
High-Performance DRAMs
in Workstation Environments

Vinodh Cuppu, Student Member, IEEE, Bruce Jacob, Member, IEEE,

Brian Davis, Member, IEEE, and Trevor Mudge, Fellow, IEEE

AbstractÐThis paper presents a simulation-based performance study of several of the new high-performance DRAM architectures,

each evaluated in a small system organization. These small-system organizations correspond to workstation-class computers and use

only a handful of DRAM chips (~10, as opposed to ~1 or ~100). The study covers Fast Page Mode, Extended Data Out, Synchronous,

Enhanced Synchronous, Double Data Rate, Synchronous Link, Rambus, and Direct Rambus designs. Our simulations reveal several

things: 1) Current advanced DRAM technologies are attacking the memory bandwidth problem but not the latency problem; 2) bus

transmission speed will soon become a primary factor limiting memory-system performance; 3) the post-L2 address stream still

contains significant locality, though it varies from application to application; 4) systems without L2 caches are feasible for low- and

medium-speed CPUs (1GHz and below); and 5) as we move to wider buses, row access time becomes more prominent, making it

important to investigate techniques to exploit the available locality to decrease access time.

Index TermsÐDRAM architectures, DRAM performance, DRAM systems, system modeling, DDR DRAM, Direct Rambus DRAM,

PC100 SDRAM, DDR2 DRAM.

æ

1 INTRODUCTION

IN response to the growing gap between memory access
time and processor speed, DRAM manufacturers have

created several new DRAM architectures. This paper
presents a simulation-based performance study of a
representative group, evaluating each in terms of its effect
on total execution time. We simulate the performance of
seven DRAM architectures: Fast Page Mode [36], Extended
Data Out [19], Synchronous [20], Enhanced Synchronous
[13], Double Data Rate [21], Synchronous Link [38], Rambus
[32], and Direct Rambus [33]. While there are a number of
academic proposals for new DRAM designs, space limits us
to covering only existing commercial architectures. To
obtain accurate memory-request timing for an aggressive
out-of-order processor, we integrate our code into the
SimpleScalar tool set [4].

This paper presents a baseline study of a small-system
DRAM organization: These are systems with only a handful
of DRAM chips (0.1-1GB). We do not consider large-system
DRAM organizations with many gigabytes of storage that
are highly interleaved. We also study a set of benchmarks
that are appropriate for such systems: user-class applica-
tions, such as compilers and small databases, rather than
server-class applications, such as transaction processing

systems. The study asks and answers the following
questions:

. What is the effect of improvements in DRAM
technology on the memory latency and bandwidth
problems?

Contemporary techniques for improving proces-
sor performance and tolerating memory latency are
exacerbating the memory bandwidth problem [5].
Our results show that current DRAM architectures
are attacking exactly this problem: The most recent
technologies (SDRAM, ESDRAM, DDR, and Ram-
bus) have reduced the stall time due to limited
bandwidth by a factor of three compared to earlier
DRAM architectures. However, the memory-latency
component of overhead has not improved.

. Where is time spent in the primary memory system
(the memory system beyond the cache hierarchy, but
not including secondary [disk] or tertiary [backup]
storage)? What is the performance benefit of
exploiting the page mode of contemporary DRAMs?

For the newer DRAM designs, the time to extract
the required data from the sense amps/row caches
for transmission on the memory bus is the largest
component in the average access time, though page
mode allows this to be overlapped with column
access and the time to transmit the data over the
memory bus.

. How much locality is there in the address stream
that reaches the primary memory system?

The stream of addresses that miss the L2 cache
contains a significant amount of locality as measured
by the hit-rates in the DRAM row buffers. The hit
rates for the applications studied range 2-97 percent,
with a mean hit rate of 40 percent for a 1MB L2

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001 1133

. V. Cuppu and B. Jacob are with the Department of Electrical and Computer
Engineering, University of Maryland, College Park, College Park, MD
20742. E-mail: {ramvinod, blj}@eng.umd.edu.

. B. Davis is with the Department of Electrical and Computer Engineering,
Michigan Technological University, Houghton, MI 49931-1295.
E-mail: btdavis@acm.org.

. T. Mudge is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109-2122.
E-mail: tnm@eecs.umich.edu.

Manuscript received 5 Dec. 2000; revised 25 May 2001; accepted 31 May
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114256.

0018-9340/01/$10.00 ß 2001 IEEE

cache. (This does not include hits to the row buffers
when making multiple DRAM requests to read one
cache-line.)

. Does it make sense to eliminate the L2 cache in low-
cost systems?

Modern DRAM designs are increasing the
amount of SRAM and other cache-like storage on
the DRAM die [12]. In most cases, a memory system
comprised of multiple DRAM chips will have many
kilobytes of high-speed memory (for example, 8KB
of high-speed storage per DRAM is common today
and the amount is increasing quickly). Our simula-
tions show that, for low- and medium-speed CPUs
(1GHz and under), it is possible to eliminate the L2
cache and still have very reasonable performance.

We also make several observations. First, there is a one-
time trade-off between cost, bandwidth, and latency: To a
point, latency can be decreased by ganging together
multiple DRAMs into a wide structure. One can essentially
pay for bandwidth and simultaneously reduce latency: A
request size is typically much larger than the DRAM
transfer width and the increased bandwidth improves the
transfer time of the large request. Both page mode and
interleaving exploit this phenomenon. However, once the
bus is as wide as the request size, the benefit diminishes,
and, to obtain further improvements, one must run the
DRAM core and bus at faster speeds. Though current
memory buses are adequate for current low- to mid-end
systems, they are inadequate for high-end systems. Wider
buses via embedded DRAM [5], [23], [37] are not a near-
term solution, as embedded DRAM performance is poor on
high-end workloads [3]. Faster buses are more likely
solutionsÐwitness the elimination of the slow intermediate
memory bus in future systems [16]. Another solution is to
internally bank the memory array into many small arrays so
that each can be accessed very quickly, as in the MoSys
Multibank DRAM architecture [39].

Second, widening buses will present new optimization
opportunities. Each application exhibits a different degree
of locality and therefore benefits from page mode to a
different degree. As buses widen, this effect becomes more
pronounced to the extent that different applications can
have average access times that differ by a factor of two. This
is a minor issue considering current bus technology.
However, future bus technologies will expose the row
access as a primary performance bottleneck, justifying the
exploration of mechanisms that exploit locality to guarantee
hits in the DRAM row buffers: e.g., row-buffer victim
caches, prediction mechanisms, etc. Note that recent
commercial DRAM proposals address exactly this issue by
placing associative SRAM caches on the DRAM die to
exploit locality and the tremendous bandwidth available
on-chip [12].

Third, while buses as wide as the L2 cache yield the best
memory latency, they have passed the point of diminishing
returns: For instance, a bus half as wide would not yield
twice the latency. The use of page mode overlaps the
components of DRAM access when making multiple
requests to the same row, and one can only exploit this
overlap when a cache block is larger than the bus widthÐ

otherwise, every cache-fill request requires one row access
and one column access. Therefore, the DRAM bus should
not exceed N/2 bits, where N is the L2 cache width.

Fourth, we note that, for the applications studied, total
execution time seems to correlate more with end-to-end
DRAM latencies than with critical-word latencies.

Finally, the choice of refresh mechanism can significantly
alter the average memory access time. For some bench-
marks and some refresh organizations, the amount of time
spent waiting for a DRAM in refresh mode accounted for
50 percent of the total latency.

As one might expect, our results and conclusions are
dependent on our system specifications, which we chose to
be representative of mid- to high-end workstations: a
100MHz 128-bit memory bus (an organization that is found
in SPARC workstations and has the same bandwidth as a
DRDRAM channel), an eight-way superscalar out-of-order
CPU, lockup-free caches, and a small-system DRAM
organization with ~10 DRAM chips.

2 RELATED WORK

Burger et al. quantified the effect on memory behavior of
high-performance latency-reducing or latency-tolerating
techniques, such as lockup-free caches, out-of-order execu-
tion, prefetching, speculative loads, etc. [5]. They concluded
that, to hide memory latency, these techniques often
increase the demands on memory bandwidth. They classify
memory stall cycles into two types: those due to lack of
available memory bandwidth and those due purely to
latency. This is a useful classification, and we use it in our
study. This study differs from theirs in that we focus on the
access time of only the primary memory system, while their
study combines all memory access time, including the L1
and L2 caches. Their study focuses on the behavior of
latency-hiding techniques, while this study focuses on the
behavior of different DRAM architectures.

Several marketing studies compare the memory latency
and bandwidth available from different DRAM architec-
tures [6], [30], [31]. This paper builds on these studies by
looking at a larger assortment of DRAM architectures,
measuring DRAM impact on total application performance,
decomposing the memory access time into different
components, and measuring the hit rates in the row buffers.

Finally, there are many studies that measure system-
wide performance, including that of the primary memory
system [1], [2], [10], [22], [26], [27], [34], [35]. Our results
resemble theirs in that we obtain similar figures for the
fraction of time spent in the primary memory system.
However, these studies have different goals from ours in
that they are concerned with measuring the effects on total
execution time of varying several CPU-level parameters,
such as issue width, cache size and organization, number of
processors, etc. This study focuses on the performance
behavior of different DRAM architectures.

