
New Algorithms for Subset Query, Partial

Match, Orthogonal Range Searching and

Related Problems

Moses Charikar1, Piotr Indyk2, and Rina Panigrahy3

1 Princeton University
moses@cs.princeton.edu

2 MIT
indyk@theory.lcs.mit.edu

3 Cisco Systems
rinap@cisco.com

Abstract. We consider the subset query problem, defined as follows:
given a set P of N subsets of a universe U , |U | = m, build a data
structure, which for any query set Q ⊂ U detects if there is any P ∈ P
such that Q ⊂ P . This is essentially equivalent to the partial match
problem and is a fundamental problem in many areas. In this paper we
present the first (to our knowledge) algorithms, which achieve non-trivial
space and query time bounds for m = ω(log N). In particular, we present
two algorithms with the following tradeoffs:

– N · 2O(m log2 m
√

c/ log N) space, and O(N/2c) time, for any c
– Nmc space and O(mN/c) query time, for any c ≤ N

We extend these results to the more general problem of orthogonal range
searching (both exact and approximate versions), approximate orthog-
onal range intersection and the exact and approximate versions of the
nearest neighbor problem in "∞.

1 Introduction

The subset query problem is defined as follows: given a set P of N subsets of
a universe U , |U | = m, build a data structure, which for any query set Q ⊂ U
detects if there is any P ∈ P such that Q ⊂ P . This problem is of fundamental
importance in many areas. In information retrieval, it occurs in applications
which allow the user to search for documents containing a given set of words
(e.g., as in Google). In the field of databases, it corresponds to the partial match
problem, which involves searching for records which satisfy specified equality
constraints1 (e.g., “Sex=Male and City=Boston”). The partial match problem
is also of large interest for IP packet classification, where the goal is to classify a
packet depending on its parameters (source and destination address, length etc)
[1, 6–8, 16].

1 For an easy equivalence between the partial match problem and the subset query
problem, see Preliminaries.

Due to its high importance, the subset query and partial match problems
have been investigated for quite a while. It is easy to see that this problem
has two fairly trivial solutions: (a) store all answers to all queries (requiring 2m

space and O(m) query time), or (b) scan the whole database for the answer
(requiring linear storage and O(Nm) query time). Unfortunately, both solutions
are quite unsatisfactory in most applications. The first non-trivial result for this
problem has been obtained by Rivest [14, 15]. He showed that the 2m space of the
trivial “exhaustive storage” solution can be somewhat improved for m ≤ 2 logN .
He also presented a trie-based algorithm using linear storage, which achieved
sublinear query time when the database content is generated at random.

Unfortunately, since those early results, there has been essentially no progress
on this problem to this date2. Consequently, it is believed (e.g., see [5] or [10] and
the references therein), that the problem inherently suffers from the “curse of
dimensionality” , i.e., that there is no algorithm for this problem which achieves
both “fast” query time and “small” space. Various variants of the conjecture
exist, depending on the definition of “fast” and “small”. Recently it has been
shown [5] that the problem requires space superpolynomial in n if the query
time (in the cell-probe model) is o(log m). However, there is an exponential gap
between the lower bound and the upper bounds.

In sharp contrast to these problems, recent research has yielded fairly good
bounds for the approximate nearest neighbor problem in Euclidean spaces, a
fundamental problem that is very challenging for points in high dimensions. In
particular, [12] and [11] provided the first algorithm for (1 + ε)-approximate
nearest neighbor in ld2 or ld1 , with polynomial storage and (1/ε + d + log N)O(1)

query time. For ld∞, [9, 10] gave a 3-approximate nearest neighbor algorithm
using NO(log d) storage and having (d + log N)O(1) query time.

