
Practical Applications of
 Virtualization

Mike Phillips <mpp@mit.edu>
IAP 2008

SIPB IAP Series
http://stuff.mit.edu/iap/
http://stuff.mit.edu/sipb/

http://stuff.mit.edu/iap/
http://stuff.mit.edu/sipb/


Some Guy Rambling About 
Virtualization

 Stuff He's Read About and Played 
With Some And Wants to Share and

Discuss With You 
Mike Phillips

IAP 2008
SIPB IAP Series

http://stuff.mit.edu/iap/
http://stuff.mit.edu/sipb/

http://stuff.mit.edu/iap/
http://stuff.mit.edu/sipb/


What's Virtualization?

● Abstraction of computing resources
– Hiding physical details and presenting a logical 

interface
● Typical resources to virtualize:

– CPU
– Memory
– Storage
– Network

● Resource virtualization vs. Platform 
virtualization



But first, some basics...

● What's a computer?
– CPU
– Memory
– Storage
– Other devices

● What's a CPU?
– Runs programs
– Instruction Set Architecture

● Intel IA-32 (x86), AMD x86_64



But first, some basics...

● What's an Operating 
System?
– Shares physical 

resources 
– Provides an 

interface to user 
programs

● Virtual memory
● Device drivers
● Userspace libraries http://en.wikipedia.org/wiki/Image:Kernel.png



Platform Virtualization

● Virtualize the whole computer
– Using another computer
– Hey, they're all universal Turing machines
– Virtual computer could be something new, or 

essentially the same architecture as the real 
hardware

● Emulation
– No restriction on virtual computer architecture
– Bochs: cross-platform IA-32 emulator
– Qemu: Emulates several platforms, runs on x86 

and PowerPC
– Good academic uses



More commonly...

● Divide a physical computer up into virtual 
computers
– Virtual machines have the same architecture as 

host
– Maximize speed

● Virtualization has overhead
● Compare vs. native speed



Why?

● Server consolidation
– PCs are cheap, powerful.

● Isolation
– Vs. “all on one box”
– Security

● Experimentation
– Try new things without impacting existing 

services
● Cool factor

– Completely encapsulate a virtual machine and 
manipulate it (copy, move, checkpoint) 



How?

● Physical hardware
● Virtual Machine 

Monitor

● Virtual machines
● Guest operating 

systems

http://softwarecommunity.intel.com/articles/eng/1408.htm



How?

● Virtual Machine Monitor
– Also called a “hypervisor”

● Takes sole responsibility for hardware
– Like the “OS” normally would

● Prevent the execution of sensitive 
instructions
– Would interfere with VMM, host OS, or other 

VMs



The problem with x86

● Privileged mode
– Privilege hierarchy: Rings 0 through 3
– Call gate / system calls

● Privileged instructions cause a trap
– VMM can emulate expected behavior

● Not all sensitive instructions are privileged
– 17 instructions are problematic
– Context-dependent
– May fail silently

● Virtualization isn't new, but not in x86 design
– IBM's CP-40 (1967), System/370 (1972)



Binary patching

● Analyze instruction stream ahead of time
– Look for problematic situations
– Set hardware breakpoints, or otherwise patch 

the code
– Cache results
– VMWARE approach (out of research at Stanford)

● Supports unmodified guest operating systems



Paravirtualization

● Guest OS is modified to be aware of VMM
● The VM provided is like x86, but isn't actually 

x86
– Missing the problematic bits

● Xen's approach
– Xen hypervisor in Ring 0
– Dom0 (host) – Modified Linux OS
– DomU (guests) – Paravirtualized versions of:

● Linux (integrated in the mainline kernel at 2.6.23)
● OpenBSD
● OpenSolaris

– Device access via Dom0



Hardware extensions

● Intel VT-x / AMD-V
– Available within last year

● Adds instructions for interacting with VMM
● Root mode vs. non-root mode

– Both have rings 0-3, but only root mode (for 
VMM) has real hardware access

– Traps happen when they should
● But what about I/O devices?

– Need IOMMU to make giving devices to guests 
safe (DMA) 

– Intel VT-d coming out now, not quite available



Xen HVM

● Xen Hardware Virtual Machine
– Abstraction over Intel and AMD extensions

● Support for unmodified guests
– Yes, this means Windows

● Uses QEMU for I/O virtualization
– Presents generic looking devices to guest

● IDE controller
● Network card
● Vanilla VGA

● Not all CPUs have these extensions



A Real Use Case

● I have an older machine running MythTV
– Ubuntu Edgy
– Hauppauge PVR-350 MPEG2 encoder/decoder

● Want to add more services
– Outward-facing websites
– Media sharing
– Debathena

● Isolation and security
● Start by making existing installation a guest



Installing a new OS

● Debian Etch (stable)
– Has xen packages
– Has openvz packages (sort of.. more later)
– Has vserver packages

● Boot off the install CD
● Current disk use:

– / - 10G
– /mythtv – 500GB

● Moved /mythv to /mythtv/mythv
● Copied /* to /mythtv/ partition
● Installed new OS on /
● Can still boot old system



Xen on Etch

● Thank you, Internet
– http://wiki.debian.org/Xen
– http://www.howtoforge.com/debian_etch_xen_from_debian_repository

● dom0 (host)
– apt-get install xen-linux-system-2.6.18-4-
xen-vserver-686 libc6-xen xen-tools

– Gets us the xen hypervisor and modified kernel 
for dom0

http://wiki.debian.org/Xen
http://www.howtoforge.com/debian_etch_xen_from_debian_repository


Xen on Etch

● domU:
– xen-create-image --debootstrap --hostname 
xen-etch --dhcp --dist=etch

– xm create /etc/xen/xen-etch.cfg
– xm list
– xm console xen-etch

● Tweak configuration for network and memory
● Manually add /dev/sda* device files in dom0
● Make another domU

– Modify the disk image to contain a copy of the 
MythTV Ubuntu Edgy installation

– Configure PCI-passthrough so this domU will 
own the PVR-350; hide from dom0



Drum roll, please..