3 BACKGROUND

A Random Access Memory (RAM) that uses a single
transistor-capacitor pair for each binary value (bit) is
referred to as a Dynamic Random Access Memory or

1134 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

DRAM. This circuit is dynamic because leakage requires

that the capacitor be periodically refreshed for information

retention. Initially, DRAMs had minimal I/O pin counts

because the manufacturing cost was dominated by the

number of I/O pins in the package. Due largely to a desire

to use standardized parts, the initial constraints limiting the

I/O pins have had a long-term effect on DRAM architec-

ture: The address pins for most DRAMs are still multi-

plexed, potentially limiting performance. As the standard

DRAM interface has become a performance bottleneck, a

number of ªrevolutionaryº proposals [28] have been made.

In most cases, the revolutionary portion is the interface or

access mechanism, while the DRAM core remains essen-

tially unchanged.

3.1 The Conventional DRAM

The addressing mechanism of early DRAM architectures is

still used, with minor changes, in many of the DRAMs

produced today. In this interface, shown in Fig. 1, the

address bus is multiplexed between row and column

components. The multiplexed address bus uses two control

signalsÐthe row and column address strobe signals, RAS

and CAS, respectivelyÐwhich cause the DRAM to latch the

address components. The row address causes a complete

row in the memory array to propagate down the bit lines to

the sense amps. The column address selects the appropriate

data subset from the sense amps and causes it to be driven

to the output pins.

3.2 Fast Page Mode DRAM (FPM DRAM)

Fast-Page Mode DRAM implements page mode, an improve-

ment on conventional DRAM in which the row-address is

held constant and data from multiple columns is read from

the sense amplifiers. The data held in the sense amps form

an ªopen pageº that can be accessed relatively quickly. This

speeds up successive accesses to the same row of the

DRAM core. Fig. 2 gives the timing for FPM reads. The

labels show the categories to which the portions of time are

assigned in our simulations. Note that page mode is

supported in all the DRAM architectures investigated in

this study.

3.3 Extended Data Out DRAM (EDO DRAM)

Extended Data Out DRAM, sometimes referred to as hyper-

page mode DRAM, adds a latch between the sense-amps

and the output pins of the DRAM, shown in Fig. 3. This

latch holds the output pin state and permits CAS to rapidly

deassert, allowing the memory array to begin precharging

sooner. In addition, the latch in the output path also implies

that the data on the outputs of the DRAM circuit remain

valid longer into the next clock phase. Fig. 4 gives the

timing for an EDO read.

3.4 Synchronous DRAM (SDRAM)

Conventional, FPM, and EDO DRAM are controlled

asynchronously by the processor or the memory controller;

the memory latency is thus some fractional number of CPU

clock cycles. An alternative is to make the DRAM interface

synchronous such that the DRAM latches information to

and from the controller based on a clock signal. A timing

diagram is shown in Fig. 5. SDRAM devices typically have a

programmable register that holds a burst length or bytes-

per-request value. SDRAM may therefore return many

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1135

Fig. 1. Conventional DRAM block diagram. The split addressing

mechanism is still found in most DRAMs today.

Fig. 2. FPM read timing. Fast page mode allows the DRAM controller to

hold a row constant and receive multiple columns in rapid succession.

Fig. 3. Extended Data Out (EDO) DRAM block diagram. EDO adds a

latch on the output that allos CAS to cycle more quickly than in FPM.

bytes over several cycles per request. The advantages
include the elimination of the timing strobes and the
availability of data from the DRAM each clock cycle. The
underlying architecture of the SDRAM core is the same as
in a conventional DRAM.

3.5 Enhanced Synchronous DRAM (ESDRAM)

Enhanced Synchronous DRAM is a modification to Syn-
chronous DRAM that parallels the differences between FPM
and EDO DRAM. First, the internal timing parameters of
the ESDRAM core are faster than SDRAM. Second, SRAM
row-caches have been added at the sense-amps of each
bank. These caches provide the kind of improved inter-row
performance observed with EDO DRAM, allowing requests
to the last accessed row to be satisfied even when
subsequent refreshes, precharges, or activates are taking
place. It also allows a write to proceed through the sense
amps directly without overwriting the line buffered in the
SRAM cache, which would otherwise destroy any read
locality.

3.6 Double Data Rate DRAM (DDR DRAM)

Double data rate (DDR) DRAM doubles the bandwidth
available from SDRAM by transferring data at both edges of
the clock. DDR DRAM are very similar to single data rate
SDRAM in all other characteristics. They use the same
signaling technology, the same interface specification, and
the same pinouts on the DIMM carriers. However,

DDR-DRAM's internal transfers from and to the DRAM
array, respectively, read and write twice the number of bits
as SDRAM.

3.7 Synchronous Link DRAM (SLDRAM)

RamLink is the IEEE standard (P1596.4) for a bus
architecture for devices. Synchronous Link (SLDRAM) is
an adaptation of RamLink for DRAM and is another IEEE
standard (P1596.7). Both are adaptations of the Scalable
Coherent Interface (SCI). The SLDRAM specification is
therefore an open standard allowing for use by vendors
without licensing fees. SLDRAM uses a packet-based split
request/response protocol. Its bus interface is designed to
run at clock speeds of 200-600 MHz and has a two-byte-
wide datapath. SLDRAM supports multiple concurrent
transactions, provided all transactions reference unique
internal banks. The 64Mbit SLDRAM devices contain eight
banks per device.

Note that SLDRAM is currently only of academic
interest; the SLDRAM standards development effort has
recently been abandoned, and it is unlikely that any
SLDRAM chips will ever be produced.

3.8 Rambus DRAMs (RDRAM)

Rambus DRAMs use a one-byte-wide multiplexed address/
data bus to connect the memory controller to the RDRAM
devices. The bus runs at 300 Mhz and transfers on both
clock edges to achieve a theoretical peak of 600 Mbytes/s.
Physically, each 64-Mbit RDRAM is divided into four
banks, each with its own row buffer, and, hence, up to four
rows remain active or open.1 Transactions occur on the bus
using a split request/response protocol. Because the bus is
multiplexed between address and data, only one transac-
tion may use the bus during any four clock cycle period,
referred to as an octcycle. The protocol uses packet
transactions; first, an address packet is driven, then the
data. Different transactions can require different numbers of
octcycles, depending on the transaction type, location of the
data within the device, number of devices on the channel,
etc. Fig. 6 gives a timing diagram for a read transaction.

3.9 Direct Rambus (DRDRAM)

Direct Rambus DRAMs use a 400 Mhz 3-byte-wide
channel (two for data, one for addresses/commands).
Like the Rambus parts, Direct Rambus parts transfer at
both clock edges, implying a maximum bandwidth of
1.6 Gbytes/s. DRDRAMs are divided into 16 banks with
17 half-row buffers.2 Each half-row buffer is shared
between adjacent banks, which implies that adjacent
banks cannot be active simultaneously. This organization
has the result of increasing the row-buffer miss rate as
compared to having one open row per bank, but it
reduces the cost by reducing the die area occupied by the
row buffers, compared to 16 full row buffers. A critical
difference between RDRAM and DRDRAM is that, because
DRDRAM partitions the bus into different components,

1136 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

1. In this study, we model 64-Mbit Rambus parts, which have four banks
and four open rows. Earlier 16-Mbit Rambus organizations had two banks
and two open pages and future 256-Mbit organizations may have even
more.

2. As with the previous part, we model 64-Mbit Direct Rambus, which
has this organization. Future (256-Mbit) organizations may look different.

Fig. 4. EDO read timing. The output latch in EDO DRAM allows more

overlap between column access and data transfer than in FPM.

Fig. 5. SDRAM read operation clock diagram. SDRAM contains a

writable register for the request length, allowing high-speed column

access.

three transactions can simultaneously use the different
portions of the DRDRAM interface.

4 EXPERIMENTAL METHODOLOGY

To obtain accurate timing of memory requests in a
dynamically reordered instruction stream, we integrated
our code into SimpleScalar, an execution-driven simulator
of an aggressive out-of-order processor [4]. We calculate the
DRAM access time, much of which is overlapped with
instruction execution. To determine the degree of overlap,
and to separate memory stalls due to bandwidth limitations
from memory stalls due to latency limitations, we run two
other simulationsÐone with perfect primary memory (zero
access time) and one with a perfect bus (as wide as an L2
cache line). Following the methodology in [5], we partition
the total application execution time into three components,
TP, TL, and TB, which correspond, respectively, to time
spent processing, time spent stalling for memory due to
latency, and time spent stalling for memory due to limited
bandwidth. In this paper, time spent ªprocessingº includes
all activity above the primary memory system, i.e., it
contains all processor execution time and L1 and L2 cache
activity. Let TR be the total execution time for the realistic
simulation; let TU be the execution time assuming un-
limited bandwidthÐthe results from the simulation that
models cacheline-wide buses. Then TP is the time given by
the simulation that models a perfect primary memory
system, and we can calculate TL and TB as follows: TL �
TU ÿ TP and TB � TR ÿ TU. In addition, we consider the

degree to which the processor is successful in overlapping
memory access time with processing time. We call the
overlap component TO, and, if TM is the total time spent in
the primary memory system (the time returned by our
DRAM simulator), then TO � TP ÿ �TR ÿ TM�. This is the
portion of TP that is overlapped with memory access.

4.1 DRAM Simulator Overview

The DRAM simulator models the internal state of the
following DRAM architectures: Fast Page Mode [36],
Extended Data Out [19], Synchronous [20], Enhanced
Synchronous [13], [20], Double Data Rate [21], Synchronous
Link [38], Rambus [32], and Direct Rambus [33].

