
IAP Python - Lecture 1

Evan Broder, Andrew Farrell, and Karen Sittig

MIT SIPB

January 20, 2010

Background subsection

Why choose Python?

Executable pseudocode—meaning that code is easy to read, easy to
write, and easy to follow

def getLunch(food):

if food == "spam":

print "But I don’t like spam!"

else:

print "That sounds lovely"

>>> getLunch("spam")

But I don’t like spam!

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 2 / 37

Background subsection

Automatic memory management

Interpreted language—no compiling or linking; run your code
immediately

Multi-platform—move from Windows to OS X to Linux and not have
to change or recompile your code

Multi-paradigm programming—code in the style that works best for
you, whether your style is functional, procedural, or object oriented

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 3 / 37

Background subsection

Active community—lots of people and companies are using Python.
In fact, Google found Python to be so important to how they did
things that they hired Guido van Rossum, the creator of Python, to
maintain it full-time.
Some of the other major users of Python include YouTube,
BitTorrent, NASA, Fedora (yum and anaconda), Gentoo (Portage),
Ubuntu/Canonical

With the New Curriculum, Course VI teaches using Python

“Only one way to do it”—the tongue in cheek motto of Python. The
point is that you’ll be able to read your code in 6 months, unlike with
certain other languages Cough...Perl...Cough

Monty Python heritage—why use “foo” and “bar” when you can
have “spam” and “eggs”?

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 4 / 37

Background subsection

Getting Python

For all platforms, you can download the latext version of Python at
http://www.python.org/download/.
If you’re using Windows, the Python installer also installs IDLE, a Python
IDE and terminal.
If you’re using Mac OS Leopard (10.5), your computer already has Python
2.5 installed.
If you’re using Athena, your machine has Python, but it’s an old version.
SIPB maintains a python locker that has the current version of Python.
Running add -f python will add the locker onto the beginning of your
path so that the system finds it before the old version.
In this class, we will be primarily covering Python 2.6.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 5 / 37

http://www.python.org/download/

Background subsection

Interactive Python, or, Using Python as a Calculator

When you run python from a shell or open IDLE, you will get the primary
prompt, “>>> ”.
If you enter a multi-line command, you will get a different prompt: “...
”.

Python 2.6.2 (release26-maint, Apr 19 2009, 01:56:41)

[GCC 4.3.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> print "Hello, world!"

Hello, world!

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 6 / 37

Background subsection

How to Run Python Code

There are two main ways of running Python code. You can either run it
from within the interactive Python prompt or as a script. On Mac OS X
and Linux, to run code as a script, simply put it in a file with an
appropriate shebang line (#!/usr/bin/python).
When you run code at the interactive prompt that simply returns a value,
Python will print out that returned value. However, when you run code as
a scrpit, nothing is printed unless you explicitly call print.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 7 / 37

Background subsection

Arithmetic

You don’t need to do anything special to represent numbers or do basic
arithmetic in Python; the notation is the same as any other language.
Python will automatically deal with negative numbers and parentheses. To
do exponentiation, use the ** operator

>>> 1 + 1

2

>>> 6/3

2

>>> 4 - 9

-5

>>> (2-5) * 6

-18

>>> 2 ** 3

8

Note that whitespace in the middle of lines doesn’t matter. Whitespace at
the beginning of lines definitely matters, so be careful about that.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 8 / 37

Background subsection

Arithmetic : Division

Normally, Python will floor the result of integer division operations, like
any other language. If this is a problem, you can either explicitly specify
floating point numbers or run from __future__ import division1

>>> 5 / 2

2

>>> 5 / 2.0

2.5

>>> from __future__ import division

>>> 5 / 2

2.5

1This is the default in Python 3.0
Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 9 / 37

Background subsection

Arithmetic : Complex Numbers

You can even do complex numbers by specifying the imaginary part with
“j” or “J” or by using calling “complex(real, imag)”.

>>> (3+1j) * 3

(9+3j)

>>> (3+1j) * (-2+5j)

(-11+13j)

>>> (1j) * (1j)

(-1+0j)

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 10 / 37

Background subsection

Variables

Names of variables in Python are alphanumeric. They can contain
underscores and can not start with a number.
To assign a value to a variable, use =, like most languages. You don’t have
to declare a variable before you can use it; assigning a value to a variable
creates it.