In this paper we present the first (to our knowledge) algorithms, which
achieve non-trivial space and query time bounds for m = ω(log N). In particular,
we present two algorithms with the following tradeoffs:

– N · 2O(m log2 m
√

c/ log N) space, and O(N/2c) time, for any c
– Nmc space and O(mN/c) query time, for any c ≤ N

For reporting queries, our algorithms output a collection of pointers to pre-
computed lists. Thus they do not need to output each individual point. The first
algorithm is interesting when the goal is to achieve a o(N) query time. For exam-
ple, if we set c = log N/ poly log m, then we can achieve an algorithm with space
N2m/ poly log m (i.e., subexponential in m), with query time N1−1/ poly log m. For
m = O(log1.4 N) (and a different value of c), the first algorithm yields a data
structure with space N1+o(1) and query time sublinear in N . On the other hand,
the second algorithm is interesting when the goal is to achieve a o(mN) query
time. This becomes interesting if m is fairly large compared to N , e.g. when
m > N (1+α)/2 for α > 0. In this case, by setting c =

√
N we get significantly

subexponential space requirements (i.e., 2O(m1/(1+α) log m)), while achieving sig-
nificantly sublinear query time of O(m

√
N).

2 From the theoretical perspective - many data structures has been designed which
improve the space or the query time in practice.

We also mention that the first result shows that the strongest version of the
curse-of-dimensionality conjecture (which interprets 2o(m) space as “small” and
o(N) query time as “fast”, with m = ω(log N)) is false.

We extend the above results to a more general problem of orthogonal range
searching [2], which involves searching for points contained in a d-dimensional
query rectangle. Range searching is one of the most investigated problems in com-
putational geometry. It is known [13] that one can construct a (range-tree) data
structure of size O(N logd N) which answers range queries in time O(logd−1 N);
sub-logarithmic improvements to these bounds are also known.

We show that the second of the aforementioned subset query algorithms can
be extended to solve orthogonal range search within the same bounds (with m
replaced by d). This yields an algorithm with Ndc space and O(dN/c) query
time. The algorithm can be immediately used to solve the nearest neighbor
problem in ld∞ with space bound unchanged and query time multiplied by log n.
Moreover, a special case of orthogonal range search with aligned query rectangles
(i.e. whose projection on each dimension is of the form [x2i, (x + 1)2i]) reduces
directly to the partial match problem with m = s, where s is the number of
bits required to specify each point in the database. This result is interesting for
range queries in databases where queries require exact matches on most fields
and specify ranges in a few fields. In addition, we show that (1+ ε)-approximate
orthogonal range searching can be reduced to the partial match problem with
m = O(s/ε). This reduction gives interesting trade-offs when combined with
the first of the aforementioned subset query algorithms. The results also apply
to the (1 + ε)-approximate nearest neighbor problem in l∞. We can also show
that a (1 + ε)-approximate range intersection can be reduced to a partial match
problem with m = Õ(s/ε4).3

In addition, we show that orthogonal range searching in dimension d can be
reduced to the subset query problem with m = O(d2 log2 N). This demonstrates
the close relationship between the two problems. Moreover, combined with the
result of [9] (who showed that the subset query problem can be reduced to c-
approximate nearest neighbor in ld∞ for c < 3) it implies an interesting fact: if
we efficiently solve the c-approximate nearest neighbor in ld∞ for c < 3, then we
can solve this problem exactly with similar resources.

2 Preliminaries

In this section we show that several superficially different problems are essen-
tially equivalent to the subset query problem. These easy equivalences are widely
known. In this paper we switch between these problems whenever convenient.

Partial match problem. Given a set D of N vectors in {0, 1}, build a data
structure, which for any query q ∈ {0, 1, ∗}, detects if there is any p ∈ D such
that q matches p. The symbol “*” acts as a “don’t care” symbol, i.e., it matches

3 We use Õ(n) to denote O(n poly log n).

both 0 and 1. Note that one can extend any algorithm solving this problem to
handle non-binary symbols in vectors and queries, by replacing them with their
binary representations.

It is easy to reduce partial match problem to the subset query problem. To
this end, we replace each p ∈ D by a set of all pairs (i, pi), for all i = 1 . . .m.
In addition, we replace each query q by a set of all pairs (i, qi) such that qi &= ∗.
The correctness is immediate.

It is also see how to reduce subset query to the partial match problem. This is
done by replacing each database set P by its characteristic vector, and replacing
query set Q by its characteristic vector in which 0’s are replaced with ∗’s.