The timing parameters for the different DRAM archi-
tectures are given in Table 1. Since we could not find a
64M-bit part specification for ESDRAM, we extrapolated
based on the most recent SDRAM and ESDRAM datasheets.
To measure DRAM behavior in systems of differing
performance, we varied the speed at which requests arrive
at the DRAM. We ran the L2 cache at speeds of 100ns, 10ns,
and 1ns, and, for each L2 access-time, we scaled the main
processor's speed accordingly (the CPU runs at 10x the L2
cache speed).

We wanted a model of a typical workstation, so the
processor is eight-way superscalar, out-of-order, with lock-
up-free L1 caches. L1 caches are split 64KB/64KB, 2-way set
associative, with 64-byte linesizes. The L2 cache is unified
1MB, 4-way set associative, writeback, and has a 128-byte
linesize. The L2 cache is lockup-free, but only allows one
outstanding DRAM request at a time; note this organization
fails to take advantage of some of the newer DRAM parts
that can handle multiple concurrent requests. This is
addressed later on in the discussion and in several follow-
on studies of ours [7], [8], [11]. 100MHz 128-bit buses are
common for high-end workstations, so this is the bus
configuration that we model. Note that it also has the same
bandwidth as Direct Rambus (1.6 GB/s). We assume that
the communication overhead is only one 10ns cycle in each
direction. For the DDR simulations, the bus transfers data
on both edges of the clock; therefore, its effective bandwidth
is twice that of the other simulations. See Table 2.

The DRAM/bus configurations simulated are shown in
Fig. 7. For DRAMs other than Rambus and SLDRAM, eight
DRAMs are arranged in parallel in a DIMM-like organiza-
tion to obtain a 128-bit bus. SLDRAM, RDRAM, and

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1137

Fig. 6. Rambus DRAM read operation. Rambus DRMs transfer on both

edges of a fast clock and can handle multiple simultaneous requests.

TABLE 1
DRAM Specifications Used in Simulations

DRDRAM utilize narrower, but higher speed buses. These
DRAM architectures can be arranged in parallel channels,
and we study them here in the context of a single-width
DRAM bus, which is the simplest configuration, as well as a
dual-channel configuration for SLDRAM and RDRAM. As
in real-world systems, the memory controller coalesces bus
packets into 128-bit chunks to be transmitted over the
100MHz 128-bit memory bus. To keep the designs on an
even footing, we ignore the overhead of the memory
controller. Because of the narrow-channel organization,
transfer rate comparisons may also be deceptive as we are
transferring data from eight conventional DRAM (FPM,
EDO, SDRAM, ESDRAM, DDR) concurrently, versus only a
single device in the case of the narrow-channel architectures
(SLDRAM, RDRAM, DRDRAM).

As mentioned, for SLDRAM and RDRAM we also model
two-channel systems to observe their behavior when their
bandwidth is equivalent to the other DRAM organizations.
The FPM, EDO, SDRAM, and ESDRAM organizations
connect the DRAMs to the memory controller via a 128-bit
100MHz bus (1.6 GB/s bandwidth). DRDRAM uses a 16-bit
800MHz bus (also 1.6 GB/s bandwidth). However,
SLDRAM and RDRAM have native bandwidths of
800 MB/s and 600 MB/s, respectively. We measure the
performance of the native bandwidths of SLDRAM and
RDRAM, and we also measure the performance of ganged
organizations using two buses side-by side, whose aggre-
gate bandwidth is 1.6 GB/s. For comparison, we also look at
one of the newer DRAM technologies: 128-bit 100MHz DDR,
which has twice the bandwidth of the others: 3.2GB/s.

To better distinguish results from different benchmarks,
we do not begin taking measurements (or warming the
caches) until the application has finished its initialization
stage, during which its memory accesses are extremely
sequential in nature. The memory accesses that we see thus
tend to better reflect the true behavior of each benchmark.

The simulator models a synchronous memory interface:
The processor's interface to the memory controller has a
clock signal. This is typically simpler to implement and
debug than a fully asynchronous interface. If the processor

executes at a faster clock rate than the memory bus (as is
likely), the processor may have to stall for several cycles to
synchronize with the bus before transmitting the request.
We account for the number of stall cycles in Bus Wait Time.

The simulator models several different refresh organiza-
tions, as described in Section 5. The amount of time (on
average) spent stalling due to a memory reference arriving
during a refresh cycle is accounted for in the time
component labeled Refresh Time.

4.2 Interleaving

For the 100MHz 128-bit bus configuration, the transfer size
is eight times the request size; therefore, each DRAM access
is a pipelined operation that takes advantage of page mode.
For the faster DRAM parts, this pipeline keeps the memory
bus completely occupied. However, for the slower DRAM
parts (FPM and EDO), the timing looks like that shown in
Fig. 8a. While the address bus may be fully occupied, the
memory data bus is not, which puts the slower DRAMs at a
disadvantage compared to the faster parts. For comparison,
we model the FPM and EDO parts in interleaved organiza-
tions as well (shown in Fig. 8b). The degree of interleaving
is that required to occupy the memory data bus as fully as
possible. This may actually overoccupy the address bus, in
which case we assume that there is more than one address
bus between the controller and the DRAM parts. FPM
DRAM specifies a 40ns CAS period and is four-way
interleaved; EDO DRAM specifies a 25ns CAS period and
is two-way interleaved. Both are interleaved at a bus-width
granularity.

5 EXPERIMENTAL RESULTS

For most graphs, the performance of several DRAM
organizations is given: FPM1, FPM2, FPM3, EDO1, EDO2,
SDRAM, ESDRAM, DDR, SLDRAM, SLDRAMx2, RDRAM,
RDRAMx2, and DRDRAM. The first two configurations
(FPM1 and FPM2) show the difference between always
keeping the row buffer open (thereby avoiding a precharge
overhead if the next access is to the same row) and never

1138 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

TABLE 2
Time Components in Primary Memory System

keeping the row buffer open. FPM1 is the pessimistic

strategy of closing the row buffer after every access and

precharging immediately; FPM2 is the optimistic strategy

of keeping the row buffer open and delaying precharge.

The difference is seen in Row Access Time, which, as the

graphs show, is not large for present-day organizations.

For all other DRAM simulations but ESDRAM, we keep

the row buffer open as the timing of the pessimistic

strategy can be calculated without simulation. The FPM3

and EDO2 labels represent the interleaved organizations

of FPM and EDO DRAM. The SLDRAMx2 and

RDRAMx2 labels represent the SLDRAM and RDRAM

organizations with two channels (described earlier). The

remaining labels should be self-explanatory.

5.1 Handling Refresh

Surprisingly, DRAM refresh organization can affect perfor-
mance dramatically. Where the refresh organization is not
specified for an architecture, we simulate a model in which
the DRAM allocates bandwidth to either memory references
or refresh operations at the expense of predictability [28].
The refresh period for all DRAM parts but Rambus is 64ms;
Rambus parts have a refresh period of 33ms. In the
simulations presented in this paper, this period is divided
into N individual refresh operations that occur
33/N milliseconds apart, where 33 is the refresh period in
milliseconds, and N is the number of rows in an internal
bank times the number of internal banks. This is the
Rambus mechanism and a memory request can be delayed
at most the refresh of one DRAM row. For Rambus parts,
this behavior is spelled out in the data sheets. For other
DRAMs, the refresh mechanism is not explicitly stated.
Note that, normally, when multiple DRAMs are ganged
together into physical banks, all banks are refreshed at the
same time. This is different; Rambus refreshes internal
banks individually.

Because many textbooks describe the refresh operation
as a periodic shutting down of the DRAM until all rows are
refreshed (e.g., [17]), we also simulated stalling the DRAM
once every 64ms to refresh the entire memory array; thus,
every 64ms, one can potentially delay one or more memory
references for the length of time it takes to refresh the entire
memory array. This approach yields refresh stalls up to two
orders of magnitude worse than the time-interspersed
scheme. Particularly hard-hit was the compress benchmark,

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1139

Fig. 7. DRAM bus configurations. The DRAM/bus organizations used in
(a) in noninterleaved FPM, EDO, SDRAM, and ESDRAM simulations,
(b) the SLDRAM and Rambus simulations, (c) the SLDRAM and
Rambus dual-channel organizations, and (d) the parallel-channel
SLDRAM and Rambus performance numbers in Fig. 11. Due to
differences in bus design, the only bus overhead included in the
simulations is that of the bus that is common to all organizations: the
100MHz 128-bit memory bus.

Fig. 8. Interleaving in DRAM simulator. Time in Data Transfer Overlap
accounts for much activity in interleaved organizations. Bus Transmis-
sion is the remainder of time that is not overlapped with anything else.
(a) Noninterleaved timing for access to DRAM. (b) Interleaved timing for
access to DRAM.

shown in Fig. 9, with refresh stalls accounting for over 50
percent of the average access time in several of the DRAM
architectures. Because such high overheads are easily
avoided with an appropriate refresh organization, we only
present results for the time-interspersed refresh approach.