>>> width = 20

>>> height = 5 * 9

>>> width * height

900

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 11 / 37

Background subsection

Types

There are lots of types that are built into Python with a rich set of
supporting methods. Here are the types that you will actually be using.
None is only sort of a real type. Rather, it represents the absense of a real
value. When a function doesn’t return something, it really returns None
There are two booleans: True and False. In reality, they act like the
integers 1 and 0, respectively, but their representations as strings are
“True” and “False”

>>> 0 == False

True

>>> 0 == True

False

>>> 1 == True

True

>>> 2 == True

False

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 12 / 37

Background subsection

Types : Numbers

The normal integer representation is 32 bit and signed (so values can
range between -2147483648 and 2147483647). However, Python also
supports long integers, which can represent an unlimited range. Most
operations will automatically return a long integer if the return value
would otherwise overflow. Python appends the character “L” to the value

>>> 2147483647

2147483647

>>> 2147483647 + 1

2147483648L

They work like integers for most math, but the details of their
implementation is dependent on the underlying code.
A complex number is essentially a pair of floating point numbers, one for
the real and one for the imaginary. You can access the real and imaginary
parts of a complex number z with z.real and z.imag. To get the
magnitude, use abs(z).

>>> z = (1+3j)

>>> z.imag

3.0

>>> z.real

1.0

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 13 / 37

Background subsection

Sequences

Python has a number of data types that are made from a series of smaller
items

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 14 / 37

Background subsection

Strings

Strings are made up of a series of characters. You can use single or double
quotes. Escaping strings is similar to in C. There is also the “heredoc”
notation for longer strings, where you use a triple-quote to mark the start
and end. Heredoc strings can extend over multiple lines, but remember
that everything between the first quotes and the last quotes is included.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 15 / 37

Background subsection

>>> dead = """

... ’E’s not pinin’! ’E’s passed on! This parrot is no more! He

... has ceased to be! ’E’s expired and gone to meet ’is maker!

... ’E’s a stiff! Bereft of life, ’e rests in peace! If you

... hadn’t nailed ’im to the perch ’e’d be pushing up the

... daisies! ’Is metabolic processes are now ’istory! ’E’s off

... the twig! ’E’s kicked the bucket, ’e’s shuffled off ’is

... mortal coil, run down the curtain and joined the bleedin’

... choir invisibile!! THIS IS AN EX-PARROT!!

... """

>>> print dead

’E’s not pinin’! ’E’s passed on! This parrot is no more! He

has ceased to be! ’E’s expired and gone to meet ’is maker!

’E’s a stiff! Bereft of life, ’e rests in peace! If you

hadn’t nailed ’im to the perch ’e’d be pushing up the

daisies! ’Is metabolic processes are now ’istory! ’E’s off

the twig! ’E’s kicked the bucket, ’e’s shuffled off ’is

mortal coil, run down the curtain and joined the bleedin’

choir invisibile!! THIS IS AN EX-PARROT!!

>>>

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 16 / 37

Background subsection

Tuples

A tuple is simply a series of values separated by commas. They are
frequently enclosed in parentheses, although it’s not necessary. They’re
good for representing things like (x, y) coordinate pairs.
Tuples are immutable, so you can’t change a single value in a tuple, but
you can construct a new tuple to do the same thing.
To specify an empty tuple (i.e. 0 elements), just use a pair of parentheses.
For a tuple with a single element, put a single comma after it.

>>> fruitDefense = ()

>>> fruitDefense

()

>>> fruitDefense = (’gun’,)

>>> fruitDefense

(’gun’,)

>>> fruitDefense = (’gun’, ’16-ton weight’)

>>> fruitDefense

(’gun’, ’16-ton weight’)

>>> fruitDefense = (’gun’, ’16-ton weight’, ’pointed sticks’)

>>> fruitDefense

(’gun’, ’16-ton weight’, ’pointed sticks’)Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 17 / 37

Background subsection

Tuples

Remember that even though all of my example tuples are strings, any type
can go in a tuple, and all the elements of a tuple don’t have to be the
same type either.
One particular trick you can use tuples for is that if you have a tuple on
both sides of an assignment, than each element on the right gets assigned
to the corresponding element on the right. This is similar to the common
Perl idiom list($foo, $bar, $baz) = (1, 2, 3). It can also be used
to swap two variables, if you ever have a need to do that.

>>> (a, b) = (1, 2)

>>> a

1

>>> b

2

>>> a, b = b, a

>>> a

2

>>> b

1
Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 18 / 37

Background subsection

Lists

Lists are almost the same as tuples, but they’re mutable, meaning that you
can add remove and change values in a list. You can specify a list literally
by using square brackets, and an empty list is just a pair of square brackets.

