 Memory

The processor can be configured for memory bus speeds of 50,
60, or 66 MHz. Main memory can be built from Page-mode or
EDO (extended data out) DRAM. On a 66-MHz bus, the read-
cycle time for a page hit in EDO DRAM is 7-2-2-2 (7 clocks for
the first transfer and 2 clocks for each remaining transfer) and
10-2-2-2 for a page miss. The read-cycle time for a page-hit
Page-mode DRAM at 66 MHz is 7-4-4-4 and 10-4-4-4 for a page
miss. On a 50-MHz bus, there is no change in timing for EDO
DRAM but Page-mode DRAM timing becomes 6-3-3-3 for a
page hit and 8-3-3-3 for a page miss.

6-2 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.1.1 Memory Map

Figure 6-1 shows a typical physical memory map for a DOS-
based desktop system after DOS boots. Various regions of this
memory map to RAM or ROM on the motherboard and adapter
boards. The processor hardware imposes only two constraints
on the physical memory map implemented by system hard-
ware—the boot address at FFFF_FFF0h, which is accessed
when RESET or INIT is asserted, and the default addresses for
SMM. However, other physical memory mapping requirements
are imposed by BIOS, the operating system, and the specific
hardware implemented for the system. In general, the conven-
tions for hardware memory mapping for DOS-based desktop
systems include the following:

■ Memory-decoder aliasing of boot ROM space

■ Cacheable vs. noncacheable address spaces

■ SMM memory address space (optional)

Each of these issues is summarized briefly in the sections that
follow.

Memory 6-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 6-1. Typical Desktop-System BIOS Memory Map

Boot ROM

Extended
(expanded)

Memory

Aliased Boot ROM

High
Memory

BIOS ROM
Device ROM

Memory-Mapped I/O

4 Gbyte

1 Mbyte

Hardware
Alias

640 Kbyte

DOS Kernel
BIOS Data

Interrupt Vectors

Decimal Hexadecimal

0003_FFFF
0003_8000

Low
(conventional)

Memory
SMM

Memory

BIOS
Remap

During Boot0009_FFFF

000F_FFFF

000F_C000

FFFF_FFFF

FFFF_C000

0000_0000

6-4 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.1.2 Memory-Decoder Aliasing of Boot ROM Space

The processor boots in Real mode at address FFFF_FFF0h.
However, because the boot ROM space must be accessed after
the first far jump in the processor’s Real mode, which gener-
ates 20-bit addresses in the space below 1 Mbyte, the address
decoder typically aliases the 16-Kbyte physical boot ROM
space located between FFFF_FFFFh and FFFF_C000h to the
top of the high memory space, between 000F_FFFFh and
000F_C000h, as shown in Figure 6-1.

This reset-address behavior is due to the special way in which
segment translation is performed in the x86 architecture when
RESET or INIT is asserted. Normally, a Real-mode 16-bit seg-
ment selector is shifted left 4 bits to form the segment base,
and then added to the 16-bit offset to produce a 20-bit address.
Thus, F000:FFF0 in the selector:offset format becomes a seg-
ment base of 000F_0000h added to an offset of 0000_FFF0h,
yielding the physical address 000F_FFF0h. When RESET or
INIT is asserted, however, the left-shift is not done and the
high 16 address bits are all set to 1, yielding the physical
address FFFF_FFF0h. Thereafter, address translation only
begins to work in the normal Real-mode manner when the first
far jump is executed. This jump loads the code-segment regis-
ter with a 16-bit segment selector, and this selector-load causes
the address-translation mechanism to begin working in its nor-
mal Real-mode manner.

The system-logic address decoder must make this behavior
transparent to software by aliasing the physical address
FFFF_FFF0h to the physical address 000F_FFF0h. As stated
above, it normally does this by aliasing the entire 16-Kbyte
block between FFFF_FFFFh and FFFF_C000h to between
000F_FFFFh and 000F_C000h.

6.1.3 Cacheable and Noncacheable Address Spaces

When the instruction or data caches are enabled, the processor
can fill them with any information found in the system-defined
cacheable address space—including code and data for applica-
tion programs, BIOS, the operation system and its system-level
data structures—except that the processor does not fill its
instruction or data caches with page directory or page table

Memory 6-5

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

entries because these data structures are cached only in CR3
and the TLBs.

System logic normally defines the cacheable address space by
implementing external registers which BIOS or other system
software initializes during boot with the cacheable (or non-
cacheable) ranges of the address space. Lookups in these regis-
ters are then used by system logic to control the state of the
KEN and WB/WT input signals. KEN controls the caching of
memory reads for both the instruction and data caches, and
WB/WT (together with the PWT bits written by the operating
system) controls the MESI state of cacheable read misses and
write hits in the data cache.

Most or all of the high memory address range, which lies
between 640 Kbyte and 1 Mbyte, is typically specified as non-
cacheable by system logic. BIOS ROM is typically hardware-
aliased to addresses in this region, and BIOS uses some of the
RAM in this region to address locations that should not be
cached, such as memory-mapped I/O ports (video, disk, net-
work, and other devices). Thus, system logic typically does not
assert KEN during accesses to high memory.

System logic can, of course, drive KEN so as to specify any
other areas of memory as non-cacheable, although this is nor-
mally not done.

6.1.4 SMM Memory Space and Cacheability

If the optional System Management Mode (SMM) is imple-
mented, system logic must ensure that, during SMM, all mem-
ory accesses are to the SMM memory space rather than to main
memory. In general, system designs that do not overlap the
address space of SMM memory and main memory are simpler
to design and may perform better. Section 6.3 on page 6-23
summarizes the details of SMM. This section deals only with
memory usage in SMM.

Figure 6-2 shows the default map of the SMM memory area. It
consists of a 64-Kbyte area, between 0003_0000h and
0003_FFFFh, of which the top 32 Kbytes (0003_8000h and
0003_FFFFh) must be populated with RAM. The SMM service-
routine entry point is located at 0003_8000h.

6-6 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

During boot, the address decoder must allow BIOS to address
the SMM memory area in the main memory address space
without entering into the SMM mode in order to initialize it
with configuration parameters and the SMM service routine.
Thereafter, the BIOS typically remaps the area from its default
location in low memory to high or extended memory, as shown
in Figure 6-1. After the remapping by BIOS, the address
decoder must allow only the processor to access the SMM mem-
ory area. Other bus masters must be prevented from accessing
it, unless the system design specifically calls for such access.

Memory 6-7

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 6-2. Default SMM Memory Map

System logic controls the cacheability of SMM memory with
KEN in the same way that it controls the cacheability of mem-
ory space. If SMM memory is to be non-cacheable, KEN must
be held negated from when SMI is asserted until SMIACT is
negated. If SMM memory is to be cacheable, KEN must be
asserted for cacheable read cycles.

SMM
State-Save

Area

SMM Base Address (CS)

Service Routine Entry Point

Fill Down

SMM
Service Routine

32-Kbyte
Minimum
RAM

0003_8000

0003_FE00

0003_FFFF

0003_0000

6-8 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The cacheability of SMM memory has both advantages and dis-
advantages. By caching SMM memory, the advantage of faster
repetitive accesses is offset by delays due to overwriting cache
lines that may otherwise be reusable after returning from
SMM. If the program that was running prior to entry into SMM
ran out of the cache, and the same program continued to run
after the return from SMM, the processor would need to refill
the caches with the same information after returning from
SMM. If an SMM routine frequently accesses the same loca-
tions, the delays due to cache refills and writeback-invalidates
may be worthwhile. But if an SMM routine seldom accesses the
same locations, the speed of returning and continuing on with
the prior program might be improved by not caching SMM
memory.

If SMM memory space overlaps main memory space that is
cacheable, FLUSH must be asserted when SMI is asserted so
that memory accesses in SMM do not hit locations cached from
main memory. If SMM memory is to be cacheable, FLUSH
must also be asserted with SMI when entering SMM, and the
SMM service routine must execute the WBINVD instruction to
invalidate the caches just prior to executing the RSM instruc-
tion, which returns the processor from SMM. The use of
FLUSH or WBINVD adds potentially significant time to the
entering and leaving of SMM.

6.2 Cache

Systems with multiple bus masters that share cacheable mem-
ory require methods for controlling access to the bus and con-
trolling the coherency of shared memory. The sections below
summarize certain principles and methods used by system
logic, in concert with software, to maintain the coherency of
the processor’s level-1 (or L1) on-chip caches and optional
level-2 (or L2) external cache.

The internal architecture of the processor’s L1 instruction and
data caches is described in Section 2.3 on page 2-13. The oper-
ating system writes the cache disable (CD) and not-
writethrough (NW) bits in CR0 to enable and disable caching,
independent of hardware. Thereafter, the operating system
may write the PCD and PWT bits in the page directory and

Cache 6-9

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

page table entries to control caching properties for specific
physical pages. The PCD and PWT bits control the state of the
PCD and PWT output signals, which system logic can use to
control L2 caching.

6.2.1 L2 Cache

To improve system performance, an L2 cache can be added
between the processor and main memory. The L2 cache can be
implemented for 3-2-2-2 bursts using 15-ns asynchronous
SRAM on a 60-MHz or 66-MHz bus. Faster bursts can be imple-
mented with synchronous SRAM. 9-ns SSRAM can achieve 3-1-
1-1 bursts at 66 MHz and 10-ns SSRAM can achieve 2-1-1-1
bursts at 50 MHz.

Most system designs that implement an L2 cache do so using
(a) an L2 cache that is significantly larger than the combined
sizes of the L1 caches, (b) L2 cache lines that are at least as
wide as L1 cache lines (32 bytes or more), and (c) cache-line
fills that follow the principle of inclusion, which says that any
line in the L1 cache is guaranteed to be in the L2 cache.

The first principle (L2 cache bigger) guarantees that the L2
cache will have data that is not already in the L1 cache. The
second principle (L2 cache line size greater or equal to L1
cache line size) can simplify and speed up transfers from the
L2 cache to the L1 cache. The third principle (inclusion) can
simplify and speed up cache-coherency signaling for inquire
cycles—if an inquire cycle misses in the L2 cache, the system
can safely assume it is not in the L1 cache without having to
query the processor directly.

6.2.2 Cacheability and Cache-State Control

The PCD bits maintained by the operating system are a deter-
mining factor in the state of the processor’s CACHE output sig-
nal for each bus cycle. CACHE indicates the processor’s intent
to drive a read or write cycle as a burst cycle. The signal is only
asserted for reads that the operating system determines to be
cacheable, and for writebacks of modified lines. These write-
backs can be caused by inquire cycles, internal snoops, the
FLUSH signal, the WBINVD instruction, or cache-line replace-
ments. CACHE is not asserted for cache hits that are

6-10 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

writethroughs, which are driven as single writes rather than
burst writes.

From the system’s viewpoint, the cacheability of bus cycles is
controlled by the KEN and WB/WT inputs, as described in Sec-
tion 6.1.3 on page 6-4. During reads, system logic can use the
assertion of CACHE to initiate a table lookup of cacheable
addresses. Such lookups are not normally necessary during
writebacks, because the location (having already been cached)
is known to be cacheable and KEN has no effect on the proces-
sor during writes (only during reads).

The MESI state of a cache-line fill (read miss) or a write hit to a
shared line is determined by the states of the PWT bits and the
WB/WT input signal. The MESI-state transitions for reads and
writes are given in Table 2-2 on page 2-19. Complete descrip-
tions of the signals that control cacheability and cache coher-
ency are given on the following pages:

■ CACHE—Section 5.2.15 on page 5-50

■ EADS—Section 5.2.20 on page 5-59

■ HIT—Section 5.2.25 on page 5-72

■ HITM—Section 5.2.26 on page 5-74

■ INV—Section 5.2.33 on page 5-89

■ KEN—Section 5.2.34 on page 5-90

■ PCD—Section 5.2.39 on page 5-100

■ PWT—Section 5.2.43 on page 5-106

■ WB/WT—Section 5.2.56 on page 5-134

6.2.3 Writethrough vs. Writeback Coherency States

The terms writethrough and writeback apply to two related con-
cepts in a read/write cache like the processor’s L1 data cache
or an L2 cache. The following conditions apply to both the
writethrough and writeback modes:

■ Memory Writes—There is a relationship between memory
writes and their concurrence with cache updates:

• A memory write that occurs concurrently with a cache
update to the same location is a writethrough.
Writethroughs are driven as single cycles on the bus.

Cache 6-11

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

• A memory write that occurs after a previous cache up-
date to the same location is a writeback. Writebacks are
driven as burst cycles on the bus.

■ Coherency State—There is a relationship between MESI
coherency states and writethrough-writeback coherency
states of lines in the cache:

• shared MESI lines are in the writethrough state

• modified and exclusive MESI lines are in the writeback
state

Table 2-2 on page 2-19 gives an overview of cache-access states
from the viewpoint of both memory writes and coherency
state. Chapter 5 deals with memory writes. This section deals
with the coherency state of cache lines.

Typically, system logic participates in the coherency control of
individual data-cache lines during read misses and write hits to
shared lines by driving WB/WT as shown in Tables 5-17 and 5-18
on page 5-136. The PWT bit also enters into this control, but it
is written by the operating system rather than system logic.
Alternatively, system logic can force the on-chip data cache to
statically observe a writethrough or a writeback protocol by
tying WB/WT as follows:

■ Writethrough Protocol—Tie WB/WT Low

■ Writeback Protocol—Tie WB/WT High

In the writethrough protocol, a cache line is either in the
shared or invalid state. All write hits to shared lines in the data
cache also cause 1-to-8-byte writethroughs to memory. Thus, in
writethrough cache lines, the MESI protocol is not fully
observed—the line never transitions to the exclusive or modi-
fied MESI states. In the writeback protocol, by contrast, a
cache line can be in the shared, exclusive, modified, or invalid
MESI state. Write hits only cause writethroughs to memory if
the hit is to a shared line. Writebacks can be caused by inquire
cycles, internal snoops, the FLUSH signal, the WBINVD
instruction, or cache-line replacements.

The advantages and disadvantages of these modes are as fol-
lows:

■ Writethrough Protocol:

6-12 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

• Repetitive writes to the same location are slower than in
writeback mode.

• No updates to the data cache are hidden from the sys-
tem.

• When returning from SMM with SMM memory cache-
able, there is no need to write back modified lines in the
data cache, so the mode transition may be faster. (Both
caches, however, must be invalidated.)

■ Writeback Protocol:

• Repetitive writes to the same location are faster than in
writethrough mode.

• Updates that hit exclusive or modified lines in the data
cache are hidden from the system.

• When returning from SMM, in which SMM memory is
cacheable, modified lines in the data cache must be writ-
ten back before invalidating both caches, so the mode
transition may be slower.

In single-processor systems with no other caching master, WB/
WT is typically tied High. This allows the processor to cache all
cacheable reads in the exclusive state, and all cacheable writes
update only the cache. In systems with multiple caching mas-
ters, WB/WT can be generated after inquire cycles to all other
caching masters by the logical OR of HIT from all of the mas-
ters. This allows the processor to cache reads in the exclusive or
modified state only if no other master has a copy.

The write-once protocol, as described in Section 6.2.6 on page
6-19, combines the system visibility features of pure
writethrough and writeback protocols. While the writeback
function can support higher performance in systems with a sin-
gle caching master, the writethrough function is required for
certain transitions in the write-once protocol in systems with
multiple caching masters.

6.2.4 Inquire Cycles

System logic maintains coherency between external caching
devices and the processor’s internal caches by driving inquire
cycles to the processor during shared-memory accesses by
other caching masters. Inquire cycles are often called snoops or
invalidations, but these terms are too general to clearly differ-

Cache 6-13

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

entiate the function of an inquire cycle from the functions of
snoops and invalidations that work and/or are initiated in quite
different ways (see the preface for a short list of definitions).
For example, the AMD5K86 and Pentium processors support
only inquire cycles and internal snoops to their L1 cache. They
do not support continuous address bus watching.

The processor responds to inquire cycles by looking up the
inquire address in its physical tags. The physical-tag lookups
are done in parallel with the linear-tag lookups that support
program execution, so inquire cycles do not normally affect
processor performance. Even when inquire cycles hit modified
lines, which require writebacks to memory, only the proces-
sor’s use of the bus is potentially affected. It can normally con-
tinue to operate out of its cache during a writeback.

Inquire cycles are initiated with EADS, INV, and an inquire
address on A31–A5. In response, the processor asserts HIT if
the inquire cycle address matches the address of a valid line in
the instruction or data cache, or it asserts both HIT and HITM
if the address matches a modified line in the data cache. If
HITM is asserted, the processor writes the modified line back to
memory. If INV was asserted with EADS, a hit invalidates the
line. If INV was negated with EADS, a hit leaves the line in the
shared state, or transitions it from the modified to shared state.
On the AMD5K86 processor, the maximum inquire or invalida-
tion rate with inquire cycles is one every two clocks, because
HIT and HITM change state two clocks after EADS, and EADS
can be asserted in the same clock in which HITM is negated.

The MESI-state transitions for inquire cycles, internal snoops,
and cache invalidations are given in Table 2-3 on page 2-20 and
Table 5-11 on page 5-73.

System logic typically drives inquire cycles to the processor
during memory accesses by another bus master. If the proces-
sor has a look-through L2 cache, inquire cycles need be driven
to the processor only when a prior inquire cycle hits in the pro-
cessor’s L2 cache, or during line replacements in the proces-
sor’s L2 cache. To implement inquire cycles to the processor or
L2 cache for every memory access by another caching master,
system logic can generate EADS using the equivalent of ADS
from the other caching master.