5.2 Total Execution Time

Fig. 10a shows the total execution time for several bench-
marks of SPECint '953 using SDRAM for the primary
memory system. The time is divided into processor
computation, which includes accesses to the L1 and L2
caches, and time spent in the primary memory system. The
graphs also show the overlap between processor computa-
tion and DRAM access time. For each architecture, there are
three vertical bars, representing L2 cache cycle times of
100ns, 10ns, and 1ns (left, middle, and rightmost bars,
respectively). For each DRAM architecture and L2 cache
access time, the figure shows a bar representing execution
time, partitioned into four components:

. memory stall cycles due to limited bandwidth,

. memory stall cycles due to latency,

. processor time (includes L1 and L2 activity) that is
overlapped with memory access,

. processor time (includes L1 and L2 activity) that is
not overlapped with memory access.

One of the most obvious results is that more than half of the
SPECint '95 benchmarks (gcc, ijpeg, m88ksim, perl, and
vortex) exhibit the same memory-system overhead that has
been reported in the literature for large-footprint applica-
tions considered much more memory-intensive than SPEC:
The middle bars in Fig. 10a for these benchmarks, which
represent CPU speeds of 1GHz, have nonoverlapped
DRAM components constituting 10-25 percent of the total
execution time. This echoes published results for DRAM
overheads in commercial workloads such as transaction
processing [1], [2], [10], [22].

Another obvious point is that anywhere from 5 percent
to 99 percent of the memory overhead is overlapped with
processor executionÐthe most memory-intensive applica-

tions successfully overlap 5-20 percent. SimpleScalar sche-
dules instructions extremely aggressively and hides a fair
amount of the memory latency with other workÐthough
this ªother workº is not all useful work as it includes all L1
and L2 cache activity. For the 100ns L2 (corresponding to a
100MHz processor), between 50 percent and 99 percent of
the memory access-time is hidden, depending on the type
of DRAM the CPU is attached to (the faster DRAM parts
allow a processor to exploit greater degrees of concurrency).
For 10ns (corresponding to a 1GHz processor), between
5 percent and 90 percent of the latency is hidden. As
expected, the slower systems hide more of the DRAM
access time than the faster systems.

Fig. 10b and Fig. 10c show that the more advanced
DRAM designs have reduced the proportion of overhead
attributed to limited bandwidth by roughly a factor of three:
e.g., looking at the 10ns bars (corresponding to 10GHz
CPUs) for both GCC and PERL benchmarks, the Stalls Due
to Memory Bandwidth component decreases from 3 for PERL
and 1.5 for GCC in the FPMDRAM organization to 1 for
PERL and 0.5 for GCC in the SDRAM, ESDRAM, DDR, and
DRDRAM organizations.

The figures also show the difference in performance due
to DRAM architectures. For today's high-end DRAMs (e.g.,
SDRAM, Direct Rambus, ESDRAM, and DDR), there is little
difference in total execution time. The rankings do not
change from application to application (DDR is fastest,
followed by ESDRAM, Direct Rambus, ad SDRAM), and the
gap between the fastest and slowest architectures is only
10-15 percent.

Summary. The graphs demonstrate the degree to which
contemporary DRAM designs are addressing the memory
bandwidth problem. Popular high-performance techniques,
such as lockup-free caches and out-of-order execution,
expose memory bandwidth as the bottleneck to improving
system performance, i.e., common techniques for improv-
ing CPU performance and tolerating memory latency are
exacerbating the memory bandwidth problem [5]. Our
results show that contemporary DRAM architectures are
attacking exactly that problem. We see that the most recent
technologies (SDRAM, ESDRAM, DDR, SLDRAM, and
Rambus designs) have reduced the stall time due to limited
bandwidth by a factor of two to three, as compared to
earlier DRAM architectures. Unfortunately, there are no
matching improvements in memory latency; while the
newest generation of DRAM architectures decreases the
cost of limited bandwidth by a factor of three compared to
the previous generation, the cost of stalls due to latency has
remained almost constant.

The graphs also show the expected result that, as L2
cache and processor speeds increase, systems are less able
to tolerate memory latency. Accordingly, the remainder of
our study focuses on the components of memory latency.

5.3 Average Memory Latency

Fig. 11 breaks down the memory-system component of
Fig. 10. The access times are divided by the number of
accesses to obtain an average time-per-DRAM-access. This
is end-to-end latency: the time to complete an entire request
as opposed to critical-word latency. Much of this time is
overlapped with processor execution; the degree of overlap

1140 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

Fig. 9. The penalty for choosing the wrong refresh organization. In some

instances, time waiting for refresh can account for more than 50 percent.

3. We do not look at the floating-point benchmarks here because their
regular access patterns make them easy targets for optimizations such as
prefetching and access reordering [24], [25].

depends on the speed of the L2 cache and main CPU. Since
the variations in performance are not large, we only show
benchmarks that vary most widely. The differences are
almost entirely due to Row Access Time and Bus Transmission

Time.
Row Access Time varies with the hit rate in the row

buffers, which, as later graphs show, is as application-
dependent as cache hit-rate. The pessimistic FPM1 strategy
of always closing pages wins out over the optimistic FPM2
strategy. However, with larger caches, we have seen many
instances where the open-page strategy wins; compulsory
DRAM accesses tend to exhibit good locality.

The differences between benchmarks in Bus Transmission

Time are due to write traffic. Writes allow a different degree
of overlap between the column access, data transfer, and
bus transmission. The heavier the write traffic, the higher
the Bus Transmission component. One can conclude that perl

and compress have heavier write traffic than go or li.
Though it is a completely unbalanced design, we also

measured latencies for 128-bit wide configurations for
Rambus and SLDRAM designs, pictured in Fig. 7d. These

ªparallel-channelº results are intended to demonstrate the
mismatch between today's bus speeds and fastest DRAMs;
they are shown in the bottom left corner of Fig. 11.

Bus Transmission Time is that portion of the bus activity
not overlapped with column access or data transfer, and it
accounts for 10 to 30 percent of the total latency. In the DDR
results, Bus Transmission accounts for 40-45 percent of the
total, and, in the parallel-channel results, it accounts for
more than 50 percent. This suggests that, for some DRAM
architectures, bus speed is becoming a critical issue. While
current technologies seem balanced, bus speed is likely to
become a significant problem very quickly for next-
generation DRAMs. It is interesting to note that the recently
announced Alpha 21364 integrates Rambus memory con-
trollers onto the CPU and connects the processor directly to
the DRDRAMs with a 400MHz Rambus Channel, thereby
eliminating the slow intermediate bus [16].

EDO DRAM does a much better job than FPM DRAM of
overlapping column access with data transfer. This is to be
expected, given the timing diagrams for these architectures.
Note that the overlap components (Data Transfer Time

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1141

Fig. 10. Total execution time + access time to the primary memory system. (a) shows the total execution time in CPI for all benchmarks, using
Synchronous DRAM. (b) and (c) give total execution time in units of CPI for different DRAM types ((b) for gcc, (c) for perl). The overhead is broken
into processor time and memory time, with overlap between the two shown and memory cycles are divided into those due to limited bandwidth and
those due to latency.

Overlap) tend to be very large in general, demonstrating

relatively significant performance savings due to page-

mode. This is an argument for keeping buses no wider than

half the block size of the L2 cache.
Several of the architectures show no overlap at all

between data transfer and column access. SDRAM and

ESDRAM do not allow such overlap because they instead

use burst mode, which obviates multiple column accesses

(see Fig. 5). SLDRAM does allow overlap, just as the

Rambus parts do; however, for simplicity, in our simula-

tions, we modeled SLDRAM's burst mode. The overlapped

mode would have yielded similar latencies.
The interleaved configurations (FPM3 and EDO2) de-

monstrate excellent performance; latency for FPM DRAM

improves by a factor of 2 with four-way interleaving, and

EDO improves by 25-30 percent with two-way interleaving.

1142 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

Fig. 11. Break-downs for primary memory access time, 128-bit bus. These graphs present the average access time on a 128-bit bus across DRAM
architectures for benchmarks that display the most widely varying behavior. The different DRAM architectures display significantly different access
times. The main cause for variation from benchmark to benchmark is the Row-Access Time, which varies with the probability of hitting an open page
in the DRAM's row buffers. If a benchmark exhibits a high degree of locality in its post-L2 address stream, it will tend to have a small Row Access
Time component.

The interleaved EDO configuration performs slightly worse
than the FPM configuration because it does not take full
advantage of the memory bus; there is still a small amount
of unused data bus bandwidth. Note that the break-downs
of these organizations look very much like Direct Rambus;
Rambus behaves similarly to highly interleaved systems but
at much lower cost points.

The ªx2º variants of SLDRAM and RDRAM demonstrate
excellent performance as well. Both Column Access and Data
Transfer decrease by a factor of two; both channels can be
active simultaneously, fetching or writing different parts of
the same L2 cache line. This behavior is expected. This
reduces the average DRAM access time by roughly
30 percent and the total execution time (see Fig. 10) by
25 percent, making these configurations as fast as any other
of the modern DRAM designs.

The time stalled due to refresh tends to account for
1-2 percent of the total latency; this is more in line with
expectations than the results shown in Fig. 9. The time
stalled synchronizing with the memory bus is in the same
range, accounting for 1-5 percent of the total. This is a small
price to pay for a simpler DRAM interface, compared to a
fully asynchronous design.