>>> weapons = []

>>> weapons = [’surprise’]

>>> weapons.append("fear")

>>> weapons

[’surprise’, ’fear’]

>>> weapons.append("ruthless efficiency")

>>> weapons.append("almost fanatical devotion to the Pope")

>>> weapons

[’surprise’, ’fear’, ’ruthless efficiency’, ’almost fanatical devotion to the Pope’]

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 19 / 37

Background subsection

Dictionaries

A dictionary is also known as an associative array or a hash table in other
languages. You can initialize a dictionary either by calling dict() or by
using a pair of curly brackets.
Dictionaries are a type of mapping from some kind of key to some kind of
value. Those keys can be any immutable type, which generally means
either a string or a number.

>>> aussieWines = {}

>>> aussieWines[’Black Stump Bordeaux’] = ’peppermint flavoured Burgundy’

>>> aussieWines[’Sydney Syrup’] = ’sugary wine’

>>> aussieWines[’Chateau Blue’] = ’taste and lingering afterburn’

>>> print aussieWines[’Sydney Syrup’]

sugary wine

>>> aussieWines

{’Black Stump Bordeaux’: ’peppermint flavoured Burgundy’, ’Chateau Blue’: ’taste

and lingering afterburn’, ’Sydney Syrup’: ’sugary wine’}

At the end you can also see the literal representation of a dictionary, which
is {key1: value1, key2: value2, . . . }

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 20 / 37

Background subsection

Operations on sequences

Well, it’s great that we can define these types, but how can we manipulate
them?
Well, you can figure out how long they are:

>>> weapons = [’surprise’, ’fear’, ’ruthless efficiency’]

>>> len(weapons)

3

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 21 / 37

Background subsection

Operations on sequences : Indexing

You can also use square brackets to grab a certain item in the list. Like all
sensible computer list structures, lists and other sequences in Python are
0-indexed, meaning that the first item in the list is 0, the second is 1, etc.

>>> weapons[0]

’surprise’

>>> weapons[1]

’fear’

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 22 / 37

Background subsection

Operations on sequences : Indexing

Then there’s slice notation. Slice notation is used for taking a subset of
the whole list. The syntax is listname[start:end]

>>> menu = [’spam’, ’eggs’, ’bacon’, ’sausage’, ’spam’]

>>> menu[3:5]

[’sausage’, ’spam’]

Notice how the end is “1-indexed” while the beginning is “0-indexed.”
This takes a little getting used to, but imagine that the indices go between
each item instead of being associated with a particular one. This is
actually one of my favorite features of the language, because I tend to find
that it always does what I mean.
Slice notation is amazingly flexible; you definitely have to play around with
it some to get the hang of it. For some things to try, look at negative
indices, not specifying one of the indices (listname[start:]), or assigning to
slices.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 23 / 37

Background subsection

Getting Help

This is a good point to stop and take a look at the help features that are
built into Python. Python has a rich collection of documentation that’s
accessible from several different places.
Within an interactive shell, you can type >>> help(type) to get help.
You can also see what features it has by typing >>> help(type)
From a normal terminal, you can also run pydoc type
Or you can go to http://www.pydoc.org/, although that site has an
unfortunate tendency to go down frequently.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 24 / 37

http://www.pydoc.org/

Background subsection

Control Structures

Ok. So we have all of these data types to play with, and that’s cool. But
it’s hard to do anything useful with a program without some kind of
control structures. In fact, control structures are an essential part of this
Turing-Complete breakfast.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 25 / 37

Background subsection

If-Elif-Else

I can’t explain this any better than an example can.

>>> x = int(raw_input("Please enter an integer: "))

>>> if x < 0:

... x = 0

... print ’Negative changed to zero’

... elif x == 0:

... print ’Zero’

... elif x == 1:

... print ’Single’

... else:

... print ’More’

...

For comparisons, Python uses == like most programming languages as an
equality test. However, to make sure that you know what you’re doing, it
doesn’t allow assignments within conditionals (so the idiom if value =
open(’file’) won’t work).

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 26 / 37

Background subsection

Comparators

Other than that, Python’s logical operators are usually just words. For
example, and and or are logical and and or. Numerical comparisons are <,
>, <=, and >=. Python supports either != or <>2 for inequality, although
!= is preferred.
You can also daisy chain comparisons, so 1 < x < 7 will Do The Right
Thing.
Also, Python has a built-in test for list membership, so you can write
things like

food = ["spam", "eggs", "sausage", "spam"]

if "spam" in food:

print "I told you already. I don’t like spam!"