Containment query problem. This problem is almost the same as the subset
query problem, except that we seek a set P such that P ⊂ Q. Since P is a subset
of Q iff its complement is a superset of the complement of Q, the subset and the
containment query problems are equivalent as well.

3 Algorithm for Set Containment

In this section, we present an algorithm for set containment. A naive algorithm
to answer set containment queries on a universe of size m is to write the query
set as a bit vector and index it into an array of size 2m. Here each array location
points to a list L of sets from the database contained in the set corresponding
to the array location.

To reduce the space complexity one can use random sampling to hash the
query sets into a smaller hash table by focusing on a random subset of the
universe. Say we random sample with probability p and obtain pm elements of
the universe. One can now construct an array of size 2pm based only on these
sampled elements. Again, the query set maps to an array location which contains
a list L of database sets. However, we can only guarantee that a set in list L
is contained in Q with respect to the sampled elements. In fact, one can show
that the sets in L are almost contained in Q. In other words the difference from
Q of a set in L is likely to be small. (A set with a large difference from Q is
likely to be eliminated since the random sample would contain an element from
the difference.) The fact that sets in L have small differences from Q implies a
bound on the number of distinct differences from Q. We choose our sampling
probability such that the number of distinct differences from Q of sets in L is
small (sublinear in N). However this property by itself does not help in yielding
a query time sublinear in N . This is because even though the number of possible
differences from Q is small, the number of sets in L may be quite large as there
could be several sets that have the same difference from Q.

However, the fact that the sets in L have small differences from Q suggests
that the sets in L could be grouped according to their difference from Q. It is
not clear how to do this since the differences depend on the query set Q and
a number of query sets Q map onto the same location in the array. However,
this idea can be adapted to yield an efficient data structure. For the list L we

construct a baseline set and work with differences from that set. This baseline set
R which we call a representative set is such that sets in L have small differences
from R. We group the sets in L by their differences from R. Now assuming a
query set Q contains R we only need to look at which of the differences from R
are contained in Q.

However, we cannot ensure that every query set Q that hashes to a list L
contains its representative set R. It turns out that we can relax this condition
to say that Q almost contains R, i.e. the difference R − Q is small.

We now build a second level hash table to organize the collection L. Entries
in this second level table are indexed by small subsets of R. The query set Q
maps onto the location corresponding to R−Q (note that this is a small subset
by the properties of the representative set). This location is associated with the
subcollection L′ ⊆ L of sets that do not intersect R − Q. Further, the sets in L′

are grouped according to their difference from R. Since the sets in the original
collection L had small differences from R, the sets in the subcollections L′ also
have small differences. For each group of sets with the same difference from R,
we check to see if the difference from R is completely contained in Q. If so, all the
sets in the group are contained in Q; if not, all sets are not contained in Q. This
is depicted in Figure 1. The query time is determined by the number of groups
(i.e. number of differences from R) that must be examined by the algorithm. The
number of differences can be bounded by the fact the sets have small differences
from R; we choose our parameters so that this is sublinear in N .

Representative set R

Query set Q
corresponds to
group of sets
not contained in Q

corresponds to
group of sets
contained in Q

Fig. 1. The second level hash table in the containment query data structure. The “ears”
around R represent collections of sets that have the same difference from R

3.1 Technical Details

We start by defining relaxed notions of containment and disjointness:

Definition 1 (Almost contains). A set Q is said to x-almost contain set P
if |P − Q| ≤ x.

Definition 2 (Almost disjoint). A set Q is said to be x-almost disjoint from
set P if |P ∩ Q| ≤ x.

We will use parameters p and x in presenting the algorithm details; values
for these parameters will be picked later. For brevity, we will use almost contains
and almost disjoint to mean x-almost contains and x-almost disjoint respectively.

We first select a subset S ⊆ U by picking p · m elements uniformly and at
random from U . The first level hash table is indexed by subsets of S. Query set
Q is mapped to the location indexed by Q∩S. The size of this table is 2pm. The
table location corresponding to subset Q′ ⊆ S has associated with it a list L of
sets such that ∀ P ∈ L, P ∩S ⊆ Q′. (These are sets that seem to be contained in
Q with respect to the sampled elements.) Note that P ∈ L ⇔ S ∩ (P − Q) = ∅.