Summary. The FPM architecture is the baseline archi-
tecture, but it could be sped up by 30 percent with a greater
degree of overlap between the column access and data
transmission. This is seen in the EDO architecture: Its
column access is a bit faster due to the latch between the
sense amps and the output pins, and its degree of overlap
with data transfer is greater, yielding a significantly faster
design using essentially the same technology as FPM.
Synchronous DRAM is another 30 percent faster than EDO,
and Enhanced SDRAM increases performance another
15 percent by improving the row- and column-access
timing parameters and adding an SRAM cache to improve
concurrency. DDR is the fastest of the DRAM architectures
studied, which is not surprising due to its bandwidth,
which is twice that of the other DRAMs studied. It is
interesting to note that its performance is slightly better
than that of Enhanced Memory's SDRAM, and Fig. 10
shows that, while it has reduced the bandwidth portion of
latency more than ESDRAM, ESDRAM has reduced the
latency component more than DDR. This is to be expected
as DDR has a core that is fundamentally similar to that of
SDRAMÐit simply has a faster interfaceÐwhile ESDRAM
has a core unlike any other DRAM architecture studied:
Latching the entire row optimally hides the precharge
activity and increases the overlap between access to
different rows, thus reducing average latency.

As modeled, SLDRAM and Rambus designs have higher
end-to-end transaction latencies than SDRAM, ESDRAM, or
DDR, as they require twice as many data transfers to
complete a 128-bit transaction. However, they are not
ganged together into a wide datapath as are the other
organizations. Despite the handicap, SLDRAM performs
well, which is important considering it is a public standard.
The SLDRAMx2 and RDRAMx2 variants, which have the
same bandwidth and therefore the same number of data
transfers as the other organizations, manage to make up the
difference in performance, with SLDRAMx2 yielding the

same performance as Direct Rambus. Direct Rambus also
comes out about equal to SDRAM in end-to-end latency and
a little behind ESDRAM and DDR.

Last, the DDR results and parallel-channel results
demonstrate the failure of a 100MHz 128-bit bus to keep
up with today's fastest parts. DDR spends more than
40 percent of its time in bus transmissionÐsometimes as
much as twice the overhead as other DRAMs, suggesting
that the bus is not keeping up with the speed of the DDR
DRAM core. In the parallel-channel organizations, we
have placed enough narrow channels side-by-side to
create a 128-bit datapath that is then pushed across the
100MHz bus; even with the increased bandwidth, Direct
Rambus has roughly the same end-to-end latency as
before. Both these results suggest that we are pushing the
limits of today's buses. The Alpha 21364 will solve this
problem by ganging together multiple Rambus Channels
connected directly to the CPU, eliminating the 100MHz
bus [16].

5.4 Perfect-Width Buses

As a limit study, we measured the performance of a perfect-
width bus: 100MHz and as wide as an L2 cache line. The
results are shown in Fig. 12. The scale is much smaller than
the previous graphs, and some, but not all, of the
components have scaled with the change in bus width.
The number of column accesses is reduced by a factor of
eight, which reduces the Column Access and Data Transfer
times. The row access remains the same, as does Bus Wait
Time; they appear to have increased in importance. Bus
transmission for a read has been reduced from 90ns (10 for
the request, 80 to transmit the data), much of which was
overlapped with column access and data transfer, to 20ns,
none of which is overlapped. Because each request requires
only one memory access, there is no pipelining to be
exploited, and the full 20ns transmission is exposed (10ns
each for address and data). FPM2 and FPM3 look identical,
as do EDO1 and EDO2. This is no mistake. Two configura-
tions are interleaved; the others are not. Making the bus the
width of the request size obviates interleaving.

The fastest of the designs is ESDRAM, not DDR as one
would expect based on the average access-time graphs. As
mentioned earlier, this is because ESDRAM is the one
architecture studied that has a different internal core; all
other DRAMs have the same DRAM core inside. DDR
therefore only has a bandwidth advantage over othersÐan
advantage that is nullified when modeling a perfect-width
bus. This figure thus serves to highlight the time-to-first-bit
inefficiencies of the various DRAM interfaces.

There are no Overlap components in these graphs. With a
128-byte bus, each cache line fill requires a single transac-
tion. Overlap is possible if multiple concurrent requests to
the DRAM are allowed, but this is beyond the scope of our
current DRAM simulations. Overlap shown in previous
graphs is due to the overlap of multiple requests required
for a single cache line fill.

As before, the primary variation between benchmarks is
the Row Access Time. The variations are larger than in the
previous graphs because the row access time is proportion-
ally much larger. The graphs show that the locality of
reference for each application (seen in the row-buffer hit-

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1143

rates, Fig. 19) can have a dramatic impact on the access

latencyÐfor example, there is a 10 to 90 percent difference

between the average access latencies for li and perl. This

effect has been seen beforeÐMcKee et al.'s work shows that

intentionally reordering memory accesses to exploit locality

can have an order of magnitude effect on memory-system

performance [24], [25].
Summary. Coupled with extremely wide buses that hide

the effects of limited bandwidth and thus highlight the

differences in memory latency, the DRAM architectures

perform similarly. As FPM1 and ESDRAM show, the

variations in Row Access can be avoided by always closing

the row buffer after an access and hiding the sense-amp

precharge time during idle moments. This yields the best

measured performance, and its performance is much more

deterministic (e.g., FPM1 yields the same Row Access,

independent of benchmark). Note that, in studies with a

4MB L2 cache, some benchmarks executing with an

optimistic strategy showed very high row-buffer hit rates

and had Row Access components that were near-zero (see

Fig. 13); however, this simply serves to illustrate the

behavior when the bulk of the requests reaching the DRAM

system are compulsory cache misses.
Comparing the 128-byte results to the previous experi-

ment, we see that, when one considers current technology

(128-bit buses), there is little variation from application to

application in the average memory access time. The two

components that vary, Row Access and Bus Transmission,

contribute little to the total latency, being overshadowed by

long memory-access pipelines that exploit page mode.

However, moving to wider buses decreases the column

accesses per request, and, as a result, the row access, which

is much larger than column access to begin with, becomes

significant. With fewer column accesses per request, we are

less able to hide bus transmission time, and this component

becomes more noticeable as well.
Variations in row access time, though problematic for

real-time systems, do offer an opportunity to optimize

1144 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

Fig. 12. Break-downs for primary memory access times, 128-byte bus. These graphs present the average access time on a 128-byte bus, the same
width as an L2 cache line. Therefore, the pipelined access to memory (multiple column accesses per row access) is not seen, and the Row Access
component becomes relatively more significant than in the results of a 128-bit bus (Fig. 11). Whereas, in Fig. 11, variations in Row Access caused
overall variations in access time of roughly 10 percent, these graphs quantify the effect that Row Access has on systems with wider buses; average
access time can vary by a factor of two.

performance: One can easily imagine enhanced row-buffer
caching schemes, row-buffer victim caches, or even predic-
tion mechanisms that attempt to capitalize on the amount of
post-L2-cache locality. However, with current organiza-
tions, such measures make little senseÐfor example, our
recent comparison of VCRAM and ESDRAM shows little
difference in performance, though VCDRAM expends more
die area in a set-associative organization of the same
number of SRAM bits on the DRAM die [11].

5.5 The Effect of Limited MSHRs

As mentioned in Section 4.1, the measurements presented
so far represent a system model with lock-up free caches,
but with what is effectively a single MSHR at the L2-cache
level. Though there can be up to 32 outstanding misses
between the L1 and L2 caches, and though the L2 cache
allows any number of hits under a miss, only a single L2
miss can be active in the memory system. This fails to
exploit the degrees of concurrency offered by high
performance DRAM architecturesÐfor example, Direct
Rambus can support up to three concurrent accesses.

It is reasonable to wonder how badly this limitation
hampers the performance of the DRAMs under study. To
quantify the effect, we present additional data (using a
different simulator) for the newer DRAM architectures in a
highly concurrent environment in which we vary the
number of MSHRs. Most of this data, as well as the
particulars of the simulator environment, can be found in
[40]. The results in Fig. 14 present data for PC100, Direct
Rambus DRAM, DDR266, and DDR2 averaged over a
number of benchmarks. The results in Fig. 15 show the
individual benchmarks for DRDRAM alone. Obviously, we
expect little variation from four to 16 MSHRs because this
exceeds the capabilities of single-bus designsÐnonetheless,
it acts as a reasonable sanity-check.

As the graphs show, there is, on average, a 1 percent
difference in execution time between a system with a single

MSHR and a system with enough MSHRs to fully occupy a
DRAM architecture's abilities. We measured a maximum
difference of roughly 5 percent (shown in the DRDRAM
results). We conclude that our MSHR-based limitation of
concurreny in the DRAM system introduces no significant
performance degradation. This is not to say that concur-
rency in the memory system is not beneficial, however: We
look more closely at the effects of memory-system con-
currency in several follow-on studies that suggest con-
currency is better exploited at the DRAM-system level than
the DRAM-architecture level [7], [8].

5.6 Critical-Word Latencies

The average access-time numbers shown in Fig. 11
represent average end-to-end latency, e.g., for a read, they
represent the time from the start of the DRAM request to
the moment the last word in the requested block reaches the
level-2 cache. This is somewhat misleading because it is
widely held that the true limiter to performance is the
critical-word latency.

