IAP Python - Lecture 2

Evan Broder, Andrew Farrell
MIT SIPB

January 6, 2011

-
Higher Order Functions

A function is a first-class object, so it can be returned from a function.

def maketunk(n):
def thunk():
return n

return thunk

>>> t = makethunk(5)

>>> t()

5

>>> ts = [makethunk(i) for i in range(6)]
>>> for t in ts:

print t()

A WNN = O -

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2

January 6, 2011

2 /51

Higher Order Functions

It can also be passed to a function.

def make_double(f):
def f2(n):
return f(n)+f(n)
return thunk
def plus3(n):
return n+3
>>> plus3(4)
7
>>> twoxplus6 = make_double(plus3)
>>> twoxplus6(4)
14

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011

3/51

lambdas

for creating small throwaway functions, you can just use lambdas

>>> make_double = lambda f: (lambda n: f(n)+ f(n))
>>> plus3 = lambda n: n+3

>>> twoxplus6 = make_double(plus3)

>>> txplus6(4)

14

But don't do it too much. for complex functions, def is more readable.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 4 /51

.
Map and Filter

def map(func,seq):

return [func(i) for i in seq)
>>> map(plus3, [1,2,3])
[4,5,6]

def filter(func,seq):
return [i for i in seq if func(i)]
>>> iseven = lambda x: x%2 ==
>>> filter(iseven,[1,2,3,4])
[2,4]

def reduce(func,seq):

if len(seq) ==

return func(seq[0],seq[1])

return func(seq[0] ,map(func,seq[1:]1))
what is my error with the last ome
>>> add = lambda x,y : x+y
>>> reduce(add, [1,2,3,4])
10

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 5/51

Default Values

You can specify default values for arguments to take on if nothing is
passed in.
>>> def dinner(food=’spam’):

print "What’s for dinner?"
print food

>>> dinner(’eggs’)
What’s for dinner?
eggs

>>> dinner ()
What’s for dinner?
spam

A function can have multiple arguments with default values, or some
arguments with default values and some without. Arguments without
default values are required, and if you pass in fewer positional arguments
than are specified, values are assigned from left-to-right.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 6 /51

Keyword arguments

Instead of referring to arguments in order, you can also refer to them by

name.
If a function’s definition starts:

def login(username, password, date):

Then you can call the function using

login(password=’sekkrit’, date=’tomorrow’, username=’brdoer’)

It's an error to specify a keyword argument that’s not in the function’s
argument list, or to specify a keyword more than once. Specify positional
arguments before keyword arguments.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 7 /51

Accepting Arbitrary Arguments

If you want a function to take an arbitrary number of arguments, simply
add a special argument to the function with a * at the beginning of its
name. That argument will then contain a tuple of all extra positional
arguments passed to the function (or an empty tuple if there are none).

>>> def sum(a, b, *args):
sum = a + b
print sum
for arg in args:
sum += arg
return sum

>>> sum(1, 2, 3, 4, 5)

3
15

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 8 /51

Similarly, you can use ** to indicate a variable should contain all extra
keyword arguments. The keyword arguments are put into a dictionary
where key=value translates to {"key": value} (note that the key is
automatically changed to a string).

The variables taking arbitrary arguments are frequently referred to as
*args and *xkwarg s.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 9 /51

Passing in Arbitrary Arguments

Just as *args can be used to receive all extra positional arguments, you
can also use * to pass a list of arguments to a function, and ** to pass a
dictionary of keyword arguments.

>>> def test(a, b, c):
print a, b, c

>>> args = (1, 2, 3)
>>> test(xargs)
123

>>> args = (1, 2)
>>> test(5, *args)
512

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 10 / 51

Example: format()

New in 2.6 and 3.x is string.format() Any integer in braces is replaced with
a corresponding positional argument.

>>> "I’'m ordering {0}, {1}, {2}, and {0}".format(’spam’, ’eggs’, ’sausage’)
"I’m ordering spam, eggs, sausage, and spam"

any string in braces is replaced with a corresponding keyword argument

>>> "You don’t frighten us,{plural_noun}. Go and {verb}, you sons of {place
"You don’t frighten us,{nationality} pig dogs. Go and boil your bottoms, yc

Of course, you can nest format strings... but if you do it too much it will
probably make your brain explode.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 11 /51

Break

Questions?

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 12 / 51

More String Processing

We looked at print last time as a way of viewing strings, but let’s take a
look at actually slicing and dicing them to do more interesting things.
First, strings can be concatenated together with +. They can also be
duplicated with *.

>>> ’spam’ + ’eggs’

’spameggs’

>>> ’spam’ * 5

’spamspamspamspamspam’

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 13 / 51

There are also several helper functions that you can use to manipulate
strings, including capitalize, title, upper, lower, swapcase, and

many others.

>>> ’spam and eggs’.
’Spam and eggs’
>>> ’spam and eggs’
’Spam And Eggs’
>>> ’spam and eggs’
’SPAM AND EGGS’
>>> ’spaM aNd eGGs’
’SPAm AnD EggS’

capitalize()

.title ()
.upper ()

.swapcase ()

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2

January 6, 2011

14 / 51

There are also features for combining lists of strings and breaking up
strings into lists:

>>> ’spam and eggs’.split()

[’spam’, ’and’, ’eggS’]

>>> 2 ? join([’spam’, ’and’, ’eggs’])

’spam and eggs’

(split can take one argument: the substring to split the string on.)