6-14 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Inquire cycle logic in systems with look-aside caches can be
simplified by monitoring only HITM and ignoring HIT. This
works because the resulting state of a hit line is determined
only by the state of INV during the inquire as follows:

■ If INV is negated during a hit, the hit line—whether shared,
exclusive or modified—transitions to the shared state. Thus,
the inquiring master can safely cache the same data in the
shared state without knowing whether the inquire cycle hit
in the processor’s cache (and thus, without system logic
monitoring HIT).

■ If INV is asserted during a hit, the hit line—whether shared,
exclusive or modified—transitions to the invalid state. For
modified lines, the invalidation occurs after a writeback.

■ If the inquire cycle misses, irrespective of the state of INV,
the inquiring master can cache the target data in the shared
state, although it will not have enough information to cache
that line in the exclusive state (this requires that HIT be
monitored).

Lookaside caches must implement a signal with which to
inform the memory controller that a processor access or an
inquire cycle hit the L2 cache, so as to disable the memory
from responding. A version of HIT can be implemented for this
purpose.

Inquire cycle logic in systems with a look-through L2 cache
normally monitor both HIT and HITM from the processor,
because such systems often implement the write-once cache
protocol. This protocol requires caching in the exclusive state at
certain transitions, and the exclusive state can only be identi-
fied if both HIT and HITM are monitored.

6.2.5 Bus Arbitration for Inquire Cycles

Before running an inquire cycle, system logic must obtain con-
trol of the address bus by asserting AHOLD, BOFF, or HOLD.
These signals provide access to the bus with differing condi-
tions and speed.

In most systems, the choices are between BOFF and AHOLD.
Due to its slow response time, HOLD is usually considered only
when backward compatibility with prior-generation sub-
systems requires it or when the integrity of in-progress bus

Cache 6-15

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

cycles is of paramount importance. Support for BOFF is usu-
ally needed to resolve potential deadlock problems that arise
as a result of inquire cycles, and if BOFF is supported, there is
usually no reason to support HOLD. The sections that follow
further describe these relative advantages and disadvantages.

BOFF Arbitration BOFF obtains control of the full bus (address and data) in the
next clock, intervening in any in-progress bus cycle if neces-
sary. It provides the fastest response of the three bus-hold
inputs. The processor floats its outputs in the next clock after
the assertion of BOFF. Thus, the signal can also be used not
only for inquire cycles but also to resolve deadlock between
two bus masters during inquire cycles.

BOFF is useful, and often necessary, in both single-bus and
multiple-bus systems. Because of its ability to help resolve
deadlock during shared-memory accesses to cached locations,
it is required in virtually all systems with multiple caching
masters. For example, if Master A controls the bus and
attempts to write a memory location that is cached by Master B
in a modified state, a shared L2 controller could drive an
inquire cycle to Master B, forcing a writeback. But Master B
cannot write back until Master A is off the bus. In this case, the
L2 controller could use HITM from Master B to gate the asser-
tion of BOFF to Master A.

System logic typically drives separate BOFF signals to each
bus master in the system. The assertion by system logic of
BOFF to a shared L2 cache for an inquire cycle need not inter-
fere with the processor’s continued operation out of its L1
cache. In addition, the assertion by system logic of BOFF to a
look-through L2 cache for an inquire cycle need not interfere
with the processor’s continued accesses to that L2 cache.

Figure 6-3 shows an example of BOFF in a system with two
caching masters—a processor and another caching master—
sharing the processor bus. A typical sequence for inquire
cycles that hit a modified line in the processor’s cache might be
as follows:

1. The other master (or system logic) asserts BOFF to the pro-
cessor.

2. The other master (or system logic) drives an inquire cycle
(represented by EADS) to the processor.

6-16 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

3. The processor responds with HITM to system logic.

4. System logic asserts BOFF to the requesting master. (HITM
from the processor can be used to generate BOFF.)

5. The other master negates BOFF to the processor so that the
processor can write back its modified line to main memory
and the shared L2 cache.

FIGURE 6-3. BOFF Example

A configuration in which both caching masters were on oppo-
site sides of a shared L2 look-through cache would have some-
what similar operations, except that the L2 cache controller
would do much of the signalling ascribed to system logic in Fig-
ure 6-3.

System Bus

Writeback

Processor Bus

EADS
AMD5K86
Processor

BOFF

Other
Caching
Master

Look-Aside
L2 Cache

System
Logic

Main
Memory

BOFF

HITM

1

2

5

3

4

Cache 6-17

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

AHOLD Arbitration AHOLD’s sole function is to support inquire cycles. The asser-
tion of AHOLD by system logic only gets control of the address
bus, leaving the data bus available to the processor for the
completion of an in-progress bus cycle. If an inquire cycle hits
a modified line while AHOLD is asserted, the writeback can
occur while AHOLD is either asserted or negated.

AHOLD is useful primarily in systems with multiple buses and
multiple bus masters, where operations can occur on the sepa-
rate buses independently and in parallel, and system logic
would drive separate AHOLD signals to each caching master.
This configuration occurs, for example, if the processor shares
its bus only with a look-through L2 cache, and other caching
masters work in parallel on a system bus that is isolated by sys-
tem logic from the L2 cache controller. Figure 6-4 shows such a
design.

A typical sequence for inquire cycles that hit modified lines in
the processor’s cache might be as follows:

1. The master on the system bus requests access to memory.

2. System logic responds by asserting BOFF to the processor’s
L2 cache controller.

3. System logic drives an inquire cycle (represented by EADS)
to the L2 controller.

4. The L2 controller responds with HITM to system logic
(assuming the addressed location is cached by the L2).

5. System logic asserts BOFF to the requesting master on the
system bus. (HITM from the L2 controller can be used to
generate BOFF to the other master.)

6. The L2 controller asserts AHOLD to the processor.

7. The L2 controller drives an inquire cycle (represented by
EADS) to the processor.

8. The processor responds with HITM to the L2 controller,
indicating that the processor may have a later copy of the
location than does the L2 cache.

9. System logic negates BOFF to the L2 cache controller so
that the processor can write back its modified line to mem-
ory and the L2 cache.

6-18 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 6-4. AHOLD and BOFF Example

System Bus

Writeback

EADS

Other
Bus

Master

Memory Access

System
Logic

BOFF

HITM

3

9

8

5

AMD5K86
Processor

Main
Memory

Look-Through
L2 Cache

HITM 4

1

BOFF 2

EADS7AHOLD 6

Cache 6-19

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

HOLD Arbitration System logic can use the HOLD (request) and HLDA (acknowl-
edge) protocol to gain control of the address and data buses.
Like BOFF, HOLD/HLDA gains control of both the address and
data buses but only after the processor completes any in-
progress bus cycle or a sequence of cycles, like a locked cycle.
However, unlike BOFF, the HOLD/HLDA protocol cannot
resolve deadlock. In systems where deadlock can occur BOFF
must be used, and there is no need to support HOLD/HLDA.

6.2.6 Write-Once Protocol

Among the several write protocols that can be implemented by
the L1 and L2 caches, the write-once protocol is of special
interest for systems in which the processor has an L2 cache on
a separate bus from other caching masters. In such designs, the
write-once protocol allows caching masters to simultaneously
cache shared copies of data until one of the masters writes to
that location, at which time the writing master can have the
data exclusively and other caching masters must invalidate
their copies. The protocol allows other masters to determine
whether the processor has a modified line in its L1 cache by
driving an inquire cycle to the L2 cache, and it allows other
masters, via inquire cycles, to intervene in the processor’s
exclusive use of the data.

Figure 6-5 shows an example. System logic drives separate WB/
WT input signals to the L1 and L2 cache. During line fills and
writes to the L1 cache, the protocol then works as follows:

1. During a read miss, the processor fills a line in the L1. At
the same time, system logic (or the L2) fills a line in the L2
with the same data, and drives the WB/WT input Low
(writethrough) to both the L1 and L2. This leaves the L1
and L2 caches as follows:

L1 cache line in the shared state

L2 cache line in the shared state

2. During the first write to that line, the processor updates the
shared line in the L1 and L2, and writes through to memory.
At the same time, system logic drives the L1 WB/WT input
Low (writethrough) and the L2 WB/WT input High (write-
back). This leaves the L1 and L2 caches as follows:

L1 cache line in the shared state

L2 cache line in the exclusive state

6-20 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The writethrough to memory must be accompanied by an
invalidation of this line in any other caching master’s cache.

3. During the second write to that line, the processor updates
its shared line and writes through to the exclusive line of the
L2 cache. At the same time system logic drives the L1 WB/
WT input High (writeback), the L2 WB/WT input can also
be driven but has no effect. This leaves the L1 and L2
caches as follows:

L1 cache line in the exclusive state

L2 cache line in the modified state

(If the design of the L2 permits line transitions directly
from the shared to modified state, the state transitions in
Step 2 can be skipped.)

4. During the next write to that line, the processor updates its
exclusive line. The WB/WT input has no effect. This leaves
the L1 and L2 caches as follows:

L1 cache line in the modified state

L2 cache line in the modified state

5. During all subsequent writes to that line, the processor sim-
ply updates its modified line.

Inquire cycles to the L2 cache that occur between Steps 1 and 3
get a HIT but not a HITM, thus avoiding the need to drive
simultaneous or subsequent inquire cycles to the L1 cache.
These inquire cycles to the L2 cache are done in parallel with
the processor’s L1 and L2 accesses, so they do not reduce the
processor’s performance when it works out of its caches. How-
ever, inquire cycles to the L2 cache that occur after Step 3 get
a HITM. In these cases, the L2 cache drives a subsequent
inquire cycle to the L1 cache, which may have updated a modi-
fied copy after the last update to the L2 cache. These inquire
cycles to L1 are done in parallel with the processor’s own L1
accesses, but they will block the processor’s access to the L2
cache.

Cache 6-21

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 6-5. Write-Once Protocol

WB/WT = 0

WB/WT = 1

WB/WT = 0

WB/WT = 0Line Fill

System Bus

Other
Bus

Master

System
Logic

AMD5K86
Processor

Main
Memory

Look-Through
L2 Cache

1

WB/WT = 1

2

3

1

2

Writethrough

Writethrough

1

2

3

6-22 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.2.7 Cache Invalidations

The term invalidation usually means one of the following
things:

■ Individual Cache Lines—Writebacks and/or invalidations of
single lines in the instruction and data caches can be done
with inquire cycles (driven by system logic) or internal
snoops (initiated by the processor). These invalidations are
described in Section 6.2.4 on page 6-12, in the section on
Internal Snooping on page 2-22, and elsewhere throughout
this manual.

■ Entire Cache Contents—Writebacks and/or invalidations of
the entire contents of the instruction and data caches can
be done with the INVD or WBINVD instructions, or with the
FLUSH signal. These invalidations are typically performed
by the operating system or system logic during task or mode
changes. The invalidations are described on pages 5-67 and
5-181.

The MESI-state transitions for cache invalidations are given in
Table 2-3 on page 2-20.

6.2.8 A20M Masking of Cache Accesses

The processor samples A20M only in Real mode, and applies
A20M masking to its linear cache tags, through which all pro-
grams access the caches. Thus, assertion of A20M affects all
program-generated cache addresses, including the following:

■ Cache-line fills (caused by read misses)

■ Cache writethroughs (caused by write misses or write hits
to lines in the shared state)

■ Cache accesses that occur while the processor does not con-
trol the bus

However, A20M does not mask writebacks or invalidations
caused by the following actions, which are looked up only in
the physical (not the linear) tags:

■ Internal snoops

■ Inquire cycle

■ The FLUSH signal

System Management Mode (SMM) 6-23

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

■ The WBINVD instruction

Asserting A20M masks Real-mode cache addresses even while
the processor does not control the bus. Thus, if another master
takes control of the bus and causes the assertion of A20M, this
masks cache accesses occurring concurrently in the processor.
However, it does not affect the correct execution of programs,
because linear and physical addresses are identical in Real
mode.

The Pentium processor applies masking only to physical
addresses, not to linear addresses. This difference between the
AMD5K86 and Pentium processors of masking linear vs. physi-
cal addresses is not visible to software because linear and
physical addresses are identical in Real mode, and the
AMD5K86 processor samples A20M only in Real mode.

6.3 System Management Mode (SMM)

SMM is an operating mode entered via an interrupt and per-
formed by an interrupt service routine. It is designed for power
management and other system control activities that can occur
transparently to conventional operating systems like DOS and
Windows. The code and data for SMM are stored in an SMM
memory area that should be separate from main memory.

The processor enters SMM when system logic asserts the SMI
interrupt and the processor acknowledges it with SMIACT, at
which point the processor saves its state and jumps to the SMM
service routine. The processor returns from SMM when it exe-
cutes the RSM (resume) instruction from within the SMM ser-
vice routine. Upon return, the processor picks up where it left
off in its prior operating mode, except that special return
options are provided when the processor enters SMM from the
Halt state or from a trapped I/O instruction, as described in the
sections below.

The sections below summarize the SMM state-save area, entry
into and exit from SMM, and exceptions and interrupts in
SMM. Section 6.1.4 on page 6-5 summarizes memory allocation
and addressing in SMM. The SMI and SMIACT signals are
described on pages 5-117 and 5-122, respectively.

6-24 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.3.1 Operating Mode and Default Register Values

The software environment in SMM has the following features:

■ Addressing as in Real mode

■ 4-Gbyte segment limit

■ Default 16-bit operand, address, and stack size, although
instruction prefixes can override these defaults

■ Control transfers that do not override the default operand
size truncate the EIP to 16 bits

■ Far jumps or calls cannot transfer control to a segment with
a base address requiring more than 20 bits, as in Real mode
segment-base addressing.

■ A20M is not recognized (unlike the Pentium processor)

■ Interrupt vectors use the Real-mode interrupt vector table
(but see Section 6.3.8 on page 6-32)

■ The IF flag in EFLAGS is cleared (INTR not recognized)

■ The NMI interrupt is disabled

■ The TF flag in EFLAGS is cleared (single-step traces dis-
abled)

■ Debug register DR7 is cleared (debug traps disabled)

Figure 6-2 on page 6-7 shows the default map of the SMM mem-
ory area. It consists of a 64-Kbyte area, between 0003_0000h
and 0003_FFFFh, of which the top 32-Kbytes (0003_8000h and
0003_FFFFh) must be populated with RAM. The default code-
segment (CS) base address for the area—called the SMM Base
Address—is at 0003_0000h. The top 512 bytes (0003_FFFFh to
0003_FE00h) contain a fill-down SMM state-save area. The
default entry point for the SMM service routine is at
0003_8000h.

Table 6-1 shows the initial state of registers when entering
SMM.

System Management Mode (SMM) 6-25

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

6.3.2 SMM State-Save Area

When the processor acknowledges an SMI interrupt by assert-
ing SMIACT, it saves its state in the 512-byte SMM state-save
area shown in Table 6-2. The save begins at the top of the SMM
memory area (SMM Base Address + FFFFh) and fills down to
SMM base address + FE00h.

Table 6-2 shows the offsets in the SMM state-save area relative
to the SMM base address. The SMM service routine can alter
any of the read/write values in the state-save area. The con-
tents of any reserved locations in the state-save area are not
necessarily the same between the AMD5K86 processor and the
Pentium or 486 processors.

TABLE 6-1. Initial State of Registers in SMM

Register
Initial Contents

Selector Base Attributes Limit

CS 3000h
0003_0000h

(see Section 6.3.4)
16-bit, expand-up 4 Gbytes

DS 0000h 0000_0000h 16-bit, expand-up 4 Gbytes

ES 0000h 0000_0000h 16-bit, expand-up 4 Gbytes

FS 0000h 0000_0000h 16-bit, expand-up 4 Gbytes

GS 0000h 0000_0000h 16-bit, expand-up 4 Gbytes

SS 0000h 0000_0000h 16-bit, expand-up 4 Gbytes

General-Purpose Unmodified

EFLAGS 0000_0002h

EIP 0000_8000h

CR0 Bits 0, 2, 3, 31 cleared (PE, EM, TS, PG). Others are unmodified.

CR4 0000_0000h

GDTR Unmodified

LDTR Unmodified

IDTR Unmodified

TR Unmodified

DR7 Unmodified

DR6 Undefined

6-26 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

TABLE 6-2. SMM State-Save Area Map

Offset (hex) Contents Size (bits) Type

FFFC CR0 32 read-only

FFF8 CR3 32 read-only

FFF4 EFLAGS 32 read/write

FFF0 EIP 32 read/write

FFEC EDI 32 read/write

FFE8 ESI 32 read/write

FFE4 EBP 32 read/write

FFE0 ESP 32 read/write

FFDC EBX 32 read/write

FFD8 EDX 32 read/write

FFD4 ECX 32 read/write

FFD0 EAX 32 read/write

FFCC DR6 (FFFF_CFF3h) 32 read-only

FFC8 DR7 32 read-only

FFC4 TR 16 (upper 16 reserved) read-only

FFC0 LDTR 16 (upper 16 reserved) read-only

FFBC GS 16 (upper 16 reserved) read-only

FFB8 FS 16 (upper 16 reserved) read-only

FFB4 DS 16 (upper 16 reserved) read-only

FFB0 SS 16 (upper 16 reserved) read-only

FFAC CS 16 (upper 16 reserved) read-only

FFA8 ES 16 (upper 16 reserved) read-only

FFA4 I/O Trap Dword 32 (See Section 6.3.6) read-only

FFA0 reserved 32 —

FF9C I/O Trap EIP 32 read-only

FF98 reserved 32 —

FF94 reserved 32 —

FF90 IDT Base 32 read-only

FF8C IDT Limit 16 (upper 16 reserved) read-only

FF88 GDT Base 32 read-only

FF84 GDT Limit 16 (upper 16 reserved) read-only
Notes:

1. Locations marked “reserved” may change in future processors.
2. Writing locations marked as “read-only” has unpredictable results.

