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Higher Order Functions

A function is a first-class object, so it can be returned from a function.

def maketunk(n):
def thunk():
return n

return thunk

>>> t = makethunk(5)

>>> t()

5

>>> ts = [makethunk(i) for i in range(6)]
>>> for t in ts:

print t()
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Higher Order Functions

It can also be passed to a function.

def make_double(f):
def f2(n):
return f(n)+f(n)
return thunk
def plus3(n):
return n+3
>>> plus3(4)
7
>>> twoxplus6 = make_double(plus3)
>>> twoxplus6(4)
14
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lambdas

for creating small throwaway functions, you can just use lambdas

>>> make_double = lambda f: (lambda n: f(n)+ f(n))
>>> plus3 = lambda n: n+3

>>> twoxplus6 = make_double(plus3)

>>> txplus6(4)

14

But don't do it too much. for complex functions, def is more readable.
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.
Map and Filter

def map(func,seq):

return [func(i) for i in seq)
>>> map(plus3, [1,2,3])
[4,5,6]

def filter(func,seq):
return [i for i in seq if func(i)]
>>> iseven = lambda x: x%2 ==
>>> filter(iseven,[1,2,3,4])
[2,4]

def reduce(func,seq):

if len(seq) ==

return func(seq[0],seq[1])

return func(seq[0] ,map(func,seq[1:]1))
# what is my error with the last ome
>>> add = lambda x,y : x+y
>>> reduce(add, [1,2,3,4])
10
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Default Values

You can specify default values for arguments to take on if nothing is
passed in.
>>> def dinner(food=’spam’):

print "What’s for dinner?"
print food

>>> dinner(’eggs’)
What’s for dinner?
eggs

>>> dinner ()
What’s for dinner?
spam

A function can have multiple arguments with default values, or some
arguments with default values and some without. Arguments without
default values are required, and if you pass in fewer positional arguments
than are specified, values are assigned from left-to-right.
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Keyword arguments

Instead of referring to arguments in order, you can also refer to them by

name.
If a function’s definition starts:

def login(username, password, date):

Then you can call the function using

login(password=’sekkrit’, date=’tomorrow’, username=’brdoer’)

It's an error to specify a keyword argument that’s not in the function’s
argument list, or to specify a keyword more than once. Specify positional
arguments before keyword arguments.
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Accepting Arbitrary Arguments

If you want a function to take an arbitrary number of arguments, simply
add a special argument to the function with a * at the beginning of its
name. That argument will then contain a tuple of all extra positional
arguments passed to the function (or an empty tuple if there are none).

>>> def sum(a, b, *args):
sum = a + b
print sum
for arg in args:
sum += arg
return sum

>>> sum(1, 2, 3, 4, 5)

3
15
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Similarly, you can use ** to indicate a variable should contain all extra
keyword arguments. The keyword arguments are put into a dictionary
where key=value translates to {"key": value} (note that the key is
automatically changed to a string).

The variables taking arbitrary arguments are frequently referred to as
*args and *xkwarg s.
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Passing in Arbitrary Arguments

Just as *args can be used to receive all extra positional arguments, you
can also use * to pass a list of arguments to a function, and ** to pass a
dictionary of keyword arguments.

>>> def test(a, b, c):
print a, b, c

>>> args = (1, 2, 3)
>>> test(xargs)
123

>>> args = (1, 2)
>>> test(5, *args)
512
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Example: format()

New in 2.6 and 3.x is string.format() Any integer in braces is replaced with
a corresponding positional argument.

>>> "I’'m ordering {0}, {1}, {2}, and {0}".format(’spam’, ’eggs’, ’sausage’)
"I’m ordering spam, eggs, sausage, and spam"

any string in braces is replaced with a corresponding keyword argument

>>> "You don’t frighten us,{plural_noun}. Go and {verb}, you sons of {place
"You don’t frighten us,{nationality} pig dogs. Go and boil your bottoms, yc

Of course, you can nest format strings... but if you do it too much it will
probably make your brain explode.
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Break

Questions?
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More String Processing

We looked at print last time as a way of viewing strings, but let’s take a
look at actually slicing and dicing them to do more interesting things.
First, strings can be concatenated together with +. They can also be
duplicated with *.

>>> ’spam’ + ’eggs’

’spameggs’

>>> ’spam’ * 5

’spamspamspamspamspam’
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There are also several helper functions that you can use to manipulate
strings, including capitalize, title, upper, lower, swapcase, and

many others.

