
Introduction

Extending BarnOwl

Nelson Elhage

Student Information Processing Board

January 12, 2009

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 1 / 30

Introduction

BarnOwl

BarnOwl is a console IM client (not just Zephyr!)

It’s (secretly) extremely extensible and customizable

It’s works out of the box, but you can tweak it to your whims.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 2 / 30

Introduction

Two ways to customize

BarnOwl’s built-in command “language” and tools

Perl extensions

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 3 / 30

Introduction

Places to put code

~/.owl/startup List of BarnOwl commands executed at startup

The :startup command adds code to this file

~/.barnowlconf Perl code loaded at startup.

~/.owl/modules BarnOwl Modules – more about this later.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 4 / 30

Built-in Commands

BarnOwl’s command “language”

BarnOwl’s functionality is exposed as a set of “commands”

These commands are generally self-documented

You can call commands interactively with ‘:’ or ‘M-x’, or
programmatically in various ways.

:show commands lists all commands

:show command command documents a command

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 5 / 30

Built-in Commands Aliases

Aliases

The easiest way to define new commands is with :alias.

:alias command expansion

Like shell aliases, arguments to the command are appended to
expansion

:alias q error "I’m sorry, Dave, I can’t let you do that"

:alias v exec remctl zsr.mit.edu volume

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 6 / 30

Built-in Commands Filters

Filters

You can define filters to match some subset of messages.

These are most commonly used for coloring or limiting your view.

:filter creates a named filter.

:view restricts to a named filter.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 7 / 30

Built-in Commands Filters

Filters – Syntax

Basic syntax is field regex

POSIX regexes – see man 7 regex

and, or, not

Parentheses work but require spaces

Filters can reference other filters using filter filter-name

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 8 / 30

Built-in Commands Filters

Filters – Examples

class ^nelhage$

filter zephyr and class ^(un)*nelhage$

filter zephyr and filter personal and
(sender ^geofft$ or recipient ^geofft$)

filter user-geofft or filter user-broder

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 9 / 30

Built-in Commands Filters

What fields are available?

Learn from BarnOwl’s autogenerated filters

smartnarrow (‘M-n’ and friends) automatically generate filters.
:show filters will list all filters
:show filter filter to show a specific one

Press ‘i’ (:show info) and look at the “Owl Message Attributes”

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 10 / 30

Built-in Commands Filters

Special Filters

BarnOwl uses certain named filters for special purposes.

trash Defines “trash” messages. :delete trash (bound to ‘T’)
will automatically mark all of these as deleted.

reply-lockout :reply (‘r’ and friends) will not reply to any message
matching this filter. Useful for lurking.

personal Defines what a “personal” message is. Don’t change this
unless you know what you’re doing.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 11 / 30

Built-in Commands Keymaps

Keymaps

BarnOwl’s key-bindings are completely customizable.

BarnOwl defines 7 built-in hierarchical keymaps:

global System-wide default key bindings

edit Text editing and command window

editmulti Multi-line text editing
editline Single-line text editing

editresponse Single-line response to question

popless Pop-up window (e.g. :show help)
recv Main window /message list

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 12 / 30

Built-in Commands Keymaps

Manipulating Keymaps

Commands

:show keymaps will show all keymaps and bindings

:show keymap keymap will show a specific keymap

:bindkey keymap key command command to rebind a key sequence.

(Yes, that’s a literal “command”)

Examples

:bindkey recv s command pperl BarnOwl::getcurmsg()->zsig

:bindkey recv E command show errors

:bindkey edit C-w command edit:delete-prev-word

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 13 / 30

Built-in Commands Variables

BarnOwl Variables

BarnOwl has its own system of configuration variables

Use :getvar and :set to manipulate variables

:show variables and :show variable variable for
documentation.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 14 / 30

Built-in Commands Variables

Some Useful Variables

appendtosepbar Add text to the bar between the edit
window and the message list.

colorztext Enable/Disable color.

zsender Zephyr spoofing made easy!

zsigproc Path to a program to generate zsigs.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 15 / 30

Built-in Commands Variables

Setting up logging

From a shell:
$ mkdir -p Private/zlog/personal
$ mkdir -p Private/zlog/class

In BarnOwl:
:set logpath ~/Private/zlog/personal
:set classlogpath ~/Private/zlog/class
:set logging on
:set classlogging on

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 16 / 30

Programming BarnOwl in Perl

BarnOwl Modules

BarnOwl has an extensible module system

You can pick-and-choose perl plugins to import into your BarnOwl

There are two supported module formats

PAR Perl PAR files are essentially a zip’d directory tree
bare An unpacked directory tree containing perl files.

Modules can be installed locally or site-wide

Local modules go in ~/.owl/modules

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 17 / 30

Programming BarnOwl in Perl

Using Modules

(We’ll talk about creating them later)

Copy the .par or directory tree into ~/.owl/modules.

The filename is important – keep it the same.

To reload the module into a running BarnOwl:

:reload-module module to reload one module
:reload-modules to reload all modules
As the names suggest, these can also be used to update modules to a
newer version without restarting.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 18 / 30

Programming BarnOwl in Perl

Some modules we’ve developed. . .

ColorUtils asedeno’s module to make coloring classes easy.

VT ASedeno asedeno’s VT-like style. I have my own variant of it.

Alias Lets you change the displayed name of classes. Good for
secret classes or ones with long names.

ZStatus Send those silly Zephyr progress bars you may have seen all
over Zephyr a while back

DevUtils Provides a :eperl command to help developing perl in
BarnOwl

Except for ColorUtils, these all live in my Public
(/mit/nelhage/Public/BarnOwl).

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 19 / 30

Programming BarnOwl in Perl

Coloring Zephyrs

Install ColorUtils from
~asedeno/BarnOwl/barnowl-native-modules

:setcolor color sets the color for messages “like” the current
message (e.g. same class, or same user for personals)

:savecolors and :loadcolors save and load your colors to disk.

‘c’ is bound to start a :setcolor command.

(And all these commands are documented in BarnOwl!)

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 20 / 30

Programming BarnOwl in Perl

IRC in your BarnOwl!

There is (somewhat minimal) IRC support for BarnOwl!

The IRC module in my Public (and in the source tree)

Set irc:nick to your preferred nickname

:irc-connect, :irc-join, :irc-msg. . .

Commands are designed to be similar to traditional IRC clients, but
with irc- instead of /

:bindkey recv / start-command irc-

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 21 / 30

Programming BarnOwl in Perl

Twitter in your BarnOwl!

I hacked together a Twitter module for BarnOwl.

This one isn’t in the source tree – git module in my Public

Send and receive Twitters (and Twitter direct messages)

Set twitter:class, twitter:instance and twitter:opcode to
mirror selected Zephyrs to Twitter!

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 22 / 30

Programming BarnOwl in Perl Developing Your Own Modules

Module Format

A module is a perl module in the BarnOwl::Module::ModuleName
package.

And lives in ModuleDir /ModuleName (Or ModuleName.par)

So a minimal module structure is:

[nelhage@phanatique:~/.owl/modules]$ tree DemoModule
DemoModule
‘-- lib

‘-- BarnOwl
‘-- Module

‘-- DemoModule.pm

3 directories, 1 file

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 23 / 30

Programming BarnOwl in Perl Developing Your Own Modules

BarnOwl commands from Perl

The most basic thing Perl can do is execute any BarnOwl command.

BarnOwl::command(command, args...)
With one argument, it gets tokenized like : would.
With more than one argument, they’re passed as the command’s
argument list.

BarnOwl::foo (args) is autoloaded to call the foo command.

(Currently) the arguments are always joined with spaces and
re-tokenized.

perlwrap.pm in the source tree documents essentially everything else.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 24 / 30

Programming BarnOwl in Perl Developing Your Own Modules

Module hook points

There are several main things a module might do:

Register hooks to take action when some event happens.
Define new commands and variables.
Insert messages into the message list.
Define a new message style.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 25 / 30

Programming BarnOwl in Perl Developing Your Own Modules

Taking action on events

BarnOwl::Hook defines a class to register watchers for some event.

Mostly you care about $hook ->add(FUNCTION)
FUNCTION can be either a subref or the name of a function.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 26 / 30

Programming BarnOwl in Perl Developing Your Own Modules

Available hooks

These are all variables in the BarnOwl::Hooks module.

$startup Called on startup and module reload

$shutdown Called before shutdown

$receiveMessage Called when a message is received

$newMessage Called when any new message is added.

$mainLoop Called at least once/sec.

$getBuddyList Called to generate the buddy list.

$getQuickstart Called to generate :help quickstart.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 27 / 30

Programming BarnOwl in Perl Developing Your Own Modules

Idempotency

Code in $startup is currently called whenever any module is
reloaded.

Code at toplevel is called whenever this module is reloaded

So it’s important that code in both locations be idempotent.

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 28 / 30

Programming BarnOwl in Perl Developing Your Own Modules

Some idioms

Instead of. . . Use . . .

my $var = FOO; our $var;
$var = FOO unless
defined($var);

$hook->add(\&mySub); $hook->add(
"BarnOwl::Module::"
"MyModule::mySub");

&mySub sub{mySub()}

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 29 / 30

Programming BarnOwl in Perl Developing Your Own Modules

A tour of some source. . .

I’ll demonstrate some more of the API by doing some source-diving.

If you want to follow along, the source is at
http://github.com/nelhage/barnowl/

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 30 / 30

Programming BarnOwl in Perl Developing Your Own Modules

Contacting Us

The source is at http://github.com/nelhage/barnowl/

Email barnowl-dev@mit.edu

Zephyr -c barnowl

Nelson Elhage (SIPB) Extending BarnOwl January 12, 2009 31 / 30

	Introduction
	Built-in Commands
	Aliases
	Filters
	Keymaps
	Variables

	Programming BarnOwl in Perl
	Developing Your Own Modules