If a set P is not almost contained in Q (i.e. |P − Q| > x) then Pr[P ∈ L] ≤
2−px. The expected number of sets in L that are not x-almost contained in Q is
at most N · 2−px. So with probability at least 1/2, there are at most 2N · 2−px

sets in the list that are not almost contained in Q (i.e. very few sets have large
differences from Q). We will say that a query set Q is good for a list of sets L
from the database if at most f = 2N ·2−px sets in L are not almost contained in
Q. By the preceding discussion, if the query set Q maps onto an array location
associated with a list L, with probability at least 1/2, Q is good for L. For the
remainder of the discussion, we will assume that this is indeed the case and show
how this can be ensured in the end.

Recall that we associate with each list L, a representative set R so that sets
in L can be examined efficiently. We now describe the precise properties that R
satisfies and an algorithm to construct such a representative set. A set R is said
to be a representative set for a list L if

1. For any query set Q that is good for L, |R − Q| ≤ g = p · m.
2. Except for at most (2/p) · N · 2−px sets in L, the others differ from R in at

most x/p elements.

Note that the total number of distinct differences of sets in L from R is at
most (2/p) ·N · 2−px +

(

m
x/p

)

. We use the following algorithm to produce such a
representative set for a list L.
Construct-Representative(L)

1. R = ∪P∈LP .
2. Check if there exists a subset G ⊆ R, |G| = g that is almost disjoint from all

sets in L, except for at most f sets.
3. If no such set G exists, stop and output R, else R ← R − G.
4. Go back to step 2.

Claim. Construct-Representative-Set(L) produces a valid representative
set for L.

Proof. Consider the final value of R produced by the algorithm. We claim that
for all query sets Q that are good for L, |R − Q| ≤ g. Suppose in fact, there
is a query set Q that is good for L such that |R − Q| > g. Since Q is good
for L, except for at most f sets, the sets in L are almost contained in Q (i.e.
have at most x elements outside Q). Let G be any g element subset of R − Q.
Except for at most f sets in L, the sets in L must be almost disjoint from G. (i.e.
have intersection of size at most x). But the algorithm would have detected this
subset in Step 2, and would not have terminated in Step 3. By contradiction, R
must satisfy the first condition required of a representative set.

Now we establish the second condition. Initially, all sets in L are completely
contained in R. For a given set in L, the elements outside the final set R are
precisely those elements which are removed from R as a result of discarding
the set G in each iteration. The number of iterations is at most m/g since
the initial set R has at most m elements and g elements are removed in each
iteration. In each iteration at most f sets in L are not almost disjoint from G.
This gives a total of (m/g) · f ≤ (2/p) · N · 2−px such sets. For the remaining
sets, the intersection with the set G in each iteration has size at most x. Thus,
in removing G, at most x elements are removed from such a set. So the total
number of elements from such a set outside the final R is at most (m/g)·x ≤ x/p.
This proves that R satisfies the second condition required of a representative set.

Recall that to check whether Q contains a set P , we check that (1) Q contains
P with respect to the elements in R, and (2) Q contains P with respect to
the elements in R̄. To perform the first check, we need to eliminate sets that
contains any elements in R − Q. Note that |R − Q| ≤ g by the properties of
the representative set. To facilitate the first check, we keep a second level array
with each list L indexed by all possible subsets of R of size at most g. The size
of this array is at most

(

m
g

)

≤ 2pm log m. Query set Q indexes into the array
location indexed by R − Q. This second level array indexes into a sublist of L
that contains sets in L disjoint from R − Q. To perform the second check, this
sublist is grouped by the differences from R, i.e. sets with the same difference
from R are grouped together.

The query time for this algorithm is determined by the number of distinct
differences from R that the algorithm must examine. This number is at most
(2/p) · N/2px +

(m
x/p

)

. Further, the space requirement is 2pm · 2pm log m · N .