Python does not have a case statement. Instead, use a series of ifs and
elifs or index into a tuple.

2Removed in Python 3.0
Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 27 / 37

Background subsection

Defining Scope

This bit is a huge portion of why people either love or hate Python.
Instead of using braces or brackets or parentheses as quotes, Python uses
the indendation of a block of code. Note that in the last example, the x =
0 line and the print ’Negative changed to zero’ line were both
executed because they were at the same indentation level.
It doesn’t matter how far blocks are indented, but it must always be
increasing. Also, mixing tabs and spaces at the beginning of a line is
confusing, because in all these years people haven’t agreed on just how
wide a tab shold be. So, you should’t use tabs, most people use four
spaces.
Also, when you’re in interactive Python, to let it know that you’re done
with a block, you just enter a blank line. It will issue the secondary prompt
(...) if it thinks its still waiting for more input.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 28 / 37

Background subsection

for

Python’s for statement is much different from that of other languages.
It’s more akin to the foreach statement of other languages. Instead of
iterating over a series of numbers, you iterate through list or tupe items. If
you feed it a string, it ranges over characters, it ranges over items if
youfeed it a list, and it ranges over keys if you feed it a dictionary.

>>> licenses = [’dog’, ’cat’, ’fish’]

>>> for x in licenses:

... print len(x), x

...

3 dog

3 cat

4 fish

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 29 / 37

Background subsection

range()

Most of the time, you can iterate over a list or a sequence to get the
functionality that you want. But occasionally, you want to iterate over
numbers like other programming languages. To do this, use the range()
function. range(n) returns a list that goes from 0 to n − 1.

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(4,10)

[4, 5, 6, 7, 8, 9]

>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]

>>> for i in range(len(a)):

... print i, a[i]

...

0 Mary

1 had

2 a

3 little

4 lamb

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 30 / 37

Background subsection

Compound items

If your list contains, lets say, coordinate points, you can assign these to
distinct variables

>>> for x,y in [(1,1),(1,2),(1,3)]:

... print (y,x)

...

(1, 1)

(2, 1)

(3, 1)

If you want both the index and items in a list, use enumerate.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 31 / 37

Background subsection

Enuemerate

If you want both the index and items in a list, use enumerate.

>>> for i,food in enumerate([’cantalopes’,’orangutans’,’breakfast cereals’]):

... print i

... print food

...

0

cantalopes

1

orangutans

2

breakfast cereals

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 32 / 37

Background subsection

while

Python’s while loops work approximately the same as any other
programming language’s loops. A while loop executes its body repeatedly
as long as the condition is true.

>>> a, b = 0, 1

>>> while b < 10:

... print b

... a, b = b, a + b

...

1

1

2

3

5

8

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 33 / 37

Background subsection

Functions

Functions are defined with the def keyword. The syntax is fairly
predictable once you’ve seen other control structures.

def find(shrubbery, forest):

for plant in forest:

if plant == "shrubbery":

return plant

reutrn "AAAAGH!"

Like most languages, variables that are defined within a function don’t
exist outside of the function by default. If you want to access a variable
from outside the function use global var at the beginning of the function.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 34 / 37

Background subsection

More functions

Here’s another example function:

>>> def fib(n):

... """Print a Fibonacci series up to n."""

... a, b = 0, 1

... while b < n:

... print b,

... a, b = b, a+b

...

>>> fib(2000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

Note that this function has a string at the top defined in the heredoc
format. This is called the docstring, and pydoc uses these strings to
generate help files. For example,

>>> help(fib)

Help on function fib in module __main__:

fib(n)

Print a Fibonacci series up to n.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 35 / 37

Background subsection

Recursion

Functions can call other functions, including themselves

>>> def factorial(num):

... if num == 1:

... return 1

... else:

... return num * factorial(num - 1)

...

>>> factorial(4)

24

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 36 / 37

Background subsection

More Information

If any of these concepts seem unclear, or if you want a little more
information, check out the Official Python Tutorial at
http://docs.python.org/tut/tut.html. This is how I learned
Python, and it’s the guideline for structuring this class. It’s a great
reference, especially if you already know how to program, and there are
lots of simple examples to demonstrate concepts. The material covered in
this session corresponds approximately to Chapters 1 through 5.

Evan Broder, Andrew Farrell, and Karen Sittig (MIT SIPB)IAP Python - Lecture 1 January 20, 2010 37 / 37

http://docs.python.org/tut/tut.html

	Background
	subsection
	None
	Booleans