System Management Mode (SMM) 6-27

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FF80 TR Attributes 12 (upper 20 reserved) read-only

FF7C TR Base 32 read-only

FF78 TR Limit 20 (upper 12 reserved) read-only

FF74 LDT Attributes 12 (upper 20 reserved) read-only

FF70 LDT Base 32 read-only

FF6C LDT Limit 20 (upper 12 reserved) read-only

FF68 GS Attributes 12 (upper 20 reserved) read-only

FF64 GS Base 32 read-only

FF60 GS Limit 20 (upper 12 reserved) read-only

FF5C FS Attributes 12 (upper 20 reserved) read-only

FF58 FS Base 32 read-only

FF54 FS Limit 20 (upper 12 reserved) read-only

FF50 DS Attributes 12 (upper 20 reserved) read-only

FF4C DS Base 32 read-only

FF48 DS Limit 20 (upper 12 reserved) read-only

FF44 SS Attributes 12 (upper 20 reserved) read-only

FF40 SS Base 32 read-only

FF3C SS Limit 20 (upper 12 reserved) read-only

FF38 CS Attributes 12 (upper 20 reserved) read-only

FF34 CS Base 32 read-only

FF30 CS Limit 20 (upper 12 reserved) read-only

FF2C ES Attributes 12 (upper 20 reserved) read-only

FF28 ES Base 32 read-only

FF24 ES Limit 20 (upper 12 reserved) read-only

FF20 reserved 32 —

FF1C reserved 32 —

FF18 reserved 32 —

FF14 CR2 32 read-only

FF10 CR4 32 read-only

FF0C I/O Restart ESI 32 read-only

FF08 I/O Restart ECX 32 read-only

TABLE 6-2. SMM State-Save Area Map (continued)

Offset (hex) Contents Size (bits) Type

Notes:
1. Locations marked “reserved” may change in future processors.
2. Writing locations marked as “read-only” has unpredictable results.

6-28 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.3.3 SMM Revision Identifier

The SMM revision identifier at offset FEFCh in the SMM state-
save area specifies the version of SMM and the extensions that
are available on the processor. The SMM revision identifier
fields are as follows:

■ Bits 31–18—reserved

■ Bit 17—SMM base address relocation (always 1 = enabled)

■ Bit 16—I/O trap restart (always 1 = enabled)

■ Bits 15–0—SMM revision level = 0000

These fields are the same as in the Pentium processor. Unlike
the Pentium processor, however, the I/O trap restart and the
SMM base address relocation functions are always enabled in
the AMD5K86 processor and do not need to be specifically
enabled.

6.3.4 SMM Base Address

During RESET, the processor sets the code-segment (CS) base
address for the SMM memory area—the SMM Base Address—to
its default, 0003_0000h. The SMM base address at offset FEF8
in the SMM state-save area can be changed by the SMM ser-
vice routine to any address that is aligned to a 32-Kbyte bound-
ary. (Locations not aligned to a 32-Kbyte boundary cause the
processor to enter the Shutdown state when executing the
RSM instruction.)

FF04 I/O Restart EDI 32 read-only

FF02 Halt Restart Slot 16 (See Section 6.3.5) read/write

FF00 I/O Trap Restart Slot 16 (See Section 6.3.7) read/write

FEFC SMM Revision Identifier 32 (See Section 6.3.3) read-only

FEF8 SMM Base Address 32 (See Section 6.3.4) read/write

FE00 - FEF4 reserved 32 —

TABLE 6-2. SMM State-Save Area Map (continued)

Offset (hex) Contents Size (bits) Type

Notes:
1. Locations marked “reserved” may change in future processors.
2. Writing locations marked as “read-only” has unpredictable results.

System Management Mode (SMM) 6-29

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

If the SMM base address is rewritten, the processor saves its
state at the new base address the next time SMM is entered,
and each time thereafter, until RESET. The relocated
addresses for the SMM memory will then be as follows:

■ SMM base address—Default: 0003_0000h. Relocated: offset
FEF8 in the SMM state-save area (see Table 6-2)

■ Service Routine Entry Point—SMM base address + 8000h

■ Top—SMM base address + FFFFh

This SMM base address relocation feature is compatible with
the Pentium processor’s analogous feature. The following
pseudo-code implements a relocatable SMM base address in
BIOS:

begin
{
if SMI Handler is to be Relocated then

{
set SMM Base Address (offset FEF8h) to new value
resume
}

else
{
SMM execution to begin at relocation area.
resume
}

}
end

To relocate the SMM base address above the 1-Mbyte limit
imposed by Real-mode segment addressing, use the address-
override prefix to generate the offset in 32-bit registers. If the
SMM base address is relocated to a block below 16 Mbytes,
data in the DS segment (which has a segment base of
0000_0000h) can be accessed by the following code:

mov ebx,00FExxxxh; 64K segment from 00FE_0000h to 00FE_FFFFh
mov ax, ds:[ebx]

6-30 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.3.5 Halt Restart Slot

During entry into SMM, the halt restart slot at offset FF02h in
the SMM state-save area specifies if SMM was entered from
the Halt state. Before returning from SMM, the halt restart slot
can be written by the SMM service routine to specify whether
the return from SMM should take the processor back to the
Halt state or to the instruction-execution state specified by the
SMM state-save area.

On entry into SMM, the halt restart slot is configured as fol-
lows:

■ Bits 15–1—Undefined

■ Bit 0—Point of entry to SMM:

1 = entered from Halt state.

0 = not entered from Halt state

Before return from SMM, the halt restart slot can be written
as:

■ Bits 15–1—Undefined

■ Bit 0—Point of return from SMM

1 = return to Halt state

0 = return to state specified by SMM state-save area

The fields of the halt restart slot are the same as in the Pen-
tium processor auto halt restart slot. During entry into and exit
from SMM, the processor writes or reads only bit 0 of the 16-bit
value although the entire 16 bits can be read or written by the
service routine. The Pentium-compatible pseudo-code for
implementing the halt restart slot in BIOS is as follows:

begin
{
if return to Halt state then

{
if SMI# during Halt state then

set halt restart slot to 00FFh
}

}end

If the return takes the processor back to the Halt state, the
HLT instruction is not refetched, but the Halt special bus cycle
is driven on the bus after the return.

System Management Mode (SMM) 6-31

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

6.3.6 I/O Trap Dword

If the assertion of SMI is recognized on the boundary of an I/O
instruction, the I/O trap dword at offset FFA4h in the SMM
state-save area contains information about the instruction. The
fields of the I/O trap dword are configured as follows:

■ Bits 31–16—I/O port address

■ Bits 15–2—reserved

■ Bit 1—Valid I/O instruction (1 = valid, 0 = invalid)

■ Bit 0—Input or output instruction (1 = INx, 0 = OUTx)

The I/O trap dword is related to the I/O trap restart slot,
described below. Bit 1 of the I/O trap dword (the valid bit)
should be tested if the I/O trap restart slot is to be changed.

6.3.7 I/O Trap Restart Slot

The I/O trap restart slot at offset FF00h in the SMM state-save
area specifies whether the assertion of SMI was recognized on
the boundary of an I/O instruction, and if so, whether the
trapped I/O instruction should be re-executed on return from
SMM. This is sometimes called the I/O-instruction restart func-
tion. Re-executing a trapped I/O instruction is useful, for exam-
ple, if an I/O write to disk finds the disk powered down. The
system logic monitoring such an access can assert SMI. Then
the SMM service routine would query system logic, find a
failed I/O write, take action to power-up the I/O device, enable
the I/O trap restart slot feature, and return.

The fields of the I/O trap restart slot are configured as follows:

■ Bits 31–16—reserved

■ Bits 15–0—I/O instruction restart on return from SMM:

0000h = execute the next instruction after the trapped I/O
instruction

00FFh = re-execute the trapped I/O instruction

The processor initializes the I/O trap restart slot to 0000h upon
entry into SMM. If SMM was entered due to a trapped I/O
instruction, the processor indicates the validity of the I/O
instruction by setting or clearing bit 1 of the I/O trap dword at
offset FFA4 in the SMM state-save area, as described in Sec-

6-32 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

tion 6.3.6. The SMM service routine should test bit 1 of the I/O
trap dword to determine the validity of the I/O instruction
before writing the I/O trap restart slot. If the I/O instruction
was valid, the SMM service routine can safely rewrite the I/O
trap restart slot with the value 00FFh, which causes the proces-
sor to re-execute the trapped I/O instruction when the RSM
instruction is executed. If the I/O instruction was invalid, writ-
ing the I/O trap restart slot has undefined results. If sequential
SMI interrupts occur, the second entry into SMM will never
have bit 1 of the I/O trap dword set, and the second SMM ser-
vice routine should not rewrite the I/O trap restart slot.

The pseudo-code for implementing I/O Trap Restart in BIOS is
as follows:

begin
{
if I/O instruction needs to be restarted then

{
if valid I/O instruction (test offset FFA4) then

set I/O restart slot (offset FF00) to 00FFh
}

}
end

During a simultaneous SMI I/O-instruction trap and debug
breakpoint trap, the AMD5K86 processor first responds to the
SMI and postpones writing the exception-related information
to the stack until after the return from SMM via the RSM
instruction. If debug registers DR3–DR0 are used in SMM, they
must be saved and restored by the SMM software. The proces-
sor automatically saves and restores DR7–DR6. If the I/O trap
restart slot in the SMM state-save area is written with the
value 00FFh when the RSM instruction is executed, the debug
trap does not occur until after the I/O instruction is re-exe-
cuted.

6.3.8 Exceptions and Interrupts in SMM

When SMM is entered, the processor disables both INTR and
NMI interrupts. On both the AMD5K86 and Pentium proces-
sors, INTR interrupts are disabled by clearing the IF flag in
EFLAGS. But the mechanism by which NMI interrupts are dis-
abled and subsequently recognized differs between the
AMD5K86 and Pentium processors.

Clock Control 6-33

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

During SMM, the Pentium processor does not respond to NMI
until the beginning of its response to the first INTR or software
interrupt (INTn) to occur after entering SMM. NMIs can thus
be enabled by using a dummy interrupt. When an INTR or soft-
ware interrupt is recognized, the processor first responds to a
pending NMI interrupt before executing the first instruction of
the INTR handler. By contrast, the AMD5K86 processor recog-
nizes a pending NMI interrupt after returning (via the IRET
instruction) from a prior interrupt.

The same dummy interrupt used on the Pentium processor to
enable NMI recognition during SMM works on the AMD5K86
processor. The only difference is that the AMD5K86 processor
responds to the NMI after the IRET of the dummy interrupt
whereas the Pentium processor responds at the beginning of
the dummy interrupt. All other exceptions and interrupts
within SMM are fully compatible with those supported by the
Pentium processor in SMM.

The IF flag in EFLAGS is cleared automatically when the pro-
cessor enters SMM, thus disabling maskable interrupts. The
HLT instruction should not be executed in SMM without first
setting the IF bit.

Table 5-2 on page 5-9 and Table 5-3 on page 5-17 summarize the
behavior of all interrupts in SMM.

6.3.9 SMM Compatibility with Pentium Processor

The differences in SMM functions between the AMD5K86 and
Pentium processors are described in Section A.5 on page A-12.

6.4 Clock Control

The processor’s consumption of power can be controlled by
reducing the frequency of the processor and/or bus clocks
when there is no computational or user activity. System logic
initiates this control by asserting STPCLK, which causes the
processor to complete any in-progress bus cycle and enter the
Stop Grant state (processor’s internal clock stopped), from
which system logic can subsequently transition the processor
to its Stop Clock state (CLK stopped). These clock control func-

6-34 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

tions can be entered from any of the processor’s normal operat-
ing modes (Real, Virtual-8086, or Protected mode), from
system management mode (SMM), or from the Halt state.

In typical PC systems that implement power control, the STP-
CLK, CLK, and SMI signals are driven by external power man-
agement logic that monitors activity on the address and cycle-
definition signals. In a typical case, the power management
logic may notice that, after having initiated SMM to power
down one or more I/O devices, another several minutes have
elapsed without activity. Power management logic can again
assert SMI, the SMM service routine would obtain the relevant
information and decide to power itself (the processor) down,
and the decision would be communicated to the power man-
agement logic, which would assert STPCLK to the processor
and, optionally, stop driving CLK to the processor and other
logic. For details on SMI and STPCLK, see pages 5-117 and
5-123, respectively.

6.4.1 State Transitions

The five states in the processor’s clock-control protocol, as
shown in Figure 6-6, are as follows:

■ Normal Execution: Real mode, Virtual-8086 mode, Protected
mode, or System Management Mode (SMM). In this state,
all clocks run at full speed.

■ Halt State

■ Stop Grant State

■ Stop Grant Inquire State

■ Stop Clock State

The sections below describe each of the four low-power states.

6.4.2 Halt State

The processor enters the Halt state from the normal operating
modes (Real, Protected, or Virtual-8086) or SMM when it exe-
cutes the HLT instruction. The processor leaves the Halt state
and returns to its prior operating mode when RESET, SMI,
INIT, NMI, or INTR is asserted. If STPCLK is asserted within
the Halt state, the processor transitions to the Stop Grant

Clock Control 6-35

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

state, and it returns to the Halt state when STPCLK is negated.
No processor registers are saved before entering the Halt state
because the processor returns to the next unexecuted instruc-
tion in program order when it returns to its prior operating
mode. When the processor returns to the Halt state, the HLT
instruction is not refetched but the processor drives the Halt
special bus cycle on the bus after the return.

Within the Halt state, the processor disables the majority of its
internal clock distribution and (if STPCLK is asserted) the
internal pullup resistor on STPCLK. However, its phase-lock
loop still runs, its key internal logic is still clocked, most of its
inputs and outputs retain their last state (except D63–D0 and
DP7–DP0 which are floated), and it still responds to input sig-
nals.

The HLT instruction is commonly executed by modern UNIX-
type operating systems as a method of entering an idle loop.
The operating system sees that it has no pending processes,
therefore nothing to execute, so it executes HLT. Entry into
the Halt state achieves the same power-saving effect as entry
into the Stop Grant state, but the method is simpler and faster.
Entry into the Halt state requires only the execution of the
HLT instruction, whereas entry into the Stop Grant state
requires that system logic monitor system activity, assert STP-
CLK, and decode the processor’s acknowledgment (potentially
several clocks later) via the Stop Grant special bus cycle.

6-36 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 6-6. Clock Control State Transitions

EADS EADS

HLT Instruction

Stop Grant
State

Normal Mode
 - Real
 - Virtual-8086
 - Protected
 - SMM

Halt
State

Stop Clock
State

RESET, SMI, INIT,
or INTR Asserted

Stop Grant
Inquire
State

STPCLK Asserted

STPCLK Negated,
or RESET Asserted

STPCLK Asserted

STPCLK Negated

CLK
Started

CLK
Stopped

Clock Control 6-37

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

6.4.3 Stop Grant State

The assertion of STPCLK causes the processor to enter the
Stop Grant state. The processor can enter the Stop Grant state
from the normal operating modes (Real, Protected, or Virtual-
8086), SMM, or the Halt state.

When STPCLK is negated, the processor returns to the mode
from which it entered. If the processor entered the Stop Grant
state from the Halt state, negation of STPCLK returns the pro-
cessor to the Halt state. Otherwise, negation of STPCLK or
assertion of RESET returns the processor to the normal operat-
ing mode or SMM, from which it entered. If INIT is asserted in
the Stop Grant state, the signal is latched and acted upon after
STPCLK is negated. No processor registers are saved before
entering the Stop Grant state because the processor returns to
the next unexecuted instruction in program order when it
returns to its prior operating mode.

Within the Stop Grant state (as in the Halt state) the majority
of the processor’s internal clock distribution and all internal
pullup resistors are disabled. However, its phase-lock loop still
runs, its key internal logic is still clocked, most of its inputs
and outputs retain their last state (except D63–D0 and DP7–
DP0 which are floated), and it still responds to input signals.

6.4.4 Stop Grant Inquire State

An inquire cycle driven while the processor is in the Halt or
Stop Grant state causes the processor to transition to the Stop
Grant Inquire state. As for inquire cycles driven from any
other state, system logic must assert AHOLD, BOFF, or HOLD
to obtain the address bus before driving EADS, INV, and the
inquire address.

The processor responds normally to an inquire cycle by driving
HITM and/or HIT and performing any necessary cache-state
transition. If HITM is asserted, the processor drives a normal
writeback (immediately if AHOLD is asserted, or delayed if
BOFF or HLDA is asserted) and returns to the state from which
it entered the Stop Grant Inquire state in the clock in which it
negates HITM. If HITM is not asserted, the processor returns
from the Stop Grant Inquire state to the state from which it
entered, two clocks after EADS.

6-38 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.4.5 Stop Clock State

The processor enters the Stop Clock state when system logic
turns off CLK while STPCLK is asserted. This is the minimum-
power state and it can only be entered from the Stop Grant
state, after BRDY has been returned for the Stop Grant special
bus cycle. In the Stop Clock state, the processor’s phase-lock
loop and I/O buffers are disabled, except for the I/O buffers on
CLK and the JTAG signals. System logic should not change the
state of any signals, and the processor does not recognize any
signal edges in the Stop Clock state.

When CLK is restarted, the processor returns to the Stop Grant
state, responds to inputs in the next clock, but cannot drive bus
cycles until its phase-lock loop is synchronized. The latter
takes several clocks (see the data sheet for this specification).
The CLK can be driven with a different frequency and/or the
bus-to-processor clock ratio can be changed on the BF input
upon restarting CLK.

6.4.6 Clock Control Compatibility with Pentium Processor

The differences in clock control functions between the
AMD5K86 and Pentium processors are described in Section A.5
on page A-12.

