
Abstract The conditions for grain boundary (GB)

structural transitions are determined from a diffuse

interface model that incorporates structural disorder

and crystallographic orientation. A graphical con-

struction and numerical calculations illustrate the

existence of a first-order GB order–disorder transition

below the bulk melting point. When thermodynamic

conditions permit their existence, disordered GB

structures tend to be stable at higher temperatures and

are perfectly wet by liquid at the melting point, while

ordered grain boundaries are meta-stable against

preferential melting. We calculate GB phase diagrams

which are analogous to those for liquid–vapor phase

transitions.

The possibility that a grain boundary (GB) may start to

melt below the bulk melting point has long been

speculated. The existence of its free surface counter-

part, surface melting, has been confirmed by experi-

ments [1–3]. Indirect evidence of GB premelting has

been accumulated over decades from observations of

abrupt changes in macroscopic properties such as GB

diffusivities, dihedral angles, sliding and migration

rates [4–8]. However, only limited direct evidence of

GB premelting has been published. Hsieh and Baluffi

imaged boundaries in pure aluminum by TEM [9].

They concluded that GB preferential melting does not

occur below 0.999Tm. Recent direct observations

confirm GB premelting in colloidal crystals [10] and in

multi-component metallic systems [11].

Numerous atomistic calculations and simulations

have been performed to study GB premelting, includ-

ing lattice-gas models [12, 13], molecular dynamics

(MD) [14–21], and Monte Carlo (MC) simulations [22,

23]. Although atomistic methods provide direct and

often accurate calculations of GB structures and ener-

gies, such calculations are not feasible to predict GB

behavior over a range of temperature, stress, chemical

potentials, misorientations, and inclinations. Using a

diffuse interface model developed by Kobayashi,

Warren and Carter (KWC) [24, 25], we present an

analysis of GB structures in the framework of classical

interfacial thermodynamics. The analysis produces

predictions of stability of different GB structures from

general characteristics of thermodynamic data.

For material systems with fixed stoichiometry, the

KWC model uses two coarse-grained field variables to

describe a two-dimensional polycrystalline structure: a

local crystallographic orientation field, hð~xÞ, and a local

crystallinity field, gð~xÞ, which characterizes structure

disorder. Readers are referred to the appendix in Ref.

[26] for discussion on coarse-graining schemes to

calculate g and h.

For a GB plane in which both fields are uniform, g
and h reduce to functions of a single spatial variable x.

Although the GB is diffuse in this model, its position

can be identifies as a narrow region where g is signifi-

cantly less than 1; h changes abruptly at the minimum

of g(x) as illustrated in Fig. 1.
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The GB excess free energy is modeled as following:

F½g; h; T� ¼
Z
Lsys

�
Df ðgðxÞ; TÞ þ m2

2

dg
dx

� �2

þ sgðgðxÞÞ dh
dx

����
����
�

dx

ð1Þ

where Df is the excess homogeneous free energy density

with respect to the single crystal reference state, i.e.,

Df(g = 1; T) = 0. Df is independent of h because the

homogeneous free energy density must be invariant

under rotation of reference frame. At temperatures

close to the melting point Tm, both crystalline and liquid

state are local energy minima and thus Df(g;T) should

have a double well form. The following expression has

been used for Df in previous papers [25, 26],

Df ðg; TÞ ¼ DHmDT

Tm
/ðgÞ þ a2

2
gqð1� gÞq ð2Þ

where q ‡ 2 and

/ðgÞ ¼ ð1� gÞ3ð1þ 3gþ 6g2Þ ð3Þ

/(g) is a sigmoidal interpolation between /(0) = 1 and

/(1) = 0. The second term on the right hand side of

Eq. 2 represents an energy barrier between crystalline

and liquid states, where a2 prescribes the barrier

height. m and s in Eq. 1 are coefficients of the crystal-

linity and orientation gradient terms. The prefactor

function g(g) arises from the coupling between struc-

tural disorder and orientation gradient penalty: the

penalty should decrease with increasing structural

disorder and it vanishes in the liquid state. g(g) can be

a power function, i.e., g(g) = gp, to reflect the coupling,

but, on physical grounds, the exponent p > 1 [26].

The profiles of g(x) and h(x) of an equilibrium GB

can be solved from the Euler equations that produce

minimum of Eq. 1. It is shown [27] that if assuming

g(x) has a single local minimum at the GB core, the

equilibrium h(x) solution should be a step function that

concentrates all its change at the GB center (assumed

to be at x = 0), i.e.,

heqðxÞ ¼ h� þ DhHðxÞ ð4Þ

where H(x) is a unit step function and Dh ” h+ – h–.

Assuming g(x) is symmetrical about the GB and

applying Eq. 4 to Eq. 1, the GB excess energy reduces

to a functional of g(x)

F½gðxÞ; Dh;T� ¼ sDhgðgGBÞ

þ 2

Z 1
0

"
Df ðg; TÞ þ m2

2

dg
dx

� �2
#

dx ð5Þ

where gGB = g(x = 0) is the local crystallinity at GB

center and Dh > 0 is assumed.

The Euler equation for F[g(x);Dh,T] is

m2 d2g
dx2
¼ @Df

@g
ð6Þ

with the boundary conditions

dg
dx

����
x¼0þ
¼ sDh

2m2

dg

dg

����
g¼gGB

ð7Þ

gjx¼þ1 ¼ 1 ð8Þ

The first integral of Eq. 6 is

m2

2

dg
dx

� �2

¼ Df ðg; TÞ ð9Þ

Inserting Eq. 9 into Eqs. 5 and 7 and changing the

integration variable from x to g, we obtain another

form of GB excess free energy and an equation that

determines the equilibrium value of geq
GB:

F

2
¼
Z gGB

0

sDh
2

dg

dg
ðgÞdgþ

Z 1

gGB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2Df ðg; TÞ

q
dg ð10Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2Df ðgGB; TÞ

q
¼ sDh

2

dg

dg

����
g¼gGB

ð11Þ

Fig. 1 Illustration of the profiles of the local crystallinity g and
local orientation h across a planar GB
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Solutions to Eqs. 10 and 11 can be represented

graphically, as illustrated in Fig. 2(a). By plottingