
Reasoning in Haskell

Greg Price (price)

2008 Jan 31

Greg Price (price) () Reasoning in Haskell 2008 Jan 31 1 / 15



Reasoning in Haskell: Hindley-Milner Types

C: void qsort(void *xs, int, int, int cmp(void*, void*))

Haskell: qsort :: (t -> t -> Int) -> [t] -> [t] (∀t)
H-M type allows type variables, universally quantified (with ∀)
automatic type inference—never need declare a variable’s type!

lexical distinction by caps: variable, Fixed

map :: (a -> b) -> [a] -> [b]
all :: (a -> Bool) -> [a] -> Bool
takeWhile :: -- ?
(.) :: (b -> c) -> (a -> b) -> (a -> b)
($) :: -- ?

Greg Price (price) () Reasoning in Haskell 2008 Jan 31 3 / 15



Reasoning in Haskell: IO Actions

Haskell pure, evaluation no side effects, always same

so putStr "hello" :: IO () returns an “IO action”

some actions produce values: getLine :: IO String

composite actions: do { x <- action1; action2; action3 x }

ultimately execute an action by calling it main

do { name <- getLine; putStr $ "Hi, " ++ name ++ "\n" }
-- or reformat as
do name <- getLine

putStr $ "Hi, " ++ name ++ "\n"

-- complete program:
#!/usr/bin/runhaskell
main = putStr "hello world\n"

Greg Price (price) () Reasoning in Haskell 2008 Jan 31 5 / 15



Reasoning in Haskell: More Actions

readTVar v :: STM a an STM action

execute STM actions using atomically :: STM a -> IO a

keep an s as state: get :: State s s, put :: s -> State s ()

run a State s action with evalState :: State s a -> s -> a

typical language interpreter in Haskell: interpret statements as actions

atomically (do x <- readTVar v
y <- readTVar u
return (x-y) ) :: IO Int

Greg Price (price) () Reasoning in Haskell 2008 Jan 31 7 / 15



Reasoning in Haskell: Monads

monad: a genre of actions, like IO or STM or State Int

must have

a way to make trivial actions: return :: a -> MyMonad a
a way to chain actions: do { ... }
to be useful, primitives and a way to carry out actions

do {x <- act1; act2 x} is sugar for act1 >>= (\x -> act2 x)

so return :: a -> m a, (>>=) :: m a -> (a -> m b) -> m b

algebraic laws: (return x) >>= f ≡ f x, others

inspiration, name, laws come from category theory

Greg Price (price) () Reasoning in Haskell 2008 Jan 31 9 / 15



Reasoning in Haskell: Type Classes

type class: an interface or constraint on a type, like “is a monad”

class (..constraints..) => MyClass t where ..methods..

similarly instance to implement the interface

-- in Prelude:
class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

-- in Control.Monad.State:
newtype State s a = State { runState :: s -> (a, s) }
instance Monad (State s) where
return x = State $ \s -> (x, s)
m >>= f = State $ \s -> let (x, s') = runState m s

in runState (f x) s'

Greg Price (price) () Reasoning in Haskell 2008 Jan 31 11 / 15



Reasoning in Haskell: Type Classes II

classics Eq, Ord, Num; stringifying Read, Show

Monad instances are higher-kind types like IO :: * -> *

literal 1 means fromInteger 1 :: Num a => a (as we noticed)

instances may rely on constraints, posing a logic problem

> :t 3
3 :: (Num t) => t
> :i fromInteger
class (Eq a, Show a) => Num a where
...
fromInteger :: Integer -> a

instance (Eq a, Eq b) => Eq (a, b) where
(a, b) == (a', b') = (a == a') && (b == b')

> ("hello", (False, 'c')) == ("hello", (False, 'c'))
True

Greg Price (price) () Reasoning in Haskell 2008 Jan 31 13 / 15



Reasoning in Haskell: Algebraic (& your own!) Data Types

ADT: data MyType tyarg = Branch1 | Branch2 Int [tyarg]
take apart with case exp of pat1 -> body1 ; pat2 -> body2
or write a case as “equations”
if is sugar for case .. of True -> .. ; False -> ..
can give names to members, making gettors

data Bool = True | False -- built in
data List a = Nil | Cons a (List a) -- but sugar is nicer

last :: [a] -> a
last [] = error "oops"
last [x] = x
last (x:xs) = last xs

data Queue a = Queue {hd :: Int, tl :: Int, a :: Array Int a}
> :t hd
hd :: forall a. Queue a -> Int

Greg Price (price) () Reasoning in Haskell 2008 Jan 31 15 / 15