6.5 Power and Ground Design

All of the processor input signals operate at 3 V except CLK,
which can operate at 3 V or 5 V. Compatible 3-V chipsets are
available. If your system operates at 5 V, chipsets that provide
5-V to 3-V voltage translators are available, or you can provide
the translators on your system board. (If you use voltage trans-
lators, they must be fast enough to support your bus speed.)

Due to the processor’s high clock frequency, the package sup-
ports many copies of VCC and VSS to prevent power surges
when multiple outputs change state simultaneously. In addi-
tion, certain precautions must be taken with respect to the
AHOLD input. If the processor has a pending bus cycle when
AHOLD is negated, all of the address drivers turn on almost

Power and Ground Design 6-39

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

immediately after AHOLD is negated. If the processor is also
driving data with BRDY on the data bus at the same time, the
processor then drives 96 bits simultaneously and ground-
bounce spikes can occur. Such ground-bounce spikes can be
avoided by following these two rules with respect to AHOLD:

■ Do not negate AHOLD in the same clock that BRDY is
asserted during a write cycle.

■ Do not negate AHOLD in the same clock that ADS is
asserted during a writeback.

In addition to the above restrictions on driving AHOLD, the
following general design recommendations apply to power con-
nections between the processor and the system board:

■ Connect all VCC pins to a VCC plane on your system board.

■ Connect all VSS pins to a GND plane on your system board.

■ Do not drive address and data buses into large capacitive
loads at high frequencies. This can cause transient power
surges.

■ Decouple capacitance near the processor.

■ Use low-inductance capacitors and circuit paths, and type
X7R or better dielectric.

■ Use capacitors specifically designed for PGA packages.

■ Tie unused inputs High or Low.

■ Leave no-connect (NC) pins unconnected.

■ Connect active-Low inputs to VCC through a 20-kΩ pullup
resistor. This keeps the inputs in a known state while allow-
ing them to be driven during tests.

■ Connect active-High inputs to GND through a pulldown
resistor.

■ Keep trace lengths to a minimum.

6-40 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

6.6 Clock Design

During RESET, the CLK input to the processor should be
grounded until VCC has reached its normal operating level and
PWRGOOD is asserted. Figure 6-7 shows this timing. After VCC

and CLK reach specification, RESET must be asserted for a
minimum of 1 ms to allow the digital phase-lock loop to syn-
chronize.

FIGURE 6-7. Vcc and CLK

RESET must be asserted
for at least 1 ms after VCC
and CLK are stable.

CLK

RESET

No CLK Until VCC is Stable

1 ms

PWRGOOD

VCC at Operating Voltage

VCC

Clock Design 6-41

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The clock signal to the processor can be gated with one of the
following methods:

■ Chipset—Figure 6-8 illustrates a delay function that gates
the system CLK with PWRGOOD to generate the CLK input
to the processor (CPUCLK) and RESET. Such a function
can easily be implemented by a chipset.

■ Clock Synthesizer with Output Enable—Figure 6-9 illustrates
a clock synthesizer with an OE input driven by PWRGOOD.

■ Clock Clamping Circuit—Figure 6-10 illustrates a clamping
circuit that grounds CPUCLK for a predetermined time.

The clock clamping circuit shown in Figure 6-10 has several
advantages. In addition to delaying CPUCLK until VCC has
reached specification, it also prevents noise glitches on the
clock signal from being sensed by the processor during this
time. Noise glitches are typically caused by poor design of the
clock generator startup circuit, poor layout of the PCB, power
supply ringing while VCC is reaching specification, or a long
voltage slew rate (such as 100 ms). The integrity of CPUCLK is
best maintained by passing CPUCLK directly from the core
logic.

FIGURE 6-8. CLK Delay Function

CLK

PWRGOOD

CPUCLK

RESET
Chipset

6-42 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 6-9. CLK Synthesizer with Output Enable

FIGURE 6-10. CPUCLK Clamping Circuit

Clock
Synthesizer

CLK
To System

1 kΩ

PWRGOOD

OE

Crystal

CR1 CR2

R2
10K

VCC to CPU
(3.3 V, 5 V, or other)

0.001 µF

R3
100K

CPUCLK in
(from Core Logic Chip) R1

33 Ω

CPUCLK Out
(to CPU)

Q2 2N7002
N-Channel
MOSFET

Ground
(to CPU)

C2
1 µF

6 VDC

+
Q1
2N3904

Ground
(to Core Logic)

Clock Design 6-43

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

6.6.1 Noise Reduction

Circuit noise can be minimized by the following design rules:

■ Clock Signal

• Place the processor as close as possible to the clock
source.

• Route the CPUCLK signal on a single PCB layer. Do not
use vias.

• Guard-band the CPUCLK signal with twice the minimum
pitch width to minimize unwanted cross talk.

■ Capacitors

• Place all capacitors as near as possible to the processor.

• Connect the positive sides of all capacitors through vias
directly to the processor power plane.

• Connect the negative sides of all capacitors through vias
to the ground plane.

• Use tantalum 47 µF and 1 µF capacitors.

• Use ceramic capacitors with low equivalent series resis-
tance (ESR) ratings at high frequencies and a minimum
voltage rating of 6 V for all other capacitor values.

• Place some capacitors very near to the processor, prefer-
ably on the inside perimeter of the processor socket.

• Connect bypass capacitors on the top side of the PCB di-
rectly to the processor’s power pins.

■ Multilayer Printed-Circuit Boards

• Use a minimum of four layers—one split power plane,
one ground plane, two routing planes.

■ Regulator Circuit

• Use surface-mounted components placed as near as pos-
sible to the processor.

• Use at least three vias to the +5-V power plane for the in-
put power connection.

• Use at least three vias to the +3-V processor power plane
for the output power connection.

AMD recommends using a split power plane to isolate the pro-
cessor from the rest of the motherboard. This approach
reduces noise without additional PCB planes. The split plane
should be made from a portion of copper that is cut out and iso-

6-44 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

lated from the PCB 5-V power plane. This cutout region sup-
plies a separate power source for the processor and allows
installation of bypass decoupling capacitors. The capacitors
should be placed across the split power plane to provide signal-
return termination. The processor power plane should overlap
the output pin of the voltage regulator circuit to provide a low-
impedance current path.

The ground plane should never be split because it provides a
low-impedance current sink and reference. Use generous
decoupling to ensure that clean power is supplied to the pro-
cessor.

6.7 Thermal Design

In virtually all system designs, the processor’s case tempera-
ture must be kept cool with some type of heatsink device. Typ-
ically, the heatsink is combined with an airflow device, such as
a fan. In general, the trade-off is heat-sink size and cost versus
airflow quantity and temperature. A small, low-cost heat sink
requires more airflow than a larger, more efficient heat sink.

Such cooling products are widely available. For detailed speci-
fications and assistance is selecting a product, contact your
AMD field application engineer or browse the AMD home page
on the World Wide Web (see Section 6.8 for details).

When gluing a heat sink to the processor case, follow these
guidelines:

■ Use thermal paste. This optimizes heat transfer.

■ Apply the thermal paste in a thin, smooth, even layer across
the entire processor package. Do not allow air gaps between
the processor package and the heatsink. If air gap exits, the
heatsink will be ineffective.

In addition to the above guidelines for gluing heatsinks to the
processor, observe the following general design guidelines to
minimize the adverse effects of system-generated heat on the
processor and other heat-sensitive system components:

■ Place the power supply as far away from the processor as
possible.

Design Support and Peripheral Products 6-45

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

■ Place linear devices and regulators away from both the pro-
cessor and the power supply.

■ Place high-frequency L2-cache SRAM chips away from both
the processor and the power supply.

■ Check the specification for any TTL parts on the board for
thermal considerations.

6.8 Design Support and Peripheral Products

AMD field application engineers (FAEs) can help you solve
system design problems and select peripheral products that
are compatible with the AMD5K86 processor. You can locate
the FAE nearest you by contacting one of the AMD offices
listed in this manual. You can also find support information on
AMD’s World Wide Web pages. A list of available Web infor-
mation is given at the AMD home page at the following
address:

http://www.amd.com/

6-46 System Design

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

7-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

7
Test and Debug

The AMD5K86 processor has the following modes in which pro-
cessor and system operation can be tested or debugged:

■ Hardware Configuration Register (HWCR)—The HWCR is a
model-specific register that contains configuration bits that
enable cache, branch tracing, debug, and clock control func-
tions.

■ Built-In Self-Test (BIST)—Both normal and test access port
(TAP) BIST.

■ Output-Float Test—A test mode that causes the AMD5K86
processor to float all of its output and bidirectional signals.

■ Cache and TLB Testing—The Array Access Register (AAR)
supports writes and reads to any location in the tag and
data arrays of the processor’s on-chip caches and TLBs.

■ Debug Registers—Standard 486 debug functions, with an I/O-
breakpoint extension.

■ Branch Tracing—A pair of special bus cycles can be driven
immediately after taken branches to specify information
about the branch instruction and its target. The Hardware
Configuration Register (HWCR) provides support for this
and other debug functions.

■ Functional Redundancy Checking—Support for real-time
testing using two processors in a master-checker relation-
ship.

7-2 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

■ Test Access Port (TAP) Boundary-Scan Testing—The JTAG
test access functions defined by the IEEE Standard Test
Access Port and Boundary--Scan Architecture (IEEE 1149.1-
1990) specification.

■ Hardware Debug Tool (HDT)—The hardware debug tool
(HDT), sometimes referred to as the debug port or Probe
mode, is a collection of signals, registers, and processor
microcode that is enabled when external debug logic drives
R/S Low or loads the AMD5K86 processor’s Test Access Port
(TAP) instruction register with the USEHDT instruction.

The test-related signals and their descriptions include the fol-
lowing:

■ FLUSH—Page 5-67

■ FRCMC—Page 5-70

■ IERR—Page 5-80

■ INIT—Page 5-82

■ PRDY—Page 5-104

■ R/S—Page 5-108

■ RESET—Page 5-110

■ TCK—Page 5-128

■ TDI—Page 5-129

■ TDO—Page 5-130

■ TMS—Page 5-131

■ TRST—Page 5-132

The sections that follow provide details on each of the test and
debug features.

Hardware Configuration Register (HWCR) 7-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

7.1 Hardware Configuration Register (HWCR)

The Hardware Configuration Register (HWCR) is a model-spe-
cific register (MSR) that contains configuration bits that
enable cache, branch tracing, debug, and clock control func-
tions. The WRMSR and RDMSR instructions access the HWCR
when the ECX register contains the value 83h, as described in
Section 3.3.5 on page 3-35. Figure 7-1 and Table 7-1 show the
format and fields of the HWCR.

FIGURE 7-1. Hardware Configuration Register (HWCR)

Disable Data Cache DDC 7
Disable Instruction Cache DIC 6
Disable Branch Prediction DBP 5
Debug Control DC 3–1

000 Off
001 Enable branch trace usages
100 Activate Probe mode on debug trap

Disable Stopping Processor Clocks DSPC 0

8 7 6 5 4 3 2 1 031

D
I
C

D
D
C

D
B
P

D
C

D
S
P
C

Reserved

7-4 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

TABLE 7-1. Hardware Configuration Register (HWCR) Fields

Bit Mnemonic Description Function

31–8 — — reserved

7 DDC Disable Data Cache
Disables data cache.

0 = enabled, 1 = disabled.

6 DIC Disable Instruction Cache
Disables instruction cache.

0 = enabled, 1 = disabled.

5 DBP Disable Branch Prediction
Disables branch prediction.

0 = enabled, 1 = disabled.

4 — — reserved

3–1 DC Debug Control

Debug control bits:

000 Off (disable HWCR debug control).

001 Enable branch-tracing messages.
See Section 7.6 on page 7-17.

010 reserved

011 reserved

100 reserved

101 reserved

110 reserved

111 reserved

0 DSPC
Disable Stopping
Processor Clocks

Disables stopping of internal processor
clocks in the Halt and Stop Grant states.

0 = enabled, 1 = disabled.
Notes:

Documentation on the Hardware Debug Tool (HDT) is available from AMD under a nondisclosure agreement.

Built-In Self Test (BIST) 7-5

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

7.2 Built-In Self Test (BIST)

The processor supports the following types of built-in self-test:

■ Normal BIST—A built-in self-test mode typically used to
test system functions after RESET

■ Test Access Port (TAP) BIST—A self-test mode started by the
TAP instruction, RUNBIST

All internal arrays except the TLB are tested in parallel by
hardware. The TLB is tested by microcode. Unlike the Pentium
processor, the AMD5K86 processor does not report parity
errors on IERR for every cache or TLB access. Instead, the
AMD5K86 processor fully tests its caches during the BIST.
EADS should not be asserted during a BIST. The processor
accesses the physical tag array during BISTs, and these
accesses can conflict with inquire cycles.

7.2.1 Normal BIST

The normal BIST is invoked if INIT is asserted at the falling
edge of RESET. The BIST runs tests on the internal hardware
that exercise the following resources:

■ Instruction cache:

• Linear tag directory

• Instruction array

• Physical tag directory

■ Data cache:

• Linear tag directory

• Data array

• Physical tag directory

■ Entry-point and instruction-decode PLAs

■ Microcode ROM

■ TLB

The BIST runs a linear feedback shift register (LFSR) signa-
ture test on the microcode ROM in parallel with a March C test
on the instruction cache, data cache, and physical tags. This is
followed by the March C test on the TLB arrays and then an

7-6 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

LFSR signature test on the PLA, in that order. Upon comple-
tion of the PLA test, the processor transfers the test result
from an internal Hardware Debug Test (HDT) data register to
the EAX register for external access, resets the internal micro-
code, and begins normal code fetching.

The result of the BIST can be accessed by reading the lower 9
bits of the EAX register. If the EAX register value is
0000_0000h, the test completed successfully. If the value is not
zero, the non-zero bits indicate where the failure occurred, as
shown in Table 7-2. The processor continues with its normal
boot process after the BIST completes, whether the BIST
passed or failed.

7.2.2 Test Access Port (TAP) BIST

The TAP BIST performs all of the functions of the normal
BIST, up to and including the PLA signature test, in the exact
manner as the normal BIST. However, after the PLA test, the
test result is not transferred to the EAX register.

The TAP BIST is started by loading and executing the RUN-
BIST instruction in the test access port, as described in Section
7.8 on page 7-19. When the RUNBIST instruction is executed,
the processor enters into a reset mode that is identical to that
entered when the RESET signal is asserted. Upon completion

TABLE 7-2. BIST Error Bit Definition in EAX Register

Bit
Number

Bit Value

 0 1

31–9 No Error Always 0

8 No Error Data path

7 No Error Instruction-cache instructions

6 No Error Instruction-cache linear tags

5 No Error Data-cache linear tags

4 No Error PLA

3 No Error Microcode ROM

2 No Error Data-cache data

1 No Error Instruction cache physical tags

0 No Error Data-cache physical tags

Output-Float Test 7-7

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

of the TAP BIST, the result remains in the BIST result register
for shifting out through the TDO signal. The TRST signal must
be asserted or the TAP instruction must be changed in order to
exit TAP BIST and return to normal operation.

7.3 Output-Float Test

The Output-Float Test mode is entered if FLUSH is asserted
before the falling edge of RESET. This causes the processor to
place all of its output and bidirectional signals in the high-
impedance state. In this isolated state, system board traces and
connections can be tested for integrity and driveability. The
Output-Float Test mode can only be exited by asserting RESET
again.

On the AMD5K86 and Pentium processors, FLUSH is an edge-
triggered interrupt. On the 486 processor, however, the signal
is a level-sensitive input.

7.4 Cache and TLB Testing

Cache and TLB testing is often done by the BIOS or operating
system during power-up. These arrays can be tested using the
Array Access Register (AAR). The following tests can be per-
formed:

■ Data Cache—8-Kbyte, 4-way, set associative

• Data array

• Linear-tag array

• Physical-tag array

■ Instruction Cache—16-Kbyte, 4-way, set associative

• Instruction array

• Linear-tag array

• Physical-tag array

• Valid-bit array

• Branch-prediction bit array

7-8 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

■ 4-Kbyte TLB—128-entry, 4-way, set associative

• Linear-tag array

• Page array

■ 4-Mbyte TLB—4-entry, fully associative

• Linear-tag array

• Page array

7.4.1 Array Access Register (AAR)

The 64-bit Array Access Register (AAR) is a model-specific
register (MSR) that contains a 32-bit array pointer, which iden-
tifies the array location to be tested, and 32 bits of array test
data to be read or written. The WRMSR and RDMSR instruc-
tions access the AAR when the ECX register contains the value
82h, as described in Section 3.3.5 on page 3-35. Figure 7-2
shows the format of the AAR.

FIGURE 7-2. Array Access Register (AAR)

To read or write an array location, perform the following steps:

1. ECX—Enter 82h into ECX to access the 64-bit AAR.

2. EDX—Enter a 32-bit array pointer into EDX, as shown in
Figures 7-3 through 7-8 (top).

3. EAX—Read or write 32 bits of array test data to or from
EAX, as shown in Figures 7-3 through 7-8 (bottom).

MSR
82h

031

031

Array Pointer
(Contents of EDX)

Array Data
(Contents of EAX)

Cache and TLB Testing 7-9

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

7.4.2 Array Pointer

The array pointers entered in EDX (Figures 7-3 through 7-8,
top) specify particular array locations. For example, in the
data- and instruction-cache arrays, the way (or column) and set
(or index) in the array pointer specifies a cache line in the 4-
way, set-associative array. The array pointers for data-cache
data and instruction-cache instructions further specify a dword
location within that cache line. In the data cache, this dword is
32 bits of data. In the instruction cache, this dword is two
instruction bytes plus their associated pre-decode bits. For the
4-Kbyte TLB, the way and set specify one of the 128 TLB
entries. For the 4-Mbyte TLB, one of only four entries is speci-
fied.