Setting px = t where t < (log N)/2, and solving for
(m
x/p

)

= N/2t, we get

p =
√

t log m/ logN The number of distinct differences is now at most (2/p) ·
N/2px +

(

m
x/p

)

= 2m · N/2t + N/2t = (2m + 1)N/2t. We also know that with

probability 1/2, Q is good for L. So if we have O(m) such arrays every set
Q will be good for some list L in one of the arrays with very high probabil-
ity. Setting t = 2c logm, this gives us a query time of O(N/2c) and space of

N · 2O(m log2 m
√

c/ log N). It can be verified that the time to construct the data
structure is N · 2O(m log2 m

√
c/ log N).

We can obtain better space bounds when the size of the query set is bounded
by q. In this case, we can get a query time of O(N/2c) using space

N · 2O(q log2 m
√

c/ log N)). The basic idea is to replace the random sampling step
by a certain construct called a Bloom filter [4], used for succinct representation
of sets to support membership queries. The details will appear in the full paper.

4 Partial match and orthogonal range search in very high
dimensions

In this section we describe the algorithm which achieves NmO(c) space and
O(mN/c) query time, for any c ≤ N . We first describe in the the context of the

subset query problem, and then modify it to work for general orthogonal range
search.

The main part of the data structure is a “tree of subsets” of P (call it T).
The root of T is formed by the set P , and each internal node corresponds to a
subset of P . We show first how to construct the children of the root. For any
i ∈ U , we say that the attribute i is selective for P ′ ⊂ P , if the number of sets in
the family which do not contain i is at least N/c. Let I be the set of attributes
which are selective for P . For each i ∈ I we form a child Pi of P by removing
from P all sets which do not contain i. We then apply the same procedure to
the new nodes. The procedure stops when there are no further nodes to expand.

Given a query Q, the search proceeds as follows. We start from the root and
then proceed further down the tree. At any node (corresponding to a set P ′), we
check if there is any attribute i ∈ Q which is selective for P ′. If so, we move to
P ′. Otherwise, we enumerate all pairs (i, j), such that i ∈ Q and Pj ∈ P ′ does
not contain i. Note that we can enumerate all such pair in time linear in their
number. For every such pair, we mark the set Pj as not an answer to the query
Q. At the end, we verify if the number of marked nodes in less than N ; if so, we
output YES, otherwise we output NO.

The complexity bounds for the above data structure can obtained as follows.
Firstly, observe that any parent-child pair P ′,P ′′ we have |P ′′| ≤ P ′| − N/c.
Thus, the depth of the tree T is at most c, and thus its size is bounded by mc

(in fact, slightly better bound of
(

m
c

)

can be shown). Moreover, the tree can be
traversed from the root to any (final) node in O(m + N/c) time. This is due to
the fact that the selectivity property is monotone, and thus once an attribute
i ∈ Q ceases to be selective, we never have to check it again. Finally, the cost of
enumerating the pairs (i, j) is at most mN/c, since the numbers of j’s per each
i ∈ Q is at most N/c. The bounds follow.

The data structure can be generalized to orthogonal range queries in the
following way. Firstly, observe that by increasing the query time by an additive
factor of O(d log n) we can assume that all coordinates of all database points are
distinct numbers from {1 . . . nd} (this is based on folklore technique of replacing
each number by its rank in a sorted order). We create a tree T in a similar way as
before. Moreover, it is sufficient to consider query rectangles which are products
of left-infinite intervals [−∞, ai] for i = 1 . . . d. Starting from the root node,
for each dimension i, we find a “threshold” ti such that the number of points
with the i-th coordinate greater than ti is exactly N/c. Then we construct the
children sets Pi by removing from P all points with the i-th coordinate greater
than ti, and apply the same procedure recursively to the newly created nodes.

In order to answer a query
∏

i[−∞, ai], we proceed top-down as before. At
any node P ′ we check if there is any i such that ai < ti. If so, can move to the
node P ′

i. Otherwise, we have ai > ti for all i’s (we can assume there are not
ties). In this case we enumerate all pairs (i, j) such that the i-th coordinate of
the j-th point is greater than ti. Among such pairs, we choose those for which
the i-th coordinate is greater than ai, and mark the j-th point as not-an-answer.

