plotmath {graphics} | R Documentation |
If the text
argument to one of the text-drawing functions
(text
, mtext
, axis
) in R
is an expression, the argument is interpreted as a mathematical
expression and the output will be formatted according to TeX-like
rules. Expressions can also be used for titles, subtitles and
x- and y-axis labels (but not for axis labels on persp
plots).
A mathematical expression must obey the normal rules of syntax for any R expression, but it is interpreted according to very different rules than for normal R expressions.
It is possible to produce many different mathematical symbols, generate sub- or superscripts, produce fractions, etc.
The output from demo(plotmath)
includes several tables which
show the available features. In these tables, the columns of grey text
show sample R expressions, and the columns of black text show the
resulting output.
The available features are also described in the tables below:
Syntax | Meaning |
x + y | x plus y |
x - y | x minus y |
x*y | juxtapose x and y |
x/y | x forwardslash y |
x %+-% y | x plus or minus y |
x %/% y | x divided by y |
x %*% y | x times y |
x[i] | x subscript i |
x^2 | x superscript 2 |
paste(x, y, z) | juxtapose x, y, and z |
sqrt(x) | square root of x |
sqrt(x, y) | yth root of x |
x == y | x equals y |
x != y | x is not equal to y |
x < y | x is less than y |
x <= y | x is less than or equal to y |
x > y | x is greater than y |
x >= y | x is greater than or equal to y |
x %~~% y | x is approximately equal to y |
x %=~% y | x and y are congruent |
x %==% y | x is defined as y |
x %prop% y | x is proportional to y |
plain(x) | draw x in normal font |
bold(x) | draw x in bold font |
italic(x) | draw x in italic font |
bolditalic(x) | draw x in bolditalic font |
list(x, y, z) | comma-separated list |
... | ellipsis (height varies) |
cdots | ellipsis (vertically centred) |
ldots | ellipsis (at baseline) |
x %subset% y | x is a proper subset of y |
x %subseteq% y | x is a subset of y |
x %notsubset% y | x is not a subset of y |
x %supset% y | x is a proper superset of y |
x %supseteq% y | x is a superset of y |
x %in% y | x is an element of y |
x %notin% y | x is not an element of y |
hat(x) | x with a circumflex |
tilde(x) | x with a tilde |
dot(x) | x with a dot |
ring(x) | x with a ring |
bar(xy) | xy with bar |
widehat(xy) | xy with a wide circumflex |
widetilde(xy) | xy with a wide tilde |
x %<->% y | x double-arrow y |
x %->% y | x right-arrow y |
x %<-% y | x left-arrow y |
x %up% y | x up-arrow y |
x %down% y | x down-arrow y |
x %<=>% y | x is equivalent to y |
x %=>% y | x implies y |
x %<=% y | y implies x |
x %dblup% y | x double-up-arrow y |
x %dbldown% y | x double-down-arrow y |
alpha – omega | Greek symbols |
Alpha – Omega | uppercase Greek symbols |
infinity | infinity symbol |
partialdiff | partial differential symbol |
32*degree | 32 degrees |
60*minute | 60 minutes of angle |
30*second | 30 seconds of angle |
displaystyle(x) | draw x in normal size (extra spacing) |
textstyle(x) | draw x in normal size |
scriptstyle(x) | draw x in small size |
scriptscriptstyle(x) | draw x in very small size |
x ~~ y | put extra space between x and y |
x + phantom(0) + y | leave gap for "0", but don't draw it |
x + over(1, phantom(0)) | leave vertical gap for "0" (don't draw) |
frac(x, y) | x over y |
over(x, y) | x over y |
atop(x, y) | x over y (no horizontal bar) |
sum(x[i], i==1, n) | sum x[i] for i equals 1 to n |
prod(plain(P)(X==x), x) | product of P(X=x) for all values of x |
integral(f(x)*dx, a, b) | definite integral of f(x) wrt x |
union(A[i], i==1, n) | union of A[i] for i equals 1 to n |
intersect(A[i], i==1, n) | intersection of A[i] |
lim(f(x), x %->% 0) | limit of f(x) as x tends to 0 |
min(g(x), x > 0) | minimum of g(x) for x greater than 0 |
inf(S) | infimum of S |
sup(S) | supremum of S |
x^y + z | normal operator precedence |
x^(y + z) | visible grouping of operands |
x^{y + z} | invisible grouping of operands |
group("(",list(a, b),"]") | specify left and right delimiters |
bgroup("(",atop(x,y),")") | use scalable delimiters |
group(lceil, x, rceil) | special delimiters |
Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in plots. Journal of Computational and Graphical Statistics, 9, 582–599.
demo(plotmath)
,
axis
,
mtext
,
text
,
title
,
substitute
quote
, bquote
x <- seq(-4, 4, len = 101) y <- cbind(sin(x), cos(x)) matplot(x, y, type = "l", xaxt = "n", main = expression(paste(plain(sin) * phi, " and ", plain(cos) * phi)), ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken xlab = expression(paste("Phase Angle ", phi)), col.main = "blue") axis(1, at = c(-pi, -pi/2, 0, pi/2, pi), lab = expression(-pi, -pi/2, 0, pi/2, pi)) ## How to combine "math" and numeric variables : plot(1:10, type="n", xlab="", ylab="", main = "plot math & numbers") theta <- 1.23 ; mtext(bquote(hat(theta) == .(theta))) for(i in 2:9) text(i,i+1, substitute(list(xi,eta) == group("(",list(x,y),")"), list(x=i, y=i+1))) plot(1:10, 1:10) text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y)) text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)", cex = .8) text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n))) text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))", cex = .8) text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ", plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})), cex = 1.2)