Critical-word latencies are shown in Fig. 16 for most of
the DRAM architectures, at the highest CPU speed. The
figure shows that time-to-critical-word is significantly
lower than the end-to-end latency, as expected. At great
expense, the end-to-end latency can be improved by
widening the bus, thereby making the end-to-end latency
equal to the critical-word latency. This is shown in Fig. 12
(described earlier). Note that doing so yields latencies
similar to the critical-word latencies in Fig. 16Ðin short,
there is no significant latency argument for widening the
bus. To reduce latency, one must speed up the bus, speed
up the DRAM core, improve the hit ratio in the DRAM row
buffers, or redesign the DRAM interface.

It is interesting to note that the SLDRAM and Rambus
designs excel in their ability to schedule the indivisual
transfers in a cache-block request: Though SDRAM and
ESDRAM win in end-to-end latency, they are rigid in their

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1145

Fig. 13. Break-downs for primary memory access time, 4MB L2 caches. These graphs represent the average access time on a 128-bit bus across

DRAMs.

access ordering, though this ordering can be defined to be

critical-word-first. Parts like Rambus and SLDRAM are like

the interleaved FPM and EDO organizations in that they

allow the memory controller to request the components of a

large block in arbitrary order. This can be exploited to

schedule multiple requests to the same cache block so that

the critical words are fetched before all other data, even if

the critical words are not sequential. However, as one can

see by looking at Figs. 16 and 10 side-by-side, the total

execution time seems to correlate more with the end-to-end

latency than the critical-word latencyÐe.g., if total execu-

tion time scaled with critical-word latency, we would

expect SLDRAM results to be faster than ESDRAM (which

they are not), and we would expect SDRAM results to be

10-20 percent slower than ESDRAM, SLDRAM, RDRAM,

and DRDRAM (which they are not). We would expect the

ranking from fastest system to slowest to be:

1. SLDRAM,
2. DRDRAM tied with ESDRAM,
3. RDRAM,
4. SDRAM,

when, in fact, the order (for both PERL and GCC, at both

medium and high CPU speeds) is

1. DDR (not shown in the time-to-critical-word figure),
2. ESDRAM,
3. DRDRAM tied with SDRAM,
4. SLDRAM,
5. RDRAM.

The fact that, in these cases, the total execution time

correlates better with end-to-end latency than with critical-

word latency simply suggests that, on average, these

benchmarks tend to use a significant portion of each L2

cache line.

1146 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

Fig. 15. The effect of MSHRs on Direct Rambus. The graph shows the performance effect of varying MSHRs in a Direct Rambus-based system. The

results are for each individual benchmark as well as the average.

Fig. 14. The effect of limiting MSHRs to 1. The graph shows the effect on performance of varying the number of MSHRs at the L2 cache from one to

four. The graphs represent results of several benchmarks, shown in Fig. 15.

5.7 Cost-Performance Considerations

The organizations are equal in their capacity: All but DDR
and the interleaved examples use eight 64Mbit DRAMs. The
FPM3 organization uses 32 64Mbit DRAMs, and the EDO2
organization uses 16. However, the cost of each system is
very different. Cost is a criterion in DRAM selection that
may be as important as performance. Each of these DRAM
technologies carries a different price, and these prices are
dynamic, based on factors including number of suppliers,
sales volume, die area premium, and speed yield.

In the narrow-bus organizations we modeled, money
spent on Rambus and SLDRAM parts does not go directly
to latency's bottom line as with the other DRAMs. The
average access time graphs demonstrate how effectively
dollars reduce latency: The only reason FPM, EDO,
SDRAM, ESDRAM, and DDR have latencies comparable
to Rambus and SLDRAM is that they are ganged together
into very wide organizations that deliver 128 bits of data
per request, though each individual DRAM transfers only
16 bits at a time. If each organization had been represented
by a single DRAM device, the FPM, EDO, SDRAM,
ESDRAM, and DDR parts would have had latencies from
four to eight times those shown in Fig. 11. The Rambus and
SLDRAM parts benefit by using multiple DRAMs only in
that this organization extends the size of the collective
sense-amp cache and thus increases the row-buffer hit rates
(see Fig. 19); a single Rambus or SLDRAM chip will
perform almost as well as a group of eight.

Ignoring price premiums, cost is a good argument for the
high-speed narrow-bus DRAMs. Rambus and SLDRAM
parts give the performance of other DRAM organizations at
a fraction of the cost (roughly 1/32 of the interleaved FPM
organization, 1/16 of the interleaved EDO organization, and
1/8 of all the noninterleaved organizations). Alternatively, by
ganging together several Rambus Channels, one can achieve
better performance at the same cost. Accordingly, Rambus
parts typically carry a stiff price premiumÐ roughly 3x at the
time of this writing, despite less than a 20 percent area
premiumÐbut significantly less than the 8x disparity in the
number of chips required to achieve the same performance.

5.8 Using the Collective Row Buffers in Lieu of an
L2 Cache

Associated with each DRAM core is a set of sense amps that
can latch data; this amounts to a cache of high-speed
memory, and internally banked DRAMs have several of
these caches. Moreover, the trend in the most recent
DRAMs is to add even more on-chip storage (in addition
to the sense amps) via SRAM structures in various
organizations. Collectively, a DRAM or bank of DRAMs
can have a sizable cache in these sense amps and SRAM
buffers. For each DRAM architecture studied, the amount of
row-buffer storage is the product of the Row Buffer and
Internal Banks terms in Table 1Ðexcept for DRDRAM,
which has 17 half-row buffers shared between 16 banks (a
total of 68K bits of storage). ESDRAM adds an SRAM buffer
to the sense amps and, so, effectively doubles the storage.
Newer designs, such as VCDRAM, place even more SRAM
on-chip [12].

Many computer architects and DRAM manufacturers
have suggested that the new DRAMs, with their extensive
use of row buffering, enable lower-cost systems that forgo
L2 caches but nonetheless have high performance [15], [18],
[29]. The argument is that a system with numerous DRAM
chips, each with its large number of open bits stored in row
buffers and SRAM caches, effectively already has a level-2
cache. The size of this cache, on a memory-module basis, is
equal to the size of each DRAM's internal row-buffer
storage (both SRAM-based and sense-amp-based, depend-
ing on organization) times the number of DRAMs on each
memory module (e.g., DIMM). The total cache size in a
system is thus the size of each ªDIMM-cacheº times the
number of memory modules in the system. The benefit
offered over a traditional L2 organization is that the size of
the cache inherently scales with the size of the system's
memory. The next experiment revisits the DRAM systems
already presented; for each DRAM, it gives the hit rates of
the DIMM-caches and shows the performance result of
removing the L2 cache from the system.

Fig. 17 shows the total execution time of each benchmark
for an SDRAM organization. Clearly, for 10GHz CPUs,
today's DRAMs will not keep up without a level-2 cache.

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1147

Fig. 16. Critical-word latencies. On top of the average end-to-end latencies that were shown in Fig. 11, we have drawn solid black bars representing

the time at which the critical word arrived at the CPU.

However, for the 100MHz and 1GHz CPU speeds (the left
and middle bars in each group of three), we see that the
memory component is not overwhelming. With a
1GHz CPU and no L2 cache, the DRAM system accounts
for 10-80 percent of the total execution time. For low-cost
systems, this might very well be acceptable.

Fig. 18 shows the average access times for both 128-bit
buses and ideal 64-byte buses. The ideal buses are 64 bytes
and not 128 bytes because the L1 cache block is 64 bytes.
The main result is that these graphs look just like previous
graphs except that the scale is smaller because of the
difference in L1 and L2 block sizes (with the L2 gone, the
amount of data per request is cut in half). The most obvious
difference between these results and previous results is that
there is very little variation from benchmark to benchmark.
This is largely because the elimination of the L2 cache
makes write operations more frequent, thereby disrupting
read locality [9]. This is also seen in the decreased hit rates
relative to hit rates with 1MB and 4MB L2 caches (next
figure).

Fig. 19 presents the variations in hit rates for the row-
buffer caches of different DRAM architectures. Hit rate does
not include the effect of hits that are due to multiple
requests to satisfy one L2 cacheline: These results are for the
ideal buses. We present results for two sets of benchmarks,
including applications from the SPEC and Etch suites. As
mentioned later, the Etch applications are included because
they tend to have larger footprints than SPEC.

The results show that memory requests frequently hit the
row buffers; hit rates range from 2-97 percent, with a mean
of 40 percent. Hit rates increase with increasing L2 cache
size (because the DRAM traffic is increasingly compulsory
misses, that tend to be sequential) and decrease as the L2
cache disappears (because the writeback L2 does a good job
of filtering out writes, as well as the fact that more
noncompulsory misses will hit the DRAM with the L2
cache gone). As shown in our previous study [9], there is a
significant change in hit rate when writes are included in
the address stream: Including write traffic tends to decrease
the row-buffer hit-rate for those DRAMs with less SRAM
storage. Writebacks tend to purge useful data from the

smaller row-buffer caches; thus, the Rambus, SLDRAM,

and ESDRAM parts perform better than the others. This

effect suggests that, when writebacks happen, they do so

without much locality: The cachelines that are written back

tend to be to DRAM pages that have not been accessed

recently. This is expected behavior.
Note that a designer can play with the ordering of

address bits to maximize the row-buffer hits. A similar

technique is used in interleaved memory systems to obtain

the highest bandwidth.

5.9 Trace-Driven Simulations

We also investigated the effect of using trace-driven

simulation to measure memory latency. We simulated the

same benchmarks using SimpleScalar's in-order mode with

single-issue. Clearly, in-order execution cannot yield the

same degree of overlap as out-of-order execution, but we

did see virtually identical average access times compared to

out-of-order execution, for both 128-bit and 128-byte buses.