Bits 7–0 of every array pointer encode the array ID, which iden-
tifies the array to be accessed, as shown in Table 7-3. To sim-
plify multiple accesses to an array, the contents of EDX is
retained after the RDMSR instruction executes (EDX is nor-
mally cleared after a RDMSR instruction).

TABLE 7-3. Array IDs in Array Pointers

Array Pointer
Bits 7–0

Accessed Array

E0h Data Cache: Data

E1h Data Cache: Linear Tag

ECh Data Cache: Physical Tag

E4h Instruction Cache: Instructions

E5h Instruction Cache: Linear Tag

EDh Instruction Cache: Physical Tag

E6h Instruction Cache: Valid Bits

E7h Instruction Cache: Branch-Prediction Bits

E8h 4-Kbyte TLB: Page

E9h 4-Kbyte TLB: Linear Tag

EAh 4-Mbyte TLB: Page

EBh 4-Mbyte TLB: Linear Tag

7-10 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

7.4.3 Array Test Data

EAX specifies the test data to be read or written with the
RDMSR or WRMSR instruction (see Figures 7-3 through 7-8).
For example, in Figure 7-3 (top) the array pointer in EDX spec-
ifies a way and set within the data-cache linear tag array (E1h
in bits 7–0 of the array pointer) or the physical tag array (ECh
in bits 7–0 of the array pointer). If the linear tag array (E1h)
were accessed, the data read or written includes the tag and
the status bits. The details of the valid fields in EAX are pro-
prietary.

FIGURE 7-3. Test Formats: Data-Cache Tags

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(E1h, ECh)Way 0 0 0 0 0 0 0 0 Set 0 0 0 0 0

EAX: Test Data

(E1h) Linear Tag

(ECh) Physical Tag

0

0 0 0 0 Valid Bits

0

0 0 0 0 0 0 0 0 0 Valid Bits

8 712131819

31 28 27

31 23 22

Cache and TLB Testing 7-11

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 7-4. Test Formats: Data-Cache Data

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID
(E0h)Way 0 0 0 0 0 0 0 0 0 Set 0 0

EAX: Test Data

(E0h) Data

0

Valid Bits

71819

31

9 8101213

Dword

7-12 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 7-5. Test Formats: Instruction-Cache Tags

EDX: Array Pointer

(E7h) Branch-Prediction Bits

8 7 01112192031 30 29 28 27

0 0
Array ID

(E5h, EDh, E6h, E7h)Way 0 0 0 0 0 0 0 0 Set 0 0 0 0

EAX: Test Data

(E5h) Linear Tag

(EDh) Physical Tag

(E6h) Valid Bits

0192031

0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

031

0 0 0 0 0 0 0 0 0 0 0 Valid Bits

2021

031

0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

1819

031

0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

1819

Cache and TLB Testing 7-13

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 7-6. Test Formats: Instruction-Cache Instructions

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID
(E4h)Way 0 0 0 0 0 0 0 0 Set 0

EAX: Test Data

(E4h) Instruction Bytes

720 19 9 81112

Opcode
Bytes

0

0 0 0 0 0 0 Valid Bits

31 26 25

7-14 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

FIGURE 7-7. Test Formats: 4-Kbyte TLB

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(E8h, E9h)Way 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Set

EAX: Test Data

(E8h) 4-Kbyte Page and Status

(E9h) 4-Kbyte Linear Tag

0 0 0 0 0 0 0 0 0 0 Valid Bits

0

0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

8 71213

31

02131 22

1920

Cache and TLB Testing 7-15

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

FIGURE 7-8. Test Formats: 4-Mbyte TLB

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(EAh, EBh)Entry 0

EAX: Test Data

(EAh) 4-Mbyte Page and Status

(EBh) 4-Mbyte Linear Tag

0 Valid Bits

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

8 7

31

0111231

1415

7-16 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

7.5 Debug Registers

The processor implements the standard debug functions and
registers—DR7–DR6 and DR3–DR0 (often called DR7–DR0)—
that are available on the 486 processor, plus an I/O breakpoint
extension.

7.5.1 Standard Debug Functions

The debug functions make the processor’s state visible to
debug software through four debug registers (DR3–DR0) that
are accessed by MOV instructions. Accesses to memory
addresses can be set as breakpoints in the instruction flow by
invoking one of two debug exceptions (interrupt vectors 1 or 3)
during instruction or data accesses to the addresses. The debug
functions eliminate the need to embed breakpoints in code and
allow debugging of ROM as well as RAM.

For details on the standard 486 debug functions and registers,
see the AMD documentation on the Am486® processor or other
commercial x86 literature.

7.5.2 I/O Breakpoint Extension

The processor supports an I/O breakpoint extension for break-
points on I/O reads and writes. This function is enabled by set-
ting bit 3 of CR4, as described in Section 3.1 on page 3-2. When
enabled, the I/O breakpoint function is invoked by the follow-
ing:

■ Entering the I/O port number as a breakpoint address (zero-
extended to 32 bits) in one of the breakpoint registers,
DR3–DR0

■ Entering the bit pattern, 10b, in the corresponding 2-bit
R/W field in DR7

All data breakpoints on the AMD5K86 processor are precise,
including those encountered in repeated string operations,
which trap after completing the iteration on which the break-
point match occurs.

Branch Tracing 7-17

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Enabled breakpoints slow the processor somewhat. When a
data breakpoint is enabled, the processor disables its dual-
issue load/store operations and performs only single-issue load/
store operations. When an instruction breakpoint is enabled,
instruction issue is completely serialized.

7.5.3 Debug Compatibility with Pentium Processor

The differences in debug functions between the AMD5K86 and
Pentium processors are described in Section A.7 on page A-15.

7.6 Branch Tracing

Branch tracing is enabled by writing bits 3–1 with 001b and set-
ting bit 5 to 1 in the Hardware Configuration Register
(HWCR), as described in Section 7.1 on page 7-3. When thus
enabled, the processor drives two branch-trace message spe-
cial bus cycles immediately after each taken branch instruc-
tion is executed. Both special bus cycles have a BE7–BE0
encoding of DFh (1101_1111b). The first special bus cycle iden-
tifies the branch source, the second identifies the branch tar-
get. The contents of the address and data bus during these
special bus cycles are shown in Table 7-4.

The branch-trace message special bus cycles are different for
the AMD5K86 and Pentium processors, although their BE7–
BE0 encodings are the same.

7-18 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

7.7 Functional-Redundancy Checking

If FRCMC is asserted at RESET, the processor enters Func-
tional-Redundancy Checking mode as the checker, and reports
checking errors on the IERR output. If FRCMC is negated at
RESET, the processor operates normally, although it also
behaves as the master in a functional-redundancy checking
arrangement with a checker.

In the Functional-Redundancy Checking mode, two processors
have their signals tied together. One processor (the master)
operates normally. The other processor (the checker) has its
output and bidirectional signals (except for TDO and IERR)
floated to detect the state of the master’s signals. The master
controls instruction fetching and the checker mimics its behav-
ior by sampling the fetched instructions as they appear on the
bus. Both processors execute the instructions in lock step. The
checker compares the state of the master’s output and bidirec-
tional signals with the state that the checker itself would have
driven for the same instruction stream.

TABLE 7-4. Branch-Trace Message Special Bus Cycle Fields

Signals First Special Bus Cycle Second Special Bus Cycle

A31 0 = first special bus cycle (source) 1 = second special bus cycle (target)

A30–A29 not valid

Operating Mode of Target:

11 = Virtual-8086 Mode

10 = Protected Mode

01 = not valid

00 = Real Mode

A28 not valid

Default Operand Size of Target Segment:

1 = 32-bit

0 = 16-bit

A27–A20 0 0

A19–A4
Code Segment (CS) selector of
Branch Source.

Code Segment (CS) selector of Branch
Target.

A3 0 0

D31–D0 EIP of Branch Source. EIP of Branch Target.

Boundary-Scan Test Access Port (TAP) 7-19

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Errors detected by the checker are reported on the IERR out-
put of the checker. If a mismatch occurs on such a comparison,
the checker asserts IERR for one clock, two clocks after the
detection of the error. Both the master and the checker con-
tinue running the checking program after an error occurs. No
action other than the assertion of IERR is taken by the proces-
sor. On the AMD5K86 processor, the IERR output is reserved
solely for functional-redundancy checking. No other errors are
reported on that output.

Functional-redundancy checking is typically implemented on
single-processor, fault-monitoring systems (which actually
have two processors). The master processor runs the opera-
tional programs and the checker processor is dedicated
entirely to constant checking. In this arrangement, the test of
accurate operation consists solely of reporting one or more
errors. The particular type of error or the instruction causing
an error is not reported. The arrangement works because the
processor is entirely deterministic. Speculative prefetching,
speculative execution, and cache replacement all occur in
identical ways and at identical times on both processors if their
signals are tied together so that they run the same program.

The Functional-Redundancy Checking mode can only be
exited by the assertion of RESET. Functional-redundancy
checking cannot be performed in the Hardware Debug Tool
(HDT) mode. The assertion of FRCMC is not recognized while
PRDY is asserted.

7.8 Boundary-Scan Test Access Port (TAP)

The boundary-scan Test Access Port (TAP)—originally pro-
posed by the Joint European Test Action Group (JETAG) and,
later, Joint Test Action Group (JTAG)—is an IEEE standard
that defines synchronous scanning test methods for complex
logic circuits, such as boards containing a microprocessor. The
AMD5K86 processor supports the full TAP standard defined in
the IEEE Standard Test Access Port and Boundary-Scan Architec-
ture (IEEE 1149.1-1990) specification.

7-20 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

The TAP consists of the following:

■ Test Access Port (TAP) Controller—A synchronous, finite
state machine that decodes the inputs on the TMS signal to
control a sequence of test operations.

■ Instruction Register (IR)—Accepts serially shifted instruc-
tions from the TDI input. The instructions select the test or
debug operation to be performed, the Test Data Register
(TDR) to be accessed, or both.

■ Test Data Registers (TDRs)—Used to process the test data.
Each TDR is addressed by an instruction in the Instruction
Register (IR). The processor includes the following TDRs:

• Boundary Scan Register (BSR)—Contains cells connected
to all of the processor’s input and output signals as well
as cells for I/O float control. It allows serial data to be
written into or read from the processor boundary. The
register is controlled with the EXTEST and SAMPLE in-
structions.

• Device Identification Register (DIR)—Contains the codes
for manufacturer's identification, part number, and ver-
sion.

• Bypass Register (BR)—A path between TDI and TDO
used to transfer test data to and from other board com-
ponents when no test operation is being performed by
the processor.

• Hardware Debug Tool Register (HDTR)—Selected by the
USEHDT instruction to connect TDI and TDO, allowing
HDT instructions to be executed.

• Built-In Self-Test Result Register (BISTRR)—Selected by
the RUNBIST instruction to connect TDI and TDO, al-
lowing the result of executing the RUNBIST to be
shifted out after the completion of BIST.

■ The test signals are as follows:

• TCK—The clock for all TAP testing

• TDI—Input test data and instructions

• TDO—Output data

• TMS—Test functions and sequence of test changes

• TRST—Test reset

Boundary-scan testing uses shift registers in boundary scan
cells located between the processor’s internal logic and I/O

Boundary-Scan Test Access Port (TAP) 7-21

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

buffers to control and observe the behavior of signals at each
pin. The boundary scan cells form a serial shift-register chain,
called a Boundary Scan Register (BSR), around the processor’s
internal logic. Test data is shifted through the boundary-scan
chain by a test program. If all the components on a board
implement this boundary-scan architecture, a single serial
path can be used to test component interconnections.

Parallel output registers are fed by the shift registers. Parallel
data is loaded into the shift register when the TAP controller
exits the capture state (capture_DR or capture_IR). The shift
registers then shift data from TDI to TDO in the shift state
(shift_DR or shift_IR). The parallel output registers hold the
current data while new data is shifted into the shift registers.
The output registers are updated when the controller exits the
update state (update_DR or update_IR).

The sections below describe only those aspects of the IEEE
standard that are implemented uniquely by the AMD5K86 pro-
cessor. For a description of the IEEE-mandatory TAP functions
and the IEEE optional functions implemented by the
AMD5K86 processor, see the IEEE Standard Test Access Port and
Boundary-Scan Architecture (IEEE 1149.1-1990) specification.

7.8.1 Device Identification Register

The format of the Device Identification Register (DIR) is
shown in Table 7-5. The fields include the following values:

■ Version Number—This is incremented by AMD manufactur-
ing for each major revision of silicon.

■ Bond Option—The two bits of the bond option depend on
how the part is bonded at the factory.

■ Part Number—This identifies the specific processor model.

■ Manufacturer—This is actually only 11 bits (11–1). The
least-significant bit, bit 0, is always set to 1, as specified by
the IEEE standard.

TABLE 7-5. Test Access Port (TAP) ID Code

Version
(Bits 31–28)

Bond Option
(Bits 27–26)

Part Number
(Bits 25–12)

Manufacturer
(Bits 11–0)

Xh XXb 05XXh 001h

7-22 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

7.8.2 Public Instructions

The processor supports all three IEEE-mandatory instructions
(BYPASS, SAMPLE/PRELOAD, EXTEST), three IEEE-
optional instructions (IDCODE, HIGHZ, RUNBIST), and three
instructions unique to the AMD5K86 processor (ALL1, ALL0,
USEHDT). Table 7-6 shows the complete set of public TAP
instructions supported by the processor. In addition, the pro-
cessor implements several private manufacturing test instruc-
tions.

The IEEE standard describes the mandatory and optional
instructions. The ALL1 and ALL0 instructions simply force all
outputs and bidirectionals High or Low. The USEHDT instruc-
tion is described below. Any instruction encodings not shown
in Table 7-6 select the BYPASS instruction.

TABLE 7-6. Public TAP Instructions

Instruction Encoding Register Description

EXTEST 00000 BSR As defined by the IEEE standard

SAMPLE/
PRELOAD

00001 BSR As defined by the IEEE standard

IDCODE 00010 DIR As defined by the IEEE standard

HIGHZ 00011 BR As defined by the IEEE standard

ALL1 00100 BR Forces all outputs and bidirectionals High

ALL0 00101 BR Forces all outputs and bidirectionals Low

USEHDT 00110 HDTR Accesses the Hardware Debug Tool (HDT)1
See Section 7.9 on page 7-23

RUNBIST 00111 BISTRR As defined by the IEEE standard

BYPASS 11111 BR As defined by the IEEE standard

BYPASS undefined BR
Undefined instruction encodings select the
BYPASS instruction

Notes:
1. Documentation on the Hardware Debug Tool (HDT) is available from AMD under a nondisclosure agreement.

Hardware Debug Tool (HDT) 7-23

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

7.9 Hardware Debug Tool (HDT)

The Hardware Debug Tool (HDT)—sometimes referred to as
the debug port or Probe mode—is a collection of signals, regis-
ters, and processor microcode that is enabled when external
debug logic drives R/S Low or loads the processor’s Test Access
Port (TAP) instruction register with the USEHDT instruction.

Documentation on the HDT is available under nondisclosure
agreement to test and debug developers. For information, con-
tact your AMD sales representative or field application engi-
neer.

7-24 Test and Debug

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

A-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Appendix A

Compatibility With the
Pentium and 486 Processors

The AMD5K86 processor is compatible with the existing Pen-
tium-class hardware and software infrastructure, including
chipsets, motherboards, operating systems, and applications
software. In particular, the following AMD5K86 processor fea-
tures are compatible with the Pentium processor:

■ Package and pinout

■ Electrical interface (including bus cycles, AC and DC
parameters, interrupt handling, power saving, etc.)

■ Instruction set, programming model, memory management,
etc.

Because the AMD5K86 processor takes a different approach to
implementing the x86 architecture, there are a few subtle dif-
ferences between the Pentium and AMD5K86 processors. This
appendix describes these differences.

A-2

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

A.1 Bus Signals

A.1.1 Signal Comparison

Table A-1 compares the signals on the Pentium processor with
those on the AMD5K86 processor, showing which signals are
supported on each processor.