The analysis of space and time requirements is as for the first algorithm.

5 Approximate Orthogonal Range Search

The special case of orthogonal range search where the coordinates in each di-
mension can only take on values {0, 1} is exactly the partial match problem. In
this case, points in a d dimensional space can be represented by bit vectors of
length d and a query rectangle can be represented as a ternary vector with don’t
cares or ‘*’ in certain dimensions. As explained in Section 2, the partial match
problem can be reduced to set containment. The general case of d dimensional
orthogonal range search also reduces to the partial match problem when the
query rectangles are well aligned (i.e. the projection on each dimension is of the
form [i2j, (i + 1)2j].) In this case too, points can be represented as bit vectors
and a query rectangle can be represented as a ternary vector (with coordinates
in {0, 1, ∗}), creating an instance of the partial match problem. This gives us an
algorithm for high dimensional orthogonal range search where the query rectan-
gle is well aligned. Specifically if s bits are required to represent a point in the
space then an aligned orthogonal range search can be performed in sublinear
time by using 2(s log2 s/

√
log N) space. Note that most algorithms for range search

use a tree based recursive space partitioning scheme whereas our algorithm is
based on hashing.

We now extend this result to a (1+ ε)-approximation algorithm for a general
d dimensional orthogonal range search problem where the query rectangle may
not be aligned. By a (1 + ε)-approximation we mean that we will approximate
the query rectangle by larger rectangle containing the query rectangle where
each side is blown up by a factor of at most (1 + ε).

Theorem 1. A (1+ ε)-approximation of an instance of orthogonal range search
can be reduced to an instance of set containment with m = O(s/ε) elements in
the universe where s is the number of bits in a binary representation of a single
point in the high dimensional space.

To achieve this we first generalize the partial match problem from binary
vectors to k-ary vectors. The query now consists of a range (subinterval) in
[0..k − 1] in each dimension. The database now consists of d dimensional k-ary
vectors. A vector is set to match the query if it satisfies the range specified in
the query for every dimension. We can reduce this problem to set containment
by using k elements per dimension, one for each possible value. We construct
the query set by looking at the range specified in each dimension and including
only the elements that fall in the range. As for a point in the database for each
dimension we include the element corresponding to the value for that dimension.
This reduction gives a total of m = k · d elements.

Now look at the range specified in a query rectangle on any one dimension.
This range consists of a lower bound, l and an upper bound, u. Express these
bounds in k-ary representation (base k). Look at the most significant digit where
they differ. Let bl and bu be the values of that digit in the two bounds, l and
u. This gives us a subinterval [bl, bu] contained in [0..k − 1]. If the length of this
subinterval is large say at least k/2 then by ignoring the later digits we get a

4/k approximation to the range specified in the query (we get an error of one on
each side). If this condition holds for all dimensions we get a 2/k approximation
by reducing it to the k-ary partial match problem.

However this condition may not be true in every dimension. We force this
condition by having multiple representations of every coordinate. Say p bits are
required to represent a coordinate in binary. By grouping these p bits into blocks
of size log k we get a k-ary representation (assume k is a power of 2 and is >
4). Now look at a range [l, u] of length r = u − l specified on this coordinate.
Let the ith digit be the most significant digit of the k-ary representation of r.
We want this digit to be large. Further we want the ith digit of l to be small
so that by adding r to l we do not affect the previous digit. So we will insist
that the ith digit of l is at most k/2 and the ith digit of r is between k/8 and
k/4 − 1. The first condition can be achieved by having two representations of l,
that is l and l + D where D = k/2.k/2 . . . k/2 repeated p/ log k times (in k-ary
representation). Clearly either l or l + D has its ith digit at most k/2. We can
ensure that the ith digit of r is large by having log k different representations;
that is shift the groupings of bits into k-ary digits by 1, 2, . . . log k bits. In at
least one of these representations the most significant digit of r is at least k/8
and < k/4. So we have a total of 2 log k representation obtained by the different
shifts and the displacement. In at least one of these by ignoring all digits after
the most significant digit of r we get a 16/k approximation to the length of the
range. We concatenate these 2 log k different representations of the range [l, u].
For representations that do not satisfy the above conditions we place the don’t
care range, [0..k − 1], for all its digits. We thus get a k-ary vector consisting
of (p/ log k) · 2 log k = 2p digits for each coordinate. Similarly each coordinate
value of any point in database requires 2p k-ary digits. So if a d dimensional
point requires s bits to specify it, we will get 2s k-ary digits after concatenating
the 2 log k different representations for each coordinate. After reducing this to
set containment we get m = 2s · k elements. The amount of space required to
answer this in sub linear time is 22s·k·poly log(sk)/