Because SPEC has been criticized as being not representa-

tive of real-world applications, we also used the University

of Washington's Etch traces [14] to corroborate what we had

seen using SPEC on SimpleScalar. The Etch benchmarks

yielded very similar results, with the main difference being

that the row-buffer hit rates had a smaller standard

deviation. An example for the compress benchmark is

shown in Fig. 20; this graph is very representative of the

entire Etch suite. In general, the Etch benchmarks have

similar break-downs, which is expected since their row-

buffer hit rates have a small standard deviation. Also, the

average access times for the Etch benchmarks tend to be

smaller than their SimpleScalar counterparts (see Fig. 11),

and the differences lie primarily in the Bus Transmission

Time component. Trace-driven simulations are often de-

rided for being less accurate; the fact that these results are

so similar to those obtained through accurate request timing

in an out-of-order core suggests that trace-driven ap-

proaches may be viable for future DRAM studies. This is

corroborated by other results of ours [11].

1148 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

Fig. 17. Performance without a level-2 cache.

6 CONCLUSIONS

We have simulated seven commercial DRAM architectures

in a workstation-class setting, connected to a fast, out-of-

order, eight-way superscalar processor with lockup-free

caches. We have found the following:

1. Contemporary DRAM technologies are addressing
the memory bandwidth problem but not the
memory latency problem;

2. The memory latency problem is closely tied to
current mid- to high-performance memory bus
speeds (100MHz), which will soon become inade-
quate for high-performance DRAM designs;

3. There is a significant degree of locality in the
addresses that are presented to the primary memory
systemÐthis locality seems to be exploited well by
DRAM designs that are multibanked internally and
therefore have more than one row buffer; and

4. Exploiting this locality will become more important
in future systems when memory buses widen,
exposing row access time as a significant factor.

The bottom line is that contemporary DRAM architec-

tures have used page-mode and internal interleaving to

achieve a one-time performance boost. These techniques

improve bandwidth directly and improve latency indirectly

by pipelining over the memory bus the multiple transac-

tions that satisfy one read or write request (requests are

often cacheline-sized, and the cache width is typically

greater than the bus width). This is similar to the

performance optimization of placing multiple DRAMs in

parallel to achieve a bus-width datapath: This optimization

works because the bus width is typically greater than an

individual DRAM's transfer width. We have seen that each

of the DRAM architectures studied takes advantage of

internal interleaving and page mode to differing degrees of

success. However, as the studies show, we will soon hit the

limit of these benefits: The limiting factors are now the

speed of the bus and, to a lesser degree, the speed of the

DRAM core. To improve performance further, we must

explore other avenues.

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1149

Fig. 18. Break-downs for primary memory access time, 128-bit and 64-byte bus, no L2 cache. These graphs present the average access time on a

128-bit bus across DRAM architectures for the three benchmarks that display the most widely varying behavior. The different DRAM architectures

display significantly different access times.

7 FUTURE WORK

We will extend the research to cover large systems which

have different performance behavior. In the present study,

the number of DRAMs per organization is small, therefore,

the hit rate seen in the row buffers can be high. In larger

systems, this effect decreases in significance. For instance, in

large systems, bandwidth is more of an issue than latencyÐ

hitting an open page is less important than scheduling the

DRAM requests so as to avoid bus conflicts.
We have also extended the work to incorporate higher

degrees of concurrency on the memory bus and additional

experimental DRAM architectures [7], [8], [11].
As buses grow wider, Row Access Time becomes sig-

nificant; in our 1MB L2 studies, it accounts for 20-50 percent

of the total latency. Increasing the number of open rows is

1150 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

Fig. 19. Hit-rates in the row buffers. These graphs show hit-rates for the benchmarks on each of the DRAM architectures. The new DRAMs, with

more internal banking, tend to have higher hit rates. Write traffic, due to writebacks, disrupts the locality of the address stream for architectures with

fewer internal banks.

one approach to decreasing the overhead, as seen in the
multibanked DRAMs such as Rambus and SLDRAM. Other
approaches include adding extra row buffers to cache
previously opened rows, prefetching into the row buffers,
placing row-buffer victim-caches onto the chips, predicting
whether or not to close an open page, etc. We intend to look
into this more closely, but wanted to get a rough idea of the
potential gains. We kept the last eight accessed row buffers
in a FIFO and kept track of the number of hits and misses to
the buffer, as well as the depth at which any hits occurred.

The results are shown in Fig. 21. For each benchmark, we
show the number of misses to the main row buffer. The
first value at the leftmost of each curve is the number of hits
at a depth of one in the FIFO victim buffer. The next value
represents the number of hits at a depth of two and so on.
The rightmost value in each curve is the number of accesses
that missed both the main row buffer and the FIFO victim
buffer. The two graphs on the bottom show the amount of
locality in the two benchmarks with the most widely
varying behavior; the graphs plot the time in CPU clocks

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1151

Fig. 20. Average access times for Etch traces. Results are for 1MB L2 cache and 128-bit buses.

Fig. 21. Locality in the stream of accesses to the single open row in the FPM DRAM. The top six graphs show the frequency with which accesses to a

given DRAM page hit at stack depth x. The bottom two graphs show the interarrival time of accesses that hit in an open DRAM page. Both sets of

graphs show that, when references are made to the data in a particular DRAM page, the accesses tend to be localized in time.

between successive references to the previous open row
(i.e., the row that was replaced by the currently open row: it
also happens to be the topmost entry in the FIFO). This
graph demonstrates that, when the row is accessed in the
future, it is most often accessed in the very near future. Our
conclusion is that the previously referenced row has a high
hit rate and it is likely to be referenced within a short period
of time if it is referenced again at all. A number of proven
techniques exist to exploit this behavior, such as victim
caching, set associative row buffers, etc.

ACKNOWLEDGMENTS

This study grew out of research begun by Brian Davis and
extended by Vinodh Cuppu, OÈ zkan Dikmen, and Rohit
Grover in a graduate-level architecture class taught by
Professor Jacob in the spring of 1998. Dikmen and Grover
were instrumental in the development of the simulator used
in this study. The authors would like to thank several
researchers at IBM who provided helpful insight into the
internal workings of the various DRAM architectures: Mark
Charney, Paul Coteus, Phil Emma, Jude Rivers, and Jim
Rogers. They would also like to thank Sally McKee for her
detailed comments on and suggestions for the paper, as
well as the anonymous reviewers of the earlier version of
this paper that appeared in the Proceedings of the
International Symposium on Computer Architecture '99
(ISCA '99) [9]. Trevor Mudge is supported in part by US
Defense Advanced Research Projects Agency grant DABT
63-96-C0047. Vinodh Cuppu and Bruce Jacob are supported
in part by US National Science Foundation (NSF) CAREER
Award CCR-9983618 and NSF grant EIA-0000439.

REFERENCES

[1] L.A. Barroso, K. Gharachorloo, and E. Bugnion, ªMemory System
Characterization of Commercial Workloads,º Proc. 25th Ann. Int'l
Symp. Computer Architecture (ISCA'98), pp. 3-14, June 1998.

[2] D. Bhandarkar and J. Ding, ªPerformance Characterization of the
Pentium Pro Processor,º Proc. Third Int'l Symp. High Performance
Computer Architecture (HPCA'97), pp. 288-297, Feb. 1997.

[3] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and H. Wang,
ªEvaluation of Existing Architectures in IRAM Systems,º Proc.
Workshop Mixing Logic and DRAM, June 1997.

[4] D. Burger and T.M. Austin, ªThe SimpleScalar Tool Set, Version
2.0,º Technical Report CS-1342, Univ. of Wisconsin-Madison, June
1997.

[5] D. Burger, J.R. Goodman, and A. Kagi, ªMemory Bandwidth
Limitations of Future Microprocessors,º Proc. 23rd Ann. Int'l Symp.
Computer Architecture (ISCA '96), pp. 78-89, May 1996.

[6] R. Crisp, ªDirect Rambus Technology: The New Main Memory
Standard,º IEEE Micro, vol. 17, no. 6, pp. 18-28, Nov. 1997.

[7] V. Cuppu and B. Jacob, ªConcurrency, Latency, or System
Overhead: Which Has the Largest Impact on Uniprocessor
DRAM-System Performance?º Proc. 28th Int'l Symp. Computer
Architecture (ISCA '01), June 2001.

[8] V. Cuppu and B. Jacob, ªOrganizational Design Trade-Offs at the
DRAM, Memory Bus, and Memory Controller Level: Initial
Results,º Technical Report UMD-SCA-1999-2, Univ. of Maryland
Systems & Computer Architecture Group, Nov. 1999.

[9] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, ªA Performance
Comparison of Contemporary DRAM Architectures,º Proc. 26th
Ann. Int'l Symp. Computer Architecture (ISCA'99), pp. 222-233, May
1999.

[10] Z. Cvetanovic and D. Bhandarkar, ªPerformance Characterization
of the Alpha 21164 Microprocessor Using TP and SPEC Work-
loads,º Proc. Second Int'l Symp. High Performance Computer
Architecture (HPCA '96), pp. 270-280, Feb. 1996.

[11] B. Davis, T. Mudge, B. Jacob, and V. Cuppu, ªDDR2 and Low
Latency Variants,º Proc. Memory Wall Workshop at the 26th Ann.
Int'l Symp. Computer Architecture, May 2000.