TABLE A-1. AMD5K86 and Pentium Processor Signal Comparison

Signal
Pentium
(735\90,
815\100)

AMD5K86 Function

A20M x x Address Bit 20 Mask

A31–A3 x x Address Bus

ADS x x Address Strobe

ADSC x x Address Strobe

AHOLD x x Address Hold

AP x x Address Parity

APCHK x x Address Parity Check

APICEN x APIC Enable (High during RESET)

PICD1 x PIC Data 1

BE7–BE0 x x Byte Enables

Flush(4) x Dual-Processor Flush

APICID3–APICID0 x APIC ID (during reset)

BF x x Bus-to-Core Frequency Ratio

BOFF x x Bus Backoff

BP3–BP2 x Breakpoint 3 to 2

BP1–BP0/
PM1–PM0

x
Breakpoint 1 to 0 or
Performance Monitor 1 to 0

BRDY x x Burst Ready

BRDYC
x Drive-Strength Control (during RESET)

x x Burst Ready

BREQ x x Bus Request

BUSCHK
x x Drive-Strength Control (during RESET)

x x Bus Check

CACHE x x Cacheable Cycle

Bus Signals A-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

CLK x x System Clock (5 V-tolerant)

CPUTYP x Primary or Secondary Processor

D/C x x Data or Code Cycle

D63–D0 x x Data Bus

D/P x Dual or Primary Processor Cycle

DP7–DP0 x x Data Parity

DPEN x Dual Processor Present (during RESET)

PCID0 x PIC Data 0

EADS x x External Address Strobe

EWBE x x External Write Buffer Empty

FERR x x Floating-Point Error

FLUSH
x x Float-Test Mode (during RESET)

x x Writeback and Invalidate Caches

FRCMC x x
Functional Redundancy Checking Mas-
ter/Checker

HIT x x Inquire Hit

HITM x x Inquire Hit to Modified Line

HLDA x x Hold Acknowledge

HOLD x x Hold

IERR x x Internal Error

IGNNE x x Ignore Numeric Error

INIT
x x Execute BIST (during RESET)

x x Initialize (warm start)

INV x x Invalid or Shared After Inquire Cycle

KEN x x Cache Enable

LINT0/INTR
x Local Interrupt 0 (APIC enabled)

x x Maskable Interrupt

LINT1/NMI
x Local Interrupt 1 (APIC enabled)

x x Non-Maskable Interrupt

LOCK x x Locked Cycle

M/IO x x Memory or I/O Cycle

NA x x Next (pipelined) Address

PBGNT x Private Bus Grant

TABLE A-1. AMD5K86 and Pentium Processor Signal Comparison (continued)

Signal
Pentium
(735\90,
815\100)

AMD5K86 Function

A-4

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

PBREQ x Private Bus Request

PCD x x Page Cache Disable

PCHK x x Parity Check

PEN x x Parity Enable

PHIT x Private Hit

PHITM x Private Hit to Modified Line

PICCLK x PIC clock, 5 V-Tolerant

PRDY x x Probe Ready

PWT x x Page Writethrough

R/S x x Run or Stop

RESET x x Reset

SCYC x x Misaligned Transfer

SMI x x System Management Interrupt

SMIACT x x System Management Interrupt Active

STPCLK x x Stop Clock

TCK x x Test Access Port (TAP) Clock

TDI x x Test Access Port (TAP) Data In

TDO x x Test Access Port (TAP) Data Out

TMS x x Test Access Port (TAP) Test Mode Select

TRST x x Test Access Port (TAP) Reset

W/R x x Write or Read Cycle

WB/WT x x Writeback or Writethrough

TABLE A-1. AMD5K86 and Pentium Processor Signal Comparison (continued)

Signal
Pentium
(735\90,
815\100)

AMD5K86 Function

Bus Interface A-5

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

A.2 Bus Interface

A.2.1 Updates to Descriptor Accessed and TSS Busy Bits

For updates to the Accessed bit in the data and code segment
descriptors, the behavior of the AMD5K86 processor is differ-
ent than the Pentium processor. In the aligned case, the
AMD5K86 processor performs two 4-byte unlocked reads to
read in the descriptor. If the Accessed bit needs to be set, a 4-
byte locked read and a 4-byte locked write will follow. The
Pentium processor performs an 8-byte unlocked read to get the
descriptor. If the Accessed bit needs to be set, an 8-byte locked
read and a 1-byte locked write will follow.

For the misaligned case, the AMD5K86 processor performs four
unlocked reads to get the descriptor. If the Accessed bit needs
to be set, two locked reads and two locked writes will follow.
The Pentium processor performs two unlocked reads to get the
descriptor. If the Accessed bit needs to be set, two locked
reads will be followed by one 1-byte locked write.

For updates to the Busy bit in the TSS descriptor, the
AMD5K86 processor behaves in the manner described for
updates to the Accessed bit. The Pentium processor does not
perform the unlocked read to get the descriptor.

A.2.2 Locked and Unlocked CMPXCHG8B Operation

On a locked and misaligned— not on a dword boundary —
CMPXCHG8B operation, the AMD5K86 processor performs two
split reads followed by two split writes, all under lock, for a
total of eight cycles. The Pentium processor combines the split
reads and split writes, for a total of four cycles.

On a locked and aligned CMPXCHG8B operation, the
AMD5K86 processor performs two reads followed by two
writes, for a total of four cycles. The Pentium processor com-
bines one read and one write, for a total of two cycles.

On an unlocked and non-cacheable CMPXCHG8B operation,
the misaligned and aligned CMPXCHG8B operations are the

A-6

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

same as the locked misaligned and locked aligned
CMPXCHG8B operations, respectively, described above.

On an unlocked and cacheable CMPXCHG8B operation, the
AMD5K86 and Pentium processors behave the same.

A.2.3 Bus Cycle Order of Misaligned Memory and I/O Cycles

The AMD5K86 processor performs split (misaligned) memory
read, memory write, and I/O read cycles in the reverse order of
the Pentium processor. Split I/O write cycles occur in the same
order on both processors.

A.2.4 Halt Cycle after FLUSH

When halted, the AMD5K86 processor reruns a Halt special
cycle after the Flush Acknowledge special cycle following a
cache flush operation. The Pentium processor does not rerun a
Halt special cycle.

A.2.5 Selectable Drive Strengths on Output Driver

The AMD5K86 processor supports selectable drive strengths on
the following output pins:

■ A20–A3

■ W/R

■ ADS

■ HITM

This is the same set of output pins that have selectable drive
strengths on the Pentium processor. However, the Pentium
processor supports three drive strengths on these pins while
the AMD5K86 processor supports two.

Bus Interface A-7

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

The selection of the drive strengths differs between the Pen-
tium processor and the AMD5K86 processor as follows:

Comments The exact drive characteristics of the two strengths differ from
the Intel parts. Those differences are not documented in this
functional description. See the AMD5K86 processor data sheet
for more information.

Drive Strength BRDYC BUSCHK

Pentium

Strength 1 (weakest) 1 X

Strength 2 (medium) 0 1

Strength 3 (strongest) 0 0

AMD5K86

Strength 1 (weak) 1 X

Strength 1 (weak) 0 1

Strength 2 (strong) 0 0

A-8

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

A.3 Bus Mastering Operations (including Snooping)

A.3.1 AHOLD Snoop to Linefill Buffer Prior to or Coincident with the
Establishment of the Cacheability of the Line

An AHOLD snoop to the linefill buffer occurs during a linefill
when the address of the snoop matches the address of the line-
fill. If the snoop happens before or coincident with the estab-
lishment of the cacheability of the line via the KEN pin
sampled with the assertion of NA or BRDY (whichever comes
first), the AMD5K86 processor treats the snoop as a hit,
whereas the Pentium processor treats it as a miss.

Comments In treating the snoop as a hit, the AMD5K86 processor asserts
the HIT pin and also caches the line as either shared or invalid,
depending on the state of the INV pin. If KEN is sampled inac-
tive, the line is not cached, regardless of the state of the INV
pin.

In treating the snoop as a miss, the Pentium processor deas-
serts the HIT pin and caches the line based on KEN, WB/WT,
and PWT in the same way it does for linefills with no snoop.

The behavior of snoops to the linefill buffer after cacheability
is determined is described in Section A.3.2.

A.3.2 BOFF Asserted before Snoop to Linefill Buffer and after the
Cacheability of the Line is Established

A snoop to the linefill buffer occurs during a linefill when the
address of the snoop matches the address of the linefill. If
BOFF is asserted after the cacheability of the line is deter-
mined via the KEN pin being sampled active (with the asser-
tion of NA or BRDY, whichever comes first) and a snoop to the
linefill buffer occurs with either BOFF or AHOLD or both
asserted, the Pentium processor treats the snoop as a hit,
whereas the AMD5K86 processor may or may not treat it as a
hit. For DCACHE linefills, the AMD5K86 processor treats the
snoop as a miss. For ICACHE linefills, the AMD5K86 processor
may treat the snoop as a hit or a miss, because the speculative
nature of the linefills makes their cacheability dependent on

Bus Mastering Operations (including Snooping) A-9

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

the code sequence and, therefore, unpredictable from an exter-
nal system point of view.

Comments In treating the snoop as a hit, the AMD5K86 and Pentium pro-
cessors assert the HIT pin and also cache the line as either
shared or invalid, depending on the state of the INV pin. The
cycle restarts after the deassertion of BOFF and AHOLD.

In treating the snoop as a miss, the AMD5K86 processor deas-
serts the HIT pin. The state of the line is determined based on
KEN, WB/WT, and PWT when the cycle is restarted after the
deassertion of BOFF and AHOLD.

The behavior of snoops to the linefill buffer before cacheabil-
ity is determined is described in Section A.3.1.

A.3.3 Snoop Before Write Hit to ICACHE Appears on Bus

If a write to a valid ICACHE line occurs and a snoop occurs to
the same line before the write appears on the bus, the Pentium
processor generates a snoop hit until the write is on the bus.
The AMD5K86 processor generates a snoop miss in the window
between when the cache is invalidated and the write appears
on the bus. The ICACHE line is invalidated in both processors
by the time the write appears on the bus.

A.3.4 Invalidations during a FLUSH/WBINVD

During a FLUSH/WBINVD between a line copyback and the
Flush Acknowledge cycle, a subsequent snoop to that line
reports a snoop hit modified and generates another copyback.
The Pentium processor invalidates lines as they are accessed
during FLUSH. The AMD5K86 processor invalidates all lines at
the end of a FLUSH.

Once FLUSH/WBINVD has completed, the entire cache is
invalid for both the AMD5K86 and Pentium processors.

A.3.5 Cache Line Ownership

When the processor generates a read hit to a line in its own
ICACHE, the Pentium processor invalidates the ICACHE and
initiates a DCACHE linefill. However, the AMD5K86 processor

A-10

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

keeps the ICACHE valid and a non-cacheable, external read is
performed to supply the data.

A.3.6 Write Hit to a Shared Line in the DCACHE

When a write hits a shared line in the DCACHE, the write is
passed through to the external bus. The state of the WB/WT
pin is sampled with the BRDY (or NA) of the write, and if it is
High, the line changes state from shared to exclusive. Subse-
quent writes to the same line change the state of the line from
exclusive to modified and do not go external. Both the
AMD5K86 and Pentium processors behave in this manner.

However, if two or more writes to different locations within the
same cache line are queued up in the store buffer, the line is
shared and the WB/WT pin is set High, then the AMD5K86 pro-
cessor correctly allows the first write to reach the bus and the
line transitions to exclusive. The remainder of the writes to
that line do not show up on the external bus. In the Pentium
processor, the first two or more writes go external. The remain-
der hit the line in the exclusive state and do not go external.

Memory Management A-11

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

A.4 Memory Management

A.4.1 Speculative TLB Refills

The Pentium processor performs speculative TLB refills
(including setting the accessed bit) for code prefetches. This
may result in the accessed bit being set for a page that is not
actually used. The AMD5K86 processor does not perform spec-
ulative TLB refills.

A.4.2 Page Fault Encountered by a Load/Store Type of Instruction

On a read page fault encountered by a load/op/store type of
instruction, the error code reported by a 486 processor indi-
cates a read operation, whereas the Pentium processor indi-
cates a write operation. The AMD5K86 processor reports the
same error code as the 486 processor.

A-12

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

A.5 Power Saving Features

A.5.1 STPCLK in Halt State

When in the Halt state, the AMD5K86 processor responds to
STPCLK and enters the Stop Grant state. The Pentium proces-
sor ignores STPCLK in the Halt state.

A.5.2 STPCLK Pulse does not Guarantee That One Instruction
Executes

Unlike the Pentium processor, the AMD5K86 processor does
not guarantee that at least one instruction will be executed
between the deassertion of STPCLK and a subsequent reasser-
tion of STPCLK. On the Pentium processor, at least one
instruction is guaranteed to execute.

A.5.3 Simultaneous I/O SMI Trap and Debug Breakpoint Trap

On a simultaneous I/O SMI trap and debug breakpoint trap, the
AMD5K86 processor responds to the SMI first and postpones
writing the fault frame for the debug trap to the stack until
after the resumption of normal execution via RSM. (If debug
registers DR3–DR0 are going to be used while in SMM, they
must be saved and restored by the SMM software. DR6 and
DR7 are automatically saved and restored.) This is similar to
the Pentium processor behavior (P54C only) with TR12.ITR set
to 1, although the postponing of the debug trap is only accom-
plished with trapped I/O instructions, where the timing of the
SMI met the requirements for SMI I/O trapping.

On the AMD5K86 processor, if, on the RSM, the I/O Restart
Flag in the SMM save area is set, the debug trap is cancelled
and will be redetected as a result of the reexecution of the I/O
instruction.

A.5.4 SMM Save Area

The contents of any reserved locations are not necessarily the
same between the AMD5K86, Pentium, and the 486 processors.

Power Saving Features A-13

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

A.5.5 NMI Recognition during SMM

When operating in SMM, an NMI request should not be recog-
nized unless an enabled INTR is encountered. Both the
AMD5K86 and Pentium processors do this correctly, but in
slightly different ways. The Pentium processor takes the NMI
request immediately after recognizing the INTR, but before
executing any instructions from the interrupt handler. The
AMD5K86 processor takes the NMI request upon encountering
the IRET in the interrupt handler. (In fact, the AMD5K86 pro-
cessor unmasks NMI when any IRET is encountered, not just
one associated with INTR.)

Comment With both processors, the Intel recommendation of using a
fake INTR to unmask NMI while in SMM works correctly.

A-14

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

A.6 Exceptions

A.6.1 Limit Faults on an Invalid Instruction

When executing an instruction that crosses a limit boundary
and the instruction is interpreted as invalid, the AMD5K86 pro-
cessor prioritizes the invalid opcode fault. The Pentium and
486 processors prioritize the limit violation fault.

A.6.2 Task Switch

On a task switch, the AMD5K86 processor sets the busy bit of
the incoming task after storing the outgoing TSS according to
486 and Pentium processor documentation. The Pentium pro-
cessor sets the busy bit before trying to store the outgoing TSS.
If a fault occurs while trying to store the TSS, the Pentium pro-
cessor clears the busy bit. The end result of the instruction is
the same on both processors.

Debug A-15

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

A.7 Debug

A.7.1 Proprietary Branch Trace Messages

Branch trace messages are different. The AMD5K86 processor
uses the same BE pattern for the special bus cycles as the Pen-
tium processor, but the format of decoding information is dif-
ferent.

A.7.2 Multiple Debug Breakpoint Matches

Multiple debug breakpoint matches do not set multiple B bits
in DR6 on the AMD5K86 processor.

A.7.3 Simultaneous Debug Trap and Debug Fault

If a debug trap associated with the completion of an instruc-
tion (single-step trap or load/store breakpoint) occurs at the
same time as a debug fault (instruction breakpoint) on the next
instruction, the Pentium processor merges the two conditions
into a single call to the debug handler, setting both B bits in
the debug status register. The AMD5K86 processor processes
the two conditions serially, setting the appropriate B bits for
each invocation of the handler.

A-16

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

Index I-1

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Index

Numerics
4-Mbyte Pages 3-5, 3-8

A
A20M 5-9, 5-19, 6-22
A31–A3 5-9, 5-21, 5-138
Accessed bit 5-172
Address Parity 5-9
Addresses 5-9, 5-138

A20M mask 5-19
address generation during bursts 5-22, 5-151
aliasing 2-16, 2-23
aligned 5-115
alignment 5-139
boot 5-111
bus 5-21
hold 5-29, 5-158
indexed 4-3
parity 5-32, 5-33, 5-158
pipelining 5-97
selector:offset format 5-114
strobe 5-25, 5-28, 5-59

Address-Generation Interlocks (AGIs) 4-4
ADS 5-9, 5-25, 5-137
ADSC 5-9, 5-28
AGIs 4-4
AHOLD 5-9, 5-29, 5-158, 5-160, 5-161, 6-17
Aliasing 2-16, 2-23
Alignment 5-139
ALU instruction classes 2-9
AP 5-9, 5-32
APCHK 5-9, 5-33, 5-158
Array Access Register (AAR) 7-8
Array Pointer 7-8, 7-9
Array Test Data 7-8, 7-10

B
Backoff 5-38, 5-163
BE7–BE0 5-34, 5-57, 5-138
BF 5-11, 5-37
BIST 7-5
Bit Scan 4-4
Bit Test 4-4
Bits

A 5-172
accessed 5-172
D 5-172
DBP 7-4
DC 7-4

DDC 7-4
DE 3-3
DIC 7-4
dirty 5-172
DSPC 7-4
G 3-8, 3-11
GPE 3-3
MCE 3-3, 3-4
PS 3-8, 3-11
PSE 3-3
PVI 3-3, 3-24
TSC 3-27
TSD 3-3, 3-27
VIF 3-13, 3-15
VIP 3-13, 3-15
VME 3-3, 3-12

BOFF 5-9, 5-38, 5-163, 5-165, 5-174, 6-15
Boot Address 5-83, 5-111, 5-196
Boundary-Scan 5-128, 5-129, 5-130, 5-131, 5-132
Boundary-Scan Test Access Port (TAP) 7-19
Branch Unit 2-10
Branches 2-3, 2-6

prediction 2-6, 4-2
tracing 5-36, 5-181, 7-17

Branch-Trace Message Cycle 5-188
BRDY 5-10, 5-42, 5-138, 5-151
BRDYC 5-10
BREQ 5-9, 5-46
Buffers 2-23

external write 5-63
invalidation 2-25
line-fill 2-23
prefetch 2-3, 2-22, 2-24
replacement 2-25
store 2-8, 2-11, 2-12, 2-22, 2-24
writeback 2-8, 2-12, 2-22, 2-25, 2-26

Built-In Self Test (BIST) 7-5
Bursts 5-150

addresses 5-22, 5-151
CACHE 5-50

Bus
address hold 5-158
arbitration 5-9, 5-29, 5-38, 5-46, 5-78, 6-14
backoff 5-38, 5-163
check 5-47
clock 5-53
deadlock 5-38
frequency 5-37
hold 5-38, 5-78, 5-167
interface 5-1
lock 5-92