√
log N . The approximation factor

ε = 16/k. The space required in terms of ε is 2Õ(s/ε)/
√

log N .
Alternatively one could have (2 log k)d sets of data structures and after trying

out the 2 log k different representations for each coordinate use the appropriate
data structure. Each data structure would now correspond to a universe of size
m = 2sk/ logk. In the full paper, we will discuss applications to the approximate
nearest neighbor problem in $∞ and explain how the ideas for orthogonal range
search can be extended to orthogonal range intersection and containment.

6 Reduction from orthogonal range search to the subset
query problem

Let G = (X, E) and G′ = (X ′, E′) be a directed graph, |X | ≤ |X ′|. We say
that f, g : X → X ′ embed G into G′, if for all p, q ∈ X we have (p, q) ∈ E
iff (f(p), g(q)) ∈ E′; this definition can be extended to randomized embeddings
in a natural way. Let G = (X,⊂) be a poset defined over the set X of all

intervals I ⊂ {1 . . . u}, and let G′ = (X ′, E) be a directed graph over the set
X ′ = Ps({1 . . . v}) (Ps(Z) here denotes all s-subsets of Z) such that for any
A, B ∈ X ′ we have (A, B) ∈ E iff A ∩ B = ∅.

Lemma 1. There is an embedding of G into G′ such that s = O(log u) and
v = O(u).

Proof. For simplicity we assume u is a power of 2. We start from solving the
following problem: design mappings h1 : {1 . . . u} → Ps({1 . . .O(u)}) and h2 :
X → Ps({1 . . .O(u)}) such that i ∈ I iff h1(i)∩h2(I) &= ∅ (intuitively, I will play
the role of a “forbidden interval”). To this end, consider a binary tree T with the
set of leafs corresponding to the elements of {1 . . . u} and the set of internal nodes
corresponding to the dyadic intervals over {1 . . . u} (i.e., we have nodes {1, 2},
{3, 4} etc. on the second level, {1 . . . 4}, {5 . . . 8} etc on the third level and so on).
We define h1(i) to be the set of all nodes on the path from the root to the leaf i.
We also define h2(I) to be the set of nodes in T corresponding to intervals from
the dyadic decomposition of I (i.e., the unique minimum cardinality partitioning
of I into dyadic intervals). Note that |T | = O(u).

The correctness of h1 and h2 follows from the fact that i ∈ I iff there is a
node on the path from the root to i corresponding to a dyadic interval contained
in I.

Now, we observe that {a . . . b} &⊂ {c . . . d} iff a ∈ {1 . . . c − 1} or a ∈ {d +
1 . . . u} or b ∈ {1 . . . c − 1} or b ∈ {d + 1 . . . u}. Therefore, we can define
f({a . . . b}) = h1(a)∪h1(b) and g({c . . . d}) = h2({1 . . . c−1})∪h2({d+1 . . . u}).

Lemma 2. There is a randomized embedding of G′ into (Ps({1 . . . s2/δ}, E)
which preserves non-intersection between any two elements of G′ with probability
1 − δ, for 0 < δ < 1. The intersection is always preserved.

Proof. It is sufficient to use a random function h : {1 . . . v} → {1 . . . s2/δ} and
extend it to sets.