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 15 / 51

You can test for substrings with needle’ in ’haystack’, and test the
beginning or end of a string with startswith and endswith. There's also
replace.

str (the string type) has a bunch of other useful methods - to read more
about them, consult help(str).

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 16 / 51

The other way to format strings is using the % operator, which is similar to
printf in other languages.

>>> "I'm ordering %s" % ’spam’
"I’m ordering spam"

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 17 / 51

If you want to pass in multiple values, use a tuple instead of a single string:

>>> "I’'m ordering %s, %s, %s, and %s" % (’spam’, ’eggs’, ’sausage’, ’spam’)
"I’m ordering spam, eggs, sausage, and spam"

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 18 / 51

Using %s is almost always enough to get the formatting you want, but if
you need something more complex, this construct does support the truly
staggering set of type arguments of printf; it's documented at http:

//docs.python.org/library/stdtypes.html#string-formatting

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 19 / 51

http://docs.python.org/library/stdtypes.html#string-formatting
http://docs.python.org/library/stdtypes.html#string-formatting

Break

Questions?

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 20 / 51

Iterators

We...havent actually talked about range as a way to get a list of numbers.
But really long lists of numbers can take a lot of memory to store. And if
you try to create a big enough range of numbers, Python will give up.

>>> range (10000000000)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
OverflowError: range() result has too many items

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 21 /51

More on Functions subsection

To work around this, Python has a concept of iterators - something that's
more or less list-like, but pulls up elements one at a time. An iterator has
one method that matters: next. Each time you call it, it spits out the
next value. To take a sequence-like type and use it as an iterator, pass it
to the iter function.

>>> 1st = range(10)

>>> 1st

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> iter(lst)

<listiterator object at 0x24ca70>

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 22 /51

As an example of using iterators to save memory, instead of using range
you can use xrange.

>>> xrange(10)

xrange (10)

>>> iter(xrange(10))
<rangeiterator object at 0x1el28>
>>> xr = iter(xrange(10))
>>> xr.next()

0

>>> xr.next()

1

>>> xr.next ()

2

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 23 /51

More on Functions subsection

However, you don't usually interact directly with iter and next. When
you specify what you're looping over in a for loop, Python actually loops
over that thing passed to iter.

>>> for i in xrange(5):
print i

= w NN =R o

It's certainly possible to write your own objects that implement the
“iterator protocol,” but there's not really any need to, because Python
provides several useful tools for generating iterators.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 24 /51

break

Break stops a loop right then and there.

>>> for i in xrange(100):
print i
if 1 > 3:
break

> W N O -

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 25 /51

Generators

Many of the built-in types have some concept of iteration built in through
iterables. You can also define your own classes which exhibit the qualities

of iterables. Or instead, you can use this concept of generators to make an
iterable out of a function.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 26 / 51

Constructing Generators

To do this, use the yield keyword instead of returning. When you call the
generator, it returns an iterable. Every time that generator.next () is
called, the function picks up executing where it left off. If the function
returns for any reasons, that's equivalent to ending the iteration. Because
generators return an iterable object, then can be used in for loops as well.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 27 /51

Generators

is best shown by example:

>>> def myXrange(n):

a=0
while a < n:
yield a

a=a+1

>>> test = myXrange(3)

>>> test.next()

0

>>> test.next()

1

>>> test.next()

2

>>> test.next ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 28 / 51

Constructing Generators

Every time you vyield, the iterator returns another object, and when next is
called again, the generator continues execution right where you left off.
When the generator reaches the end of execution, it ends the sequence.

>>> for n in myXrange(10):
print n,

0123456789

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 29 /51

Generator Expressions

Another way to create iterators is using generator expressions (or
genexps), which, whose only relation to generators is that they both return
iterators.

A generator expression is basically a for loop rolled into a single line and
wrapped in parentheses. Again, examples are the easiest explanation:

>>> (i * i for i in xrange(10))
<generator object at 0x24d760>

>>> gen = (i * i for i in xrange(10))
>>> gen.next ()

0

>>> gen.next ()

1

>>> gen.next ()

4

Generator statements are to lterables what List Comprehensions are to
Lists.

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 30 /51

Generator Expressions

You can also include conditionals after the looping construct:

>>> gen = (i * i for i in xrange(10) if i % 2 == 0)
>>> gen.next ()

0

>>> gen.next ()

4

>>> gen.next ()

16

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 31 /51

Generator Expressions

Generator objects usually aren’t assigned to variables like that, though.
They're more typically passed to functions. When a genexp is the only
argument to a function, you don’t need the extra set of parentheses
around it, so you can write:

>>> sum(i * i for i in xrange(10))
285

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 32 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 33 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 34 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 35 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 36 / 51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 37 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 38 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 39 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 40 / 51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 41 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 42 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 43 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 44 / 51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 45 / 51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 46 / 51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 47 / 51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 48 / 51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 49 /51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 50 / 51

Evan Broder, Andrew Farrell (MIT SIPB) IAP Python - Lecture 2 January 6, 2011 51 /51

	More on Functions
	subsection
	li
	li