I-2 Index

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

speed 5-140, 6-9
turnaround 5-38, 5-78

Bus Cycles 5-137
aligned 5-115
alignment 5-139
branch tracing 5-36, 5-181
burst addresses 5-22, 5-151
bursts 5-150
encoding 5-36, 5-181
FLUSH acknowledge 5-36, 5-181
I/O 5-9
inquire cycles 5-157, 6-12, 6-14
interrupt acknowledge 5-86, 5-176
interrupt-acknowledge 5-9, 5-176
INVD invalidation 5-36, 5-181
locked 5-9, 5-92
locked cycles 5-170
memory reads 5-9
memory writes 5-9
misaligned 5-115
prioity 5-140
read-cycle timing 6-1
special 5-9, 5-181
split 5-115
timing 5-141
WBINVD invalidation 5-36, 5-181
writebacks 5-150, 5-154

BUSCHK 5-11, 5-17, 5-47
Byte Enables 5-34
Byte Operations 4-3
Byte Queue 2-7

C
CACHE 5-10, 5-50, 5-137
Cache

blocking 2-13
cacheable memory 6-4, 6-5
cache-invalidation cycle 5-185
cache-tag recovery 2-17
cache-writeback and invalidation cycle 5-186
coherency 2-18, 5-73, 5-106, 5-135, 5-136, 6-10
control 5-10, 6-9
data 2-15
design 6-8
disable 5-100
dual-tagged 2-16
enable (KEN) 5-90
enabling 2-13
FLUSH 5-67
hits 5-9
inquire cycles 2-21
instruction 2-14
internal snooping 2-22
invalidation 2-20, 5-89, 6-22
invalidation cycles 5-36, 5-181

invalidations 2-16, 2-17
L2 6-9, 6-19
line fills 2-17, 5-150
line-fill buffers 2-23
locking 2-13
MESI state 2-16, 2-18, 5-73, 5-106, 5-135, 5-136,

6-10
organization and management 2-13
replacement 2-20
SMM memory 6-5
snooping 2-20, 2-21
speed 6-9
tags 2-16
task switches 2-16
testing 7-7
writebacks 5-150, 5-154
write-once protocol 6-19

CLK 5-11, 5-37, 5-53, 5-193
Clock xvi

test 5-128
Clock Signals 5-11
Clocks 5-37

CLK 5-53
control 6-33
dead or idle 5-138, 5-170
delay function 6-41
design 6-40
disable stopping 7-4
state transitions 6-34
stopping 5-123
synthesizer 6-42

CMPXCHG8B 3-32, 5-139
Code

D/C 5-54
optimization 4-1

Compatibility
bus signals A-2
Pentium processor A-1

CPL 5-141
CPUID 3-29
CR4 3-2, 3-33
Current privilege level 5-141
Cycle xvi
Cycle Definition and Control Signals 5-9

D
D/C 5-9, 5-54, 5-137
D63–D0 5-10, 5-56
Data

bus 5-56
cache 2-15
D/C 5-54
embedded in code 4-2
parity 5-10
signals 5-10

Index I-3

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

transfers 5-42
wait states 5-42

DBP 7-4
DC 7-4
DDC 7-4
DE 3-3
Dead clock 5-138, 5-170
Debug 7-1

branch tracing 7-17
breakpoints 5-16
control 7-4
extensions 3-3
I/O breakpoints 7-16
port 5-104, 5-108, 7-23
registers 7-16
signals 5-11

Decode 2-7
Fastpath 2-7
microcode 2-7
predecode 2-3

Dependencies 2-8, 2-11, 4-2
Design Support 6-45
Device Identification Register 7-21
DIC 7-4
Dirty bit 5-172
Disable Branch Prediction 7-4
Disable Data Cache 7-4
Disable Instruction Cache 7-4
Disable Stopping Processor Clocks 7-4
Dispatch 2-8

conflicts 4-3
timing 4-5

DP7–D0 5-10, 5-57, 5-58
Drive Strength 5-47
DSPC 7-4

E
EADS 5-10, 5-59
EFLAGS Register 3-15
Errors

floating-point 5-65, 5-81
internal 5-80

EWBE 2-26, 5-9, 5-63, 5-145
Exceptions 3-21, 5-14, 5-17

alignment 5-139
debug 5-16
in SMM 6-32
machine check 3-4
machine-check 5-48, 5-102, 5-103

Exceptions. Also see Interrupts
Execution

branch unit 2-10
floating-point unit 2-10
integer/shift units 2-9
load/store units 2-10

pipeline 2-4
speculative 2-10
timing 4-5
units 2-8

External Interrupts 5-14
External Interrupts Signals 5-11
External Write Buffers 5-63

F
Fastpath 2-7
Features 1-2
FERR 5-10, 5-65
Fetch 2-6
Flags

IF 5-87
undefined 4-2
VIF 3-13, 3-15
VIP 3-13, 3-15

Float Test 7-7
Floated Outputs

BOFF 5-39
HLDA 5-76

Floating-Point
errors 5-10, 5-65
top-of-stack 4-4
unit 2-10

FLUSH 5-11, 5-17, 5-36, 5-67, 5-181, 5-184
Flush xvii

pipeline 5-14
FLUSH Acknowledge Cycle 5-36, 5-181, 5-184
Forwarding 2-8, 2-11, 2-12, 2-16, 2-17
FRCMC 5-11, 5-70
Functional-Redundancy Checking 5-70, 7-18

G
G 3-8, 3-11
GDT 5-177
Global Page Extension 3-3, 3-8, 3-9, 3-11
Global Pages 3-8, 3-9, 3-11
GPE 3-3
Ground 6-38
Ground Bounce 5-31

H
Halt Restart Slot 6-30
Halt State 5-9, 5-36, 5-124, 5-181, 6-34, 7-4
Hardware Configuration Register (HWCR) 7-3
Hardware Debug Tool (HDT) 5-104, 5-108, 7-23
HDT 5-104, 5-108, 7-23

ready 5-104
Heat 6-44
HIT 5-10, 5-72
HITM 5-10, 5-74

I-4 Index

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

HLDA 5-9, 5-76, 5-167, 5-169
HLT 5-36, 5-181
HOLD 5-9, 5-78, 5-167, 5-169, 6-19
HWCR 7-3

I
I/O

breakpoints 7-16
cycles 5-9
M/IO 5-96
trap dword 6-31
trap restart Slot 6-31

Idle clock 5-138, 5-170
IDT 5-177
IEEE 1149.1 5-128, 5-129, 5-130, 5-131, 5-132, 7-

19
IERR 5-11, 5-80
IGNNE 5-10, 5-81
Illegal Instructions 3-38
Indexed Addressing 4-3
INIT 5-9, 5-11, 5-17, 5-82, 5-196
Initialization 5-82, 5-110
Inquire Cycles 2-21, 5-9, 5-157, 6-12, 6-14

HIT 5-72
HITM 5-74
MESI state 5-73
signals 5-10

Instruction Boundary 2-12
Instruction Cache 2-14
Instruction-Retirement Boundary 2-12
Instructions 3-28

address-generation interlocks 4-4
ALU classes 2-9
bit scan 4-4
bit test 4-4
boundary 2-12
branch 4-2
byte operations 4-3
CMPXCHG8B 3-32, 5-139
CPUID 3-29
data in code 4-2
dependencies 4-2
floating-point 4-4
HLT 5-36, 5-181
illegal 3-38
indexed addressing 4-3
integer 4-8
INVD 5-36, 5-181
jumps 4-3
load 2-15
loops 4-3
memory operands 4-2
MOV to/from CR4 3-33
move and convert 4-3
multiplies 4-3

operands 4-2
optimization 4-1
performance 4-1
prefixes 4-3
RDMSR 3-35
RDTSC 3-34
RSM 3-37
serializing 2-8
shifts 4-2
short forms 4-1
simple 4-1
stack 4-2
store 2-15, 2-24
SYSCALL 3-4
SYSRET 3-4
test 7-22
USEHDT 5-104, 5-108, 7-23
WBINVD 5-36, 5-181
WRMSR 3-35
x86 predecode 2-3

Integer Instructions 4-8
Integer/Shift Units 2-9
Internal Architecture 2-1
Internal Errors 5-80
Internal Resistors 5-4
Internal Snooping 2-22
Interrupt Acknowledge 5-9, 5-86, 5-176
Interrupt Redirection 3-12
Interrupt Redirection Bitmap (IRB) 3-13, 3-21
Interrupt-acknowledge operations 2-8
Interrupts 5-14, 5-17

BUSCHK 5-47
FLUSH 5-67
in SMM 6-32
INIT 5-82
interrupt acknowledge 5-86, 5-176
interrupt flag 5-87
interrupt-acknowledge 2-8, 5-176
interrupt-table access 3-23
INTR 5-16, 5-85
IRB 3-13
latched 5-16
maskable 5-85
NMI 5-16, 5-98
precise 5-14
R/S 5-108
recognition 5-14
redirection 3-12, 3-21
simultaneous 5-16
SMI 5-117
SMI acknowledge 5-122
software 3-21, 5-14, 5-87
virtual 3-13, 3-15

Interrupts. Also see Exceptions
INTR 5-11, 5-16, 5-17, 5-85, 5-176
INV 5-10, 5-89

Index I-5

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

Invalidation 5-89
buffer 2-25
cache 2-16, 2-20, 6-12, 6-22
pipeline 5-14

INVD 5-36, 5-181
IRB 3-13, 3-21
Issue 2-8

J
JTAG 5-128, 5-129, 5-130, 5-131, 5-132, 7-19
Jumps 4-3

K
KEN 5-10, 5-90, 5-137, 5-151

L
L2 Cache 6-9
Latched Interrupts 5-16
Line-Fill Buffers 2-23
Load 2-15
Load/Store Units 2-10
LOCK 5-9, 5-92
Locked Cycles 5-9, 5-92, 5-170
Loops 4-3

M
M/IO 5-9, 5-96, 5-137
Machine-Check Address Register (MCAR) 3-4,

3-25
Machine-Check Enable 3-3, 3-4
Machine-Check Exception 3-4, 5-48, 5-102, 5-103
Machine-Check Type Register (MCTR) 3-4, 3-26
Maskable Interrupts 5-85
MCAR 3-4, 3-25
MCE 3-3, 3-4
MCTR 3-4, 3-26
Memory 6-1

cacheable 2-13, 6-4, 6-5
decoding 6-4
M/IO 5-96
management 2-26
map 6-2
MMU 2-26
operands 4-2
ordering 2-26
paging 2-28
read/write reordering 2-27
segmentation 2-27
SMM 6-5
stack 4-2
storage model 2-26
TLBs 2-28

MESI State 2-16, 2-18
inquire cycles 5-73
reads 5-135
writes 5-136

Microcode 2-7
Misalignment

order of data transfers 5-148
MMU 2-26
Model-Specific Registers (MSRs) 3-25
MOV to/from CR4 3-33
Move and Convert 4-3
MSRs 3-25
Multiplies 4-3

N
NA 5-9, 5-97, 5-151
Next Address 5-97
NMI 5-11, 5-16, 5-17, 5-98
Noise Reduction 6-43
Non-Maskable Interrupts 5-98
Notation xv, 4-5
Numeric Errors 5-81

O
Opcodes

reserved 3-38
Operands 4-2

aligned 5-115
alignment 5-139

Optimization 4-1
Output-Float Test 7-7
Outputs at RESET 5-113
Outputs Floated With BOFF 5-39
Outputs Floated With HLDA 5-76

P
Page Cache Disable 5-100
Page Size 3-8, 3-11
Page Size Extension 3-3, 3-5
Page Writethrough 5-106
Page-Directory Entry (PDE) 3-8
Pages

4-Mbyte 3-5, 3-8
Page-Table Entry (PTE) 3-10
Paging 2-28

cacheable 5-100
global 3-8, 3-9, 3-11
page size 3-8, 3-11
page-directory entry 3-8
page-table entry 3-10

Parity 5-9, 5-10
address 5-32, 5-33, 5-158
data 5-58, 5-102

I-6 Index

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

enable 5-103
PCD 5-10, 5-100
PCHK 5-10, 5-102, 5-142
PDE 3-8
PEN 5-10, 5-103, 5-142
Performance 4-1
Peripheral Products 6-45
Pipeline 2-4

byte queue 2-7
decode 2-7
dependencies 2-8, 2-11
dispatch 2-8
dispatch conflicts 4-3
execute 2-8
fetch 2-6
flush 5-14
flush (FLUSH) 5-68
flush (INIT) 5-83, 5-196
flush (INTR) 5-85
flush (NMI) 5-99
flush (R/S) 5-108
flush (RESET) 5-111
flush (SMI) 5-118, 5-190
flush (STPCLK) 5-124, 5-193
forwarding 2-8, 2-11, 2-12, 2-16, 2-17
invalidation 2-12
issue 2-8
load 2-15
performance 4-1
retirement 2-12
serialization 2-7
store 2-15, 2-24
synchronization 2-7

Power 6-38
Power Management 5-123, 6-33
PRDY 5-9, 5-11, 5-104
Precise interrupts 5-14
Predecode 2-3
Prefetch 2-3

buffer 2-3, 2-22, 2-24
Prefixes 4-3
Privilege level 5-141
Probe Mode 5-104, 5-108, 7-23
Probe Ready 5-104
Protected Virtual Interrupts 3-3, 3-24
PS 3-8, 3-11
PSE 3-3
PTE 3-10
Public TAP Instructions 7-22
PVI 3-3, 3-24
PWT 5-10, 5-106, 5-151

R
R/S 5-11, 5-17, 5-108
RDMSR 3-35

RDTSC 3-34
Reads

I/O 5-147
MESI state 5-135
reordering 2-27
single-transfer from memory 5-142
single-transfer misaligned 5-148
W/R 5-133

Real Mode
transition from protected mode 5-196

References xviii
Register

file 2-12
Registers

AAR 7-8
CR4 3-2, 3-33
debug 7-16
DR7–D0 7-16
EFLAGS 3-15
HWCR 7-3
MCAR 3-4, 3-25
MCTR 3-4, 3-26
model-specific 3-25
MSRs 3-25
operands 4-2
state after RESET or INIT 5-111
TAP device ID 7-21

Reorder Buffer (ROB) 2-11
Reordering of Reads and Writes 2-27
Replacement

buffer 2-25
cache 2-20

Reserved Opcodes 3-38
RESET 5-9, 5-11, 5-110
Reset (soft) 5-82
Retirement 2-12, 2-24
ROB 2-11
ROPs 2-7, 2-8
RSM 3-37

S
SCYC 5-9, 5-115
Segmentation 2-27
Self-Modifying Code 2-21, 2-23
Serialization 2-7
Serializing instructions 2-8
Shift Units 2-9
Shifts 4-2
Shutdown Cycle 5-183
Shutdown State 5-9, 5-36, 5-181
Signals

A20M 5-9, 5-19, 6-22
A31–A3 5-9, 5-21, 5-138
address 5-9
ADS 5-9, 5-25, 5-137

Index I-7

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

ADSC 5-9, 5-28
AHOLD 5-9, 5-29, 5-158, 5-160, 5-161, 6-17
AP 5-9, 5-32
APCHK 5-9, 5-33, 5-158
BE7–BE0 5-34, 5-57, 5-138
BF 5-11, 5-37
BOFF 5-9, 5-38, 5-163, 5-165, 5-174, 6-15
BRDY 5-10, 5-42, 5-138, 5-151
BRDYC 5-10
BREQ 5-9, 5-46
bus arbitration 5-9
BUSCHK 5-11, 5-17, 5-47
byte enables 5-34
CACHE 5-10, 5-50, 5-137
cache control 5-10
characteristics 5-4
CLK 5-11, 5-37, 5-53, 5-193
clock 5-11
compatibility A-2
cycle definition and control 5-9
D/C 5-9, 5-54, 5-137
D63–D0 5-10, 5-56
data 5-10
debug 5-11
descriptions 5-18
DP7–D0 5-10, 5-57, 5-58
drive strength 5-47
driving and sampling 5-8
EADS 5-10, 5-59
EWBE 2-26, 5-9, 5-63, 5-145
FERR 5-10, 5-65
floated 5-4
floating-point error 5-10
FLUSH 5-11, 5-17, 5-36, 5-67, 5-181, 5-184
FRCMC 5-11, 5-70
groups 5-3
HIT 5-10, 5-72
HITM 5-10, 5-74
HLDA 5-9, 5-76, 5-167, 5-169
HOLD 5-9, 5-78, 5-167, 5-169, 6-19
IERR 5-11, 5-80
IGNNE 5-10, 5-81
INIT 5-9, 5-11, 5-17, 5-82, 5-196
inquire cycle 5-10
internal resistors 5-4
interrupt 5-11
interrupt-acknowledgement 5-11
INTR 5-11, 5-16, 5-17, 5-85, 5-176
INV 5-10, 5-89
KEN 5-10, 5-90, 5-137, 5-151
LOCK 5-9, 5-92
M/IO 5-9, 5-96, 5-137
NA 5-9, 5-97, 5-151
NMI 5-11, 5-16, 5-17, 5-98
outputs at RESET 5-113
parity 5-9, 5-10

PCD 5-10, 5-100
PCHK 5-10, 5-102, 5-142
PEN 5-10, 5-103, 5-142
PRDY 5-9, 5-11, 5-104
PWT 5-10, 5-106, 5-151
R/S 5-11, 5-17, 5-108
RESET 5-9, 5-11, 5-110
SCYC 5-9, 5-115
SMI 5-11, 5-17, 5-117, 5-190
SMIACT 5-9, 5-11, 5-122, 5-190
STPCLK 5-11, 5-17, 5-36, 5-123, 5-181, 5-193,