Consider now the orthogonal range query problem in d-dimensional space.
By using the above lemmas we can reduce this problem to the subset query
problem for N subsets of {1 . . . d2 log2 |P |/δ} in the following way. For i = 1 . . . d
use Lemma 1 to obtain functions fi and gi. For simplicity we assume that the
values of fi and fj do not intersect for i &= j; we make the same assumption for
gi’s. For any point p = (x1 . . . xd) define L(p) = ∪ifi({xi, xi}). Also, for any box
B = {a1 . . . b1} × {a2 . . . b2} × . . . × {ad . . . bd} define R(B) = ∪igi({ai . . . bi}).
We have that p ∈ B iff L(p) ∩ R(B) = ∅. Since L(p) and R(B) are of size
O(d log u), we can apply Lemma 2 to reduce the universe size to O(d2 log2 u)
(say via function h). The condition A ∩ B = ∅ is equivalent to A ⊂ B, where
B is the complement of B. Therefore, with a constant probability, there exists
p ∈ P which belongs to B iff h(R(B)) ⊂ h(L(p)). Thus, we proved the following
theorem.

Theorem 2. If there is a data structure which solves the subset query problem
for n subsets of {1 . . . k} having query time Q(n, k) and using space S(n, k),

then there exists a randomized algorithm for solving the orthogonal range query
problem for n points in {1 . . . u}d with query time Q(n, O(d2 log2 u)) and using
space S(n, O(d2 log2 u)).

Note that one can always reduce u to O(n) by sorting all coordinates first
and replacing them by their ranks.

7 Acknowledgements

Moses Charikar gratefully acknowledges support from NSF ITR grant CCR-
0205594 and DOE Early Career Principal Investigator award DE-FG02-02ER25540.

References

1. H. Adiseshu, S. Suri, and G. Parulkar. Packet Filter Management for Layer 4
Switching. Proceedings of IEEE INFOCOM, 1999.

2. P. Agarwal and J. Erickson. Geometric range searching and it’s relatives. Ad-

vances in Discrete and Computational Geometry, B. Chazelle, J. Goodman, and
R. Pollack, eds., Contemporary Mathematics 223, AMS Press, pp. 1-56, 1999.

3. S. Arya and D. Mount. Approximate Range Searching Proceedings of 11th
Annual ACM Symposium on Computational Geometry, pp. 172-181, 1995.

4. B. Bloom. Space/time tradeoffs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422–426, July 1970.

5. A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional
nearest neighbor search and related problems. Proceedings of the Symposium on
Theory of Computing, 1999.

6. D. Eppstein and S. Muthukrishnan. Internet Packet Filter Management and
Rectangle Geometry. Proceedings of 12th ACM-SIAM Symp. Discrete Algo-

rithms 2001, pp. 827-835.
7. A. Feldmann and S. Muthukrishnan, Tradeoffs for Packet classification. Pro-

ceedings of IEEE INFOCOM, 3:1193–1202. IEEE, March 2000.
8. P. Gupta and N. McKeown. Algorithms for Packet Classification. IEEE Network

Special Issue, March/April 2001, 15(2):24–32.
9. P. Indyk. On approximate nearest neighbors in non-euclidean spaces. Proceedings

of the 39th IEEE Symposium on Foundations of Computer Science, pp. 148-155,
1998.

10. P. Indyk. High-dimensional computational geometry. Ph.D. thesis, Stanford
University, 2001.

11. P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the
curse of dimensionality. Proceedings of the 30th ACM Symposium on Theory of
Computing, pp. 604–613, 1998.

12. E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. Proceedings of the Thirtieth ACM
Symposium on Theory of Computing, pages 614–623, 1998.

13. G. S. Lueker. A data structure for orthogonal range queries. Proceedings of the
Symposium on Foundations of Computer Science, 1978.

14. R. L. Rivest. Analysis of Associative Retrieval Algorithms. Ph.D. thesis, Stanford
University, 1974.

15. R. L. Rivest. Partial match retrieval algorithms. SIAM Journal on Computing
5 (1976), pp. 19-50.

16. V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space
search. ACM Computer Communication Review 1999. ACM SIGCOMM’99,
Sept. 1999.