[12] B. Dipert, ªThe Slammin, Jammin, DRAM Scramble,º EDN,
vol. 2000, no. 2, pp. 68-82, Jan. 2000.

[13] ªESDRAM, Enhanced SDRAM 1M x 16,ºEnhanced Memory
Systems, Inc., http://www.edram.com/products/datasheets/
16M_esdram0298a.pdf, 1998.

[14] ªEtch: Memory System Research at the University of Washing-
ton,º Univ. of Washington, http://etch.cs.washington.edu/, 1998.

[15] J.R. Goodman and M. Chiang, ªThe Use of Static Column RAM as
a Memory Hierarchy,º Proc. 11th Ann. Int'l Symp. Computer
Architecture (ISCA '84), pp. 167-174, June 1984.

[16] L. Gwennap, ªAlpha 21364 to Ease Memory Bottleneck: Compaq
Will Add Direct RDRAM to 21264 Core for Late 2000 Shipments,º
Microprocessor Report, vol. 12, no. 14, pp. 12-15, Oct. 1998.

[17] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, second ed. Morgan Kaufmann, 1996.

[18] W.-C. Hsu and J.E. Smith, ªPerformance of Cached DRAM
Organizations in Vector Supercomputers,º Proc. 20th Ann. Int'l
Symp. Computer Architecture (ISCA '93), pp. 327-336, May 1993.

[19] IBM, ªEDO DRAM 4M x 16 Part No. IBM0165165PT3C,º IBM,
http://www.chips.ibm.com/products/memory/88H2011/
88H2011.pdf, 1998.

[20] IBM, ªSDRAM 1M x 16 x 4 Bank Part No. IBM0364164,º IBM,
http://www.chips.ibm.com/products/memory/19L3265/
19L3265.pdf, 1998.

[21] IBM, ªDDR DRAM 16M x 8 Part No. IBM0612804GT3B,º IBM,
http://www.chips.ibm.com/products/memory/06K0566/
06K0566.pdf, 2000.

[22] K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, and W.E. Baker,
ªPerformance Characterization of a Quad Pentium Pro SMP Using
OLTP Workloads,º Proc. 25th Ann. Int'l Symp. Computer Architec-
ture (ISCA '98), pp. 15-26, June 1998.

[23] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K.
Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K.
Keeton, R. Thomas, N. Treuhaft, and K. Yelick, ªScalable
Processors in the Billion-Transistor Era: IRAM,º Computer,
vol. 30, no. 9, pp. 75-78, Sept. 1997.

[24] S. McKee, A. Aluwihare, B. Clark, R. Klenke, T. Landon, C. Oliver,
M. Salinas, A. Szymkowiak, K. Wright, W. Wulf, and J. Aylor,
ªDesign and Evaluation of Dynamic Access Ordering Hardware,º
Proc. Int'l Conf. Supercomputing, May 1996.

[25] S.A. McKee and W.A. Wulf, ªAccess Ordering and Memory-
Conscious Cache Utilization,º Proc. Int'l Symp. High Performance
Computer Architecture (HPCA '95), pp. 253-262, Jan. 1995.

[26] B. Nayfeh, L. Hammond, and K. Olukotun, ªEvaluation of Design
Alternatives for a Multiprocessor Microprocessor,º Proc. 23rd Ann.
Int'l Symp. Computer Architecture (ISCA '96), pp. 67-77, May 1996.

[27] B.A. Nayfeh, K. Olukotun, and J.P. Singh, ªThe Impact of Shared-
Cache Clustering in Small-Scale Shared-Memory Multiproces-
sors,º Proc. Second Int'l Symp. High Performance Computer Archi-
tecture (HPCA '96), pp. 74-84, Feb. 1996.

[28] S. Przybylski, ªNew DRAM Technologies: A Comprehensive
Analysis of the New Architectures,º MicroDesign Resources,
Sebastopol, Calif., 1996.

[29] Rambus, ªRambus Memory: Enabling Technology for PC Gra-
phics,º technical report, Rambus Inc., Mountain View, Calif., Oct.
1994.

[30] Rambus, ªComparing RDRAM and SGRAM for 3D Applications,º
technical report, Rambus Inc., Mountain View, Calif., Oct. 1996.

[31] Rambus, ªMemory Latency Comparison,º technical report,
Rambus Inc., Mountain View, Calif., Sept. 1996.

[32] Rambus, ª16/18Mbit & 64/72Mbit Concurrent RDRAM Data
Sheet,º Rambus, http://www.rambus.com/docs/Cnctds.pdf,
1998.

[33] Rambus, ªDirect RDRAM 64/72-Mbit Data Sheet,º Rambus,
http://www.rambus.com/docs/64dDDS.pdf, 1998.

[34] P. Ranganathan, K. Gharachorloo, S.V. Adve, and L.A. Barroso,
ªPerformance of Database Workloads on Shared-Memory Systems
with Out-of-Order Processors,º Proc. Eighth Int'l Conf. Architectural
Support for Programming Languages and Operating Systems (ASPLOS
'98), pp. 307-318, Oct. 1998.

[35] M. Rosenblum, E. Bugnion, S.A. Herrod, E. Witchel, and A. Gupta,
ªThe Impact of Architectural Trends on Operating System
Performance,º Proc. 15th ACM Symp. Operating Systems Principles
(SOSP '95), Dec. 1995.

1152 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001

[36] Samsung, ªFPM DRAM 4M x 16 Part No. KM416V4100C,º
Samsung Semiconductor, http://www.usa.samsungsemi.com/
products/prodspec/dramcomp/KM416V40(1)00C.PDF, 1998.

[37] A. Saulsbury, F. Pong, and A. Nowatzyk, ªMissing the Memory
Wall: The Case for Processor/Memory Integration,º Proc. 23rd
Ann. Int'l Symp. Computer Architecture (ISCA '96), pp. 90-101, May
1996.

[38] SLDRAM, ª4M x 18 SLDRAM Advance Datasheet,º SLDRAM,
Inc., http://www.sldram.com/Documents/corp400b.pdf, 1998.

[39] R. Wilson, ªMoSys Tries Synthetic SRAM,º EE Times Online, July
1997, http://www.eetimes.com/news/98/1017news/tries.html.

[40] B. Davis, ªModern DRAM Architectures,º PhD thesis, Univ. of
Michigan, 2001.

Vinodh Cuppu received the MS degree in
electrical engineering from the University of
Maryland, College Park, in 2000 and the BE
degree in electronics and communication en-
gineering from the University of Madras, India, in
1997. He is currently a PhD student in the
Department of Electrical and Computer Engi-
neering at the University of Maryland, College
Park. His research interests include DRAM
architectures, latency reduction techniques and

power reduction techniques for embedded microprocessors. He is a
student member of the IEEE and the IEEE Computer Society and a
member of the ACM.

Bruce Jacob received the AB degree cum laude
in mathematics from Harvard University in 1988
and the MS and PhD degrees in computer
science and engineering from the University of
Michigan, Ann Arbor, in 1995 and 1997, respec-
tively. At the University of Michigan, he was part
of a design team building high-performance,
high-clock-rate microprocessors. He has also
worked as a software engineer for two success-
ful startup companies: Boston Technology and

Priority Call Management. At Boston Technology, he worked as a
distributed systems developer and, at Priority Call Management, he was
the initial system architect and chief engineer. He is currently on the
faculty of the University of Maryland, College Park, where he is an
assistant professor of electrical and computer engineering. His present
research covers memory-system design and includes DRAM architec-
tures, virtual memory systems, and memory management hardware and
software for real-time and embedded systems. He is a recipient of a US
National Science Foundation CAREER award for his work on DRAM
systems. He is a member of the IEEE, the IEEE Computer Society, the
ACM, and Sigma Xi.

Brian Davis received the BSE degree magna
cum laude in electrical engineering from Michi-
gan Technological University in 1991 and the
MSE and PhD degrees in computer engineering
from the University of Michigan, Ann Arbor, in
1994 and 2001, respectively. He is presently an
assistant professor in the Electrical and Com-
puter Engineering Department at Michigan
Technological University. He has served on the
faculty of the University of Toledo and Will-

amette University. His present research is focused upon modern DRAM
interfaces and architectures, latency tolerance in high-speed micro-
processors, memory controller policies, and computer simulation
methodologies. Dr. Davis is a member of the IEEE, the IEEE Computer
Society, the ACM, and Tau Beta Pi.

Trevor Mudge received the BSc degree in
cybernetics from the University of Reading,
England, in 1969 and the MS and PhD degrees
in computer science from the University of
Illinois, Urbana, in 1973 and 1977, respectively.
Since 1977, he has been on the faculty of the
University of Michigan, Ann Arbor. He is
presently a professor of electrical engineering
and computer science and the author of numer-
ous papers on computer architecture, program-

ming languages, VLSI design, and computer vision, and he holds a
patent in computer-aided design of VLSI circuits. He has also chaired
about 20 theses in these research areas. His research interests include
computer architecture, computer-aided design, and compilers. In
addition to his position as a faculty member, he is a on the advisory
boards of for several computer companies and venture funds. Dr.
Mudge is a fellow of the IEEE, a member of the ACM, the IEE, and the
British Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

CUPPU ET AL.: HIGH-PERFORMANCE DRAMS IN WORKSTATION ENVIRONMENTS 1153