6-33
TCK 5-11, 5-128
TDI 5-11, 5-129
TDO 5-11, 5-130
test 5-11
TMS 5-11, 5-131
TRST 5-11, 5-132
W/R 5-9, 5-133, 5-137
WB/WT 5-10, 5-134, 5-151

Simultaneous Interrupts 5-16
SMI 5-11, 5-17, 5-117, 5-190
SMIACT 5-9, 5-11, 5-122, 5-190
SMM 5-117, 5-122, 6-23

base address 6-28
exceptions and interrupts in SMM 6-32
Halt restart 6-30
I/O restart 6-31
I/O trap dword 6-31
initial state 6-25
memory map 6-5
revision identifier 6-28
RSM instruction
state-save area 6-25
timing 5-190
transition from normal execution 5-190

Snoop xvii
Snoop. See also Internal Snooping
Snoops 2-21, 6-12

See also, Inquire Cycles
writeback buffer 2-26

Software Environment 3-1
Software Extensions 3-1

4-Mbyte pages 3-8, 3-11
branch tracing 7-17
debug control 7-4
debugging extensions (DE) 3-3
disable branch prediction 7-4
disable data cache 7-4
disable instruction cache 7-4
disable stopping processor Clocks 7-4
global page extension (GPE) 3-3, 3-8, 3-9, 3-11
I/O breakpoints 7-16
interrupt redirection bitmap (IRB) 3-21
machine check 3-3
machine check enable (MCE) 3-4

I-8 Index

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

page size extension (PSE) 3-3, 3-5
protected virtual interrupts (PVI) 3-3, 3-24
system call 3-4
time stamp disable (TSD) 3-3, 3-27
Virtual-8086 Mode extension (VME) 3-3, 3-12

Software Interrupts 3-21, 5-14, 5-87
Special Bus Cycles 5-9, 5-181

branch tracing 7-17
branch-trace message 5-188
cache-invalidation 5-185
cache-writeback and invalidation 5-186
encoding 5-36, 5-181
FLUSH acknowledge 5-184
interrupt acknowledge 5-86, 5-176
shutdown 5-183

Speculative Execution 2-10
Spikes 5-31
Split Cycles 5-115
Stack

allocation 4-2
references 4-2

State
Halt 5-9, 5-36, 5-124, 5-181, 7-4
Shutdown 5-9, 5-36, 5-181
Stop-Clock 5-9, 5-53, 5-126
Stop-Grant 5-9, 5-36, 5-125, 5-181, 7-4
Stop-Grant Inquire 5-125

States
halt 6-34
stop-clock 6-38
stop-grant 6-37
stop-grant inquire 6-37

Stop-Clock State 5-9, 5-53, 5-126, 5-193, 6-38
Stop-Grant Inquire State 5-125, 6-37
Stop-Grant State 5-9, 5-36, 5-125, 5-181, 5-193,

6-37, 7-4
Storage

EWBE 2-26
model 2-26
ordering 2-26
read/write reordering 2-27

Store 2-15, 2-24
Store Buffer 2-8, 2-11, 2-12, 2-22, 2-24
STPCLK 5-11, 5-17, 5-36, 5-123, 5-181, 5-193, 6-33
Strong Memory Order 2-26
Successor index 2-6
Synchronization 2-7
System Call 3-4
System Design 6-1
System Management Mode. See SMM

T
Tags

linear 2-16
physical 2-16

recovery 2-17
TAP 5-128, 5-129, 5-130, 5-131, 5-132, 7-19
Task Switches 2-16
TCK 5-11, 5-128
TDI 5-11, 5-129
TDO 5-11, 5-130
Terminology xvi
Test 7-1

AAR 7-8
arrays 7-7
BIST 7-5
boundary scan 7-19
cache 7-7
clock 5-128
data input 5-129
data output 5-130
float 7-7
functional redundancy 7-18
HDT 7-23
HWCR 7-3
instructions 7-22
mode select 5-131
PRDY 5-104
R/S 5-108
reset 5-132
TAP 7-19
TAP device ID 7-21
TLBs 7-7

Test Access Port (TAP)
TCK 5-128
TDI 5-129
TDO 5-130
TMS 5-131
TRST 5-132

Test Signals 5-11
Thermal Design 6-44
Time Stamp Counter (TSC) 3-3, 3-27
Time Stamp Disable 3-3, 3-27
Time-Stamp Counter (TSC) 3-34
TLBs 2-28

testing 7-7
TLB miss 5-172

TMS 5-11, 5-131
Triple Fault 5-36, 5-181
Tristate Test 7-7
TRST 5-11, 5-132
TSC 3-3, 3-27, 3-34
TSD 3-3, 3-27

U
Undefined Flags 4-2
USEHDT 5-104, 5-108, 7-23

Index I-9

18524B/0—Mar1996 AMD5K86 Processor Technical Reference Manual

V
VIF 3-13, 3-15
VIP 3-13, 3-15
Virtual Interrupt Flag (VIF) 3-13, 3-15
Virtual Interrupt Pending (VIP) flag 3-13, 3-15
Virtual-8086 Mode Extensions (VME) 3-3, 3-12
VME 3-3, 3-12

W
W/R 5-9, 5-133, 5-137
Wait States 5-42
WB/WT 5-10, 5-134, 5-151
WBINVD 5-36, 5-181
Weak Memory Order 2-26
Writebacks xvii, 2-18, 2-19, 2-20, 5-106, 5-134,

5-154, 6-10
buffers 2-8, 2-12, 2-22, 2-25, 2-26

Write-Once Protocol 6-19
Writes

effect of EWBE 5-145
EWBE 2-26
I/O 5-147
MESI state 5-136
reordering 2-27
single-transfer from memory 5-142
single-transfer misaligned 5-148
strongly ordered 2-26
W/R 5-133

Writethroughs xvii, 2-18, 2-19, 2-20, 5-106, 5-134,
6-10

WRMSR 3-35

I-10 Index

AMD5K86 Processor Technical Reference Manual 18524B/0—Mar1996

	Preface
	Notation
	Terminology
	References

	Overview
	1.1 Features

	Internal Architecture
	2.1 Prefetch and Predecode
	2.2 Execution Pipeline
	2.2.1 Fetch
	2.2.2 Decode
	2.2.3 Execute
	Integer/Shift Units
	Floating-Point Unit
	Load/Store Units
	Branch Unit

	2.2.4 Result
	2.2.5 Retire

	2.3 Cache Organization and Management
	2.3.1 Instruction Cache
	2.3.2 Data Cache
	2.3.3 Cache Tags
	2.3.4 Cache-Line Fills
	2.3.5 Cache Coherency
	2.3.6 Snooping
	Inquire Cycles
	Internal Snooping

	2.3.7 Buffers
	Line-Fill Buffers
	Prefetch Cache
	Store Buffer
	Replacement and Invalidation Writeback Buffer
	Snoop Writeback Buffer

	2.4 Memory Management Unit (MMU)
	2.4.1 Storage Model
	2.4.2 Read/Write Reordering
	2.4.3 Segmentation
	2.4.4 Paging and the TLBs

	Software Environment and Extensions
	3.1 Control Register 4 (CR4) Extensions
	3.1.1 Machine-Check Exceptions
	3.1.2 4-Mbyte Pages
	3.1.3 Global Pages
	3.1.4 Virtual-8086 Mode Extensions (VME)
	Interrupt Redirection in Virtual-8086 Mode Without...
	Hardware Interrupts and the VIF and VIP Extensions...
	Software Interrupts and the Interrupt Redirection ...

	3.1.5 Protected Virtual Interrupt (PVI) Extensions...

	3.2 Model-Specific Registers (MSRs)
	3.2.1 Machine-Check Address Register (MCAR)
	3.2.2 Machine-Check Type Register (MCTR)
	3.2.3 Time Stamp Counter (TSC)
	3.2.4 Array Access Register (AAR)
	3.2.5 Hardware Configuration Register (HWCR)

	3.3 New Instructions
	3.3.1 CPUID
	3.3.2 CMPXCHG8B
	3.3.3 MOV to and from CR4
	3.3.4 RDTSC
	3.3.5 RDMSR and WRMSR
	3.3.6 RSM
	3.3.7 Illegal Instruction (Reserved Opcode)

	Performance
	4.1 Code Optimization
	4.1.1 General Superscalar Techniques
	4.1.2 Techniques Specific to the AMD5K86 Processor...

	4.2 Dispatch and Execution Timing
	4.2.1 Notation
	4.2.2 Integer Instructions
	4.2.3 Integer Dot Product Example
	4.2.4 Floating-Point Instructions

	Bus Interface
	5.1 Signal Overview
	5.1.1 Signal Characteristics
	5.1.2 Conditions for Driving and Sampling Signals
	5.1.3 External Interrupts
	5.1.4 Bus Signal Compatibility with Pentium Proces...

	5.2 Signal Descriptions
	5.2.1 A20M (Address Bit 20 Mask)
	5.2.2 A31–A3 (Address Bus)
	5.2.3 ADS (Address Strobe)
	5.2.4 ADSC (Address Strobe Copy)
	5.2.5 AHOLD (Address Hold)
	5.2.6 AP (Address Parity)
	5.2.7 APCHK (Address Parity Check)
	5.2.8 BE7–BE0 (Byte Enables)
	5.2.9 BF (Bus Frequency)
	5.2.10 BOFF (Backoff)
	5.2.11 BRDY (Burst Ready)
	5.2.12 BRDYC (Burst Ready)
	5.2.13 BREQ (Bus Request)
	5.2.14 BUSCHK (Bus Check)
	5.2.15 CACHE (Cacheable Access)
	5.2.16 CLK (Bus Clock)
	5.2.17 D/C (Data or Code)
	5.2.18 D63–D0 (Data Bus)
	5.2.19 DP7–DP0 (Data Parity)
	5.2.20 EADS (External Address Strobe)
	5.2.21 EWBE (External Write Buffer Empty)
	5.2.22 FERR (Floating�Point Error)
	5.2.23 FLUSH (Cache Flush)
	5.2.24 FRCMC (Functional-Redundancy Check Master/C...
	5.2.25 HIT (Inquire-Cycle Hit)
	5.2.26 HITM (Inquire Cycle Hit To Modified Line)
	5.2.27 HLDA (Bus-Hold Acknowledge)
	5.2.28 HOLD (Bus-Hold Request)
	5.2.29 IERR (Internal Error)
	5.2.30 IGNNE (Ignore Numeric Error)
	5.2.31 INIT (Initialization)
	5.2.32 INTR (Maskable Interrupt)
	5.2.33 INV (Invalidate Cache Line)
	5.2.34 KEN (External Cache Enable)
	5.2.35 LOCK (Bus Lock)
	5.2.36 M/IO (Memory or I/O)
	5.2.37 NA (Next Address)
	5.2.38 NMI (Non-Maskable Interrupt)
	5.2.39 PCD (Page Cache Disable)
	5.2.40 PCHK (Parity Status)
	5.2.41 PEN (Parity Enable)
	5.2.42 PRDY (Probe Ready)
	5.2.43 PWT (Page Writethrough)
	5.2.44 R/S (Run or Stop)
	5.2.45 RESET (Reset)
	5.2.46 SCYC (Split Cycle)
	5.2.47 SMI (System Management Interrupt)
	5.2.48 SMIACT (System Management Interrupt Active)...
	5.2.49 STPCLK (Stop Clock)
	5.2.50 TCK (Test Clock)
	5.2.51 TDI (Test Data Input)
	5.2.52 TDO (Test Data Output)
	5.2.53 TMS (Test Mode Select)
	5.2.54 TRST (Test Reset)
	5.2.55 W/R (Write or Read)
	5.2.56 WB/WT (Writeback or Writethrough)

	5.3 Bus Cycle Overview
	5.3.1 Cycle Definitions
	5.3.2 Addressing
	5.3.3 Alignment
	5.3.4 Bus Speed and Typical DRAM Timing
	5.3.5 Bus-Cycle Priorities

	5.4 Bus Cycle Timing
	5.4.1 Timing Diagrams
	5.4.2 Single-Transfer Reads and Writes
	Single-Transfer Memory Read and Write
	Single-Transfer Memory Write Delayed by EWBE Signa...
	I/O Read and Write
	Single-Transfer Misaligned Memory and I/O Transfer...

	5.4.3 Burst Cycles
	Burst Read
	Burst Writeback

	5.4.4 Bus Arbitration and Inquire Cycles
	AHOLD-Initiated Inquire Miss
	AHOLD-Initiated Inquire Hit to Shared or Exclusive...
	AHOLD-Initiated Inquire Hit to Modified Line
	Bus Backoff (BOFF)
	BOFF-Initiated Inquire Hit to Modified Line
	HOLD-Initiated Inquire Hit to Shared or Exclusive ...
	HOLD-Initiated Inquire Hit to Modified Line

	5.4.5 Locked Cycles
	Basic Locked Operation
	TLB Miss (4-Kbyte Page)
	Locked Operation with BOFF Intervention
	Interrupt Acknowledge Operation

	5.4.6 Special Bus Cycles
	Basic Special Bus Cycle
	Shutdown Cycle
	FLUSH-Acknowledge Cycle
	Cache-Invalidation Cycle (INVD Instruction)
	Cache-Writeback and Invalidation Cycle (WBINVD Ins...
	Branch-Trace Message Cycles

	5.4.7 Mode Transitions, Reset, and Testing
	Transition from Normal Execution to SMM
	Stop-Grant and Stop- Clock States
	INIT-Initiated Transition from Protected Mode to R...

	System Design
	6.1 Memory
	6.1.1 Memory Map
	6.1.2 Memory-Decoder Aliasing of Boot ROM Space
	6.1.3 Cacheable and Noncacheable Address Spaces
	6.1.4 SMM Memory Space and Cacheability

	6.2 Cache
	6.2.1 L2 Cache
	6.2.2 Cacheability and Cache-State Control
	6.2.3 Writethrough vs. Writeback Coherency States
	6.2.4 Inquire Cycles
	6.2.5 Bus Arbitration for Inquire Cycles
	BOFF Arbitration
	AHOLD Arbitration
	HOLD Arbitration

	6.2.6 Write-Once Protocol
	6.2.7 Cache Invalidations
	6.2.8 A20M Masking of Cache Accesses

	6.3 System Management Mode (SMM)
	6.3.1 Operating Mode and Default Register Values
	6.3.2 SMM State-Save Area
	6.3.3 SMM Revision Identifier
	6.3.4 SMM Base Address
	6.3.5 Halt Restart Slot
	6.3.6 I/O Trap Dword
	6.3.7 I/O Trap Restart Slot
	6.3.8 Exceptions and Interrupts in SMM
	6.3.9 SMM Compatibility with Pentium Processor

	6.4 Clock Control
	6.4.1 State Transitions
	6.4.2 Halt State
	6.4.3 Stop Grant State
	6.4.4 Stop Grant Inquire State
	6.4.5 Stop Clock State
	6.4.6 Clock Control Compatibility with Pentium Pro...

	6.5 Power and Ground Design
	6.6 Clock Design
	6.6.1 Noise Reduction

	6.7 Thermal Design
	6.8 Design Support and Peripheral Products

	Test and Debug
	7.1 Hardware Configuration Register (HWCR)
	7.2 Built-In Self Test (BIST)
	7.2.1 Normal BIST
	7.2.2 Test Access Port (TAP) BIST

	7.3 Output-Float Test
	7.4 Cache and TLB Testing
	7.4.1 Array Access Register (AAR)
	7.4.2 Array Pointer
	7.4.3 Array Test Data

	7.5 Debug Registers
	7.5.1 Standard Debug Functions
	7.5.2 I/O Breakpoint Extension
	7.5.3 Debug Compatibility with Pentium Processor

	7.6 Branch Tracing
	7.7 Functional-Redundancy Checking
	7.8 Boundary-Scan Test Access Port (TAP)
	7.8.1 Device Identification Register
	7.8.2 Public Instructions

	7.9 Hardware Debug Tool (HDT)

	Compatibility With the Pentium and 486 Processors
	A.1 Bus Signals
	A.1.1 Signal Comparison

	A.2 Bus Interface
	A.2.1 Updates to Descriptor Accessed and TSS Busy ...
	A.2.2 Locked and Unlocked CMPXCHG8B Operation
	A.2.3 Bus Cycle Order of Misaligned Memory and I/O...
	A.2.4 Halt Cycle after FLUSH
	A.2.5 Selectable Drive Strengths on Output Driver
	Comments

	A.3 Bus Mastering Operations (including Snooping)
	A.3.1 AHOLD Snoop to Linefill Buffer Prior to or C...
	Comments

	A.3.2 BOFF Asserted before Snoop to Linefill Buffe...
	Comments

	A.3.3 Snoop Before Write Hit to ICACHE Appears on ...
	A.3.4 Invalidations during a FLUSH/WBINVD
	A.3.5 Cache Line Ownership
	A.3.6 Write Hit to a Shared Line in the DCACHE

	A.4 Memory Management
	A.4.1 Speculative TLB Refills
	A.4.2 Page Fault Encountered by a Load/Store Type ...

	A.5 Power Saving Features
	A.5.1 STPCLK in Halt State
	A.5.2 STPCLK Pulse does not Guarantee That One Ins...
	A.5.3 Simultaneous I/O SMI Trap and Debug Breakpoi...
	A.5.4 SMM Save Area
	A.5.5 NMI Recognition during SMM
	Comment

	A.6 Exceptions
	A.6.1 Limit Faults on an Invalid Instruction
	A.6.2 Task Switch

	A.7 Debug
	A.7.1 Proprietary Branch Trace Messages
	A.7.2 Multiple Debug Breakpoint Matches
	A.7.3 Simultaneous Debug Trap and Debug Fault