>>> ’spam and eggs’.
’Spam and eggs’
>>> ’spam and eggs’
’Spam And Eggs’
>>> ’spam and eggs’
’SPAM AND EGGS’
>>> ’spaM aNd eGGs’
’SPAm AnD EggS’

capitalize()

.title ()
.upper ()

.swapcase ()
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There are also features for combining lists of strings and breaking up
strings into lists:

>>> ’spam and eggs’.split()

[’spam’, ’and’, ’eggS’]

>>> 2 ? join([’spam’, ’and’, ’eggs’])

’spam and eggs’

(split can take one argument: the substring to split the string on.)
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You can test for substrings with needle’ in ’haystack’, and test the
beginning or end of a string with startswith and endswith. There's also
replace.

str (the string type) has a bunch of other useful methods - to read more
about them, consult help(str).
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The other way to format strings is using the % operator, which is similar to
printf in other languages.

>>> "I'm ordering %s" % ’spam’
"I’m ordering spam"
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If you want to pass in multiple values, use a tuple instead of a single string:

>>> "I’'m ordering %s, %s, %s, and %s" % (’spam’, ’eggs’, ’sausage’, ’spam’)
"I’m ordering spam, eggs, sausage, and spam"
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Using %s is almost always enough to get the formatting you want, but if
you need something more complex, this construct does support the truly
staggering set of type arguments of printf; it's documented at http:

//docs.python.org/library/stdtypes.html#string-formatting
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Break

Questions?
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Iterators

We...havent actually talked about range as a way to get a list of numbers.
But really long lists of numbers can take a lot of memory to store. And if
you try to create a big enough range of numbers, Python will give up.

>>> range (10000000000)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
OverflowError: range() result has too many items
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More on Functions subsection

To work around this, Python has a concept of iterators - something that's
more or less list-like, but pulls up elements one at a time. An iterator has
one method that matters: next. Each time you call it, it spits out the
next value. To take a sequence-like type and use it as an iterator, pass it
to the iter function.

>>> 1st = range(10)

>>> 1st

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> iter(lst)

<listiterator object at 0x24ca70>
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As an example of using iterators to save memory, instead of using range
you can use xrange.

>>> xrange(10)

xrange (10)

>>> iter(xrange(10))
<rangeiterator object at 0x1el28>
>>> xr = iter(xrange(10))
>>> xr.next()

0

>>> xr.next()

1

>>> xr.next ()

2
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More on Functions subsection

However, you don't usually interact directly with iter and next. When
you specify what you're looping over in a for loop, Python actually loops
over that thing passed to iter.

>>> for i in xrange(5):
print i

= w NN =R o

It's certainly possible to write your own objects that implement the
“iterator protocol,” but there's not really any need to, because Python
provides several useful tools for generating iterators.
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break

Break stops a loop right then and there.

>>> for i in xrange(100):
print i
if 1 > 3:
break
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Generators

Many of the built-in types have some concept of iteration built in through
iterables. You can also define your own classes which exhibit the qualities

of iterables. Or instead, you can use this concept of generators to make an
iterable out of a function.
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Constructing Generators

To do this, use the yield keyword instead of returning. When you call the
generator, it returns an iterable. Every time that generator.next () is
called, the function picks up executing where it left off. If the function
returns for any reasons, that's equivalent to ending the iteration. Because
generators return an iterable object, then can be used in for loops as well.
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Generators

is best shown by example:

>>> def myXrange(n):

a=0
while a < n:
yield a

a=a+1

>>> test = myXrange(3)

>>> test.next()

0

>>> test.next()

1

>>> test.next()

2

>>> test.next ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration
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Constructing Generators

Every time you vyield, the iterator returns another object, and when next is
called again, the generator continues execution right where you left off.
When the generator reaches the end of execution, it ends the sequence.

>>> for n in myXrange(10):
print n,

0123456789
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Generator Expressions

Another way to create iterators is using generator expressions (or
genexps), which, whose only relation to generators is that they both return
iterators.

A generator expression is basically a for loop rolled into a single line and
wrapped in parentheses. Again, examples are the easiest explanation:

>>> (i * i for i in xrange(10))
<generator object at 0x24d760>

>>> gen = (i * i for i in xrange(10))
>>> gen.next ()

0

>>> gen.next ()

1

>>> gen.next ()

4

Generator statements are to lterables what List Comprehensions are to
Lists.
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Generator Expressions

You can also include conditionals after the looping construct:

>>> gen = (i * i for i in xrange(10) if i % 2 == 0)
>>> gen.next ()

0

>>> gen.next ()

4

>>> gen.next ()

16
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Generator Expressions

Generator objects usually aren’t assigned to variables like that, though.
They're more typically passed to functions. When a genexp is the only
argument to a function, you don’t need the extra set of parentheses
around it, so you can write:

>>> sum(i * i for i in xrange(10))
285
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