● Extra hardware modules
– ivtv for PVR-350
– lirc_modules for IR remote input

● Built fine (using Debian module-assistant)
● Kernel panic in ivtv

– DMA; swiotlb issue
– swiotlb-related switches suggested by the 

Internet did not help
– Possibly try newer Linux kernel, ivtv, or Xen?

● Okay, what about using ivtv in dom0
– Similar result



Maybe Xen isn't for this...

● Machine only has 512MB of memory
● Hard virtualization means I need to partition 

that among the domUs
● Xen is way cool, but it may be overkill for this 

application.
● Perhaps some sort of virtualization that gives 

me good isolation but isn't as strict?



Container Virtualization

● Also “Operating-system virtualization”
– Single kernel instance

● Create isolated virtual environments
– Also called Virtual Private Servers
– Processes locked inside

● chroot jails
● Solaris zones/containers
● BSD jails
● Linux: vserver, OpenVZ



OpenVZ

● SWSoft's GPL'ed version of Virtuosso
● File system isolation
● Disk quotas
● I/O rate-limiting
● Memory Limits
● CPU quotas
● Network isolation
● Checkpointing / Live migration
● Defanged root user in VEs
● Limited hardware access



OpenVZ

● Linux Kernel patch
– PID namespaces (2.6.24)
– IPC namespaces (semaphores, shared memory)
– Separate hostnames for VEs
– Virtual CPU fair scheduler (2-level)
– 2-level disk quotas
– Hardware access/capability limits on VEs

● Distributed as patch or pre-built kernels
– Even has a Debian repository

● Debian Etch has a patch package and 
userspace tools (not as shiny and new)



Installing OpenVZ
● http://www.howtoforge.com/debian_etch_openvz
● http://wiki.openvz.org/Installation_on_Debian
● First pass: used the openvz.org apt 

repository
– But very few kernel features enabled
– Certainly no PVR-350 support

● Built it myself, the Debian way:
– Installed kernel sources, copied my current 

config, applied patch, and checked selected 
kernel features

http://www.howtoforge.com/debian_etch_openvz
http://wiki.openvz.org/Installation_on_Debian


Creating a VE

● vzctl create 101
● vzctl set 101 --onboot yes --save
● vzctl set 101 --hostname openvz-test --save
● vzctl set 101 --ipadd 10.1.0.5 --save
● vzctl set 101 --nameserver 10.0.0.1 --save
● vzctl start 101
● vzctl enter 101

– Get a shell inside the VE



How VEs are stored

● /var/lib/vz/private/101 contains VE's files
● Some vzctl --set commands modify files here
● Mounted on /var/lib/vz/root/101/ at start
● Bind mounts are possible

– mount --bind /some/path /var/lib/vz/root/101/foo
– Done after VE started, can be automated

● VE0 can see into all VEs' filesystems



What VEs Cannot Do

● Get raw access to the network, nor 
reconfigure the network interface (by default)

● Insert kernel modules
● Exceed resource limits on CPU, memory, 

disk, etc
● Access devices via /dev without explicit 

permission
● Run their own operating system



User Bean Counters

● cat /proc/user_beancounters
● 20 resources that can be restricted

– Process count
– Socket count
– Memory allocation guarantee

● Defaults are rather restrictive
– Configuring is a bit of a pain, though decently 

documented
● Output includes a failure count for each

– Watch this if you are having problems in VEs 



Back to my use case

● Want to move MythTV to VE101
● Just copied files over /var/lib/vz/private/101/
● Added mount script to bind mount the video 

storage area
● However, kernel modules for the relevant 

hardware must be rebuilt for new kernel



Back to my use case

● Extra kernel modules
– ivtv

● Built and inserted just fine (in VE0)
– lirc_modules

● Needed to patch myself (find_task_by_pid())
– openafs

● Not tried yet, but have seen a patch on openvz.org
● X Window System inside VE101

– MythTV front-end uses framebuffer device
– Grant explicit access to /dev/fb0 with vzctl
– MythTV back-end needs to read from MPEG 

encoder-- grant access to /dev/video0



More typical usage

● Virtual hosting
– Divide physical hardware up for each customer
– Isolation is nice
– Can overcommit physical hardware resources 

slightly
● Promise more physical memory than exists
● Swap will cover usage bursts

– “vzctl exec” for mass changes
– Better than just chroot
– Not as isolated as Xen
– Worry about third-party nature of patch



Final thoughts

● Xen and OpenVZ aren't really competing
● Both are gaining mainstream kernel 

acceptance and are actively developed
● Xen is really going places

– Compatibility layer for Windows Server 2008's 
hypervisor to allow running paravirtualized 
guests

● One day maybe I'll be able to dedicate my 
3D graphics card to a VM
– Maybe even securely... (IOMMU)

● Virtualization is hot
– Complex software distributed as VMs?



Links, etc

● http://stuff.mit.edu/iap/virtual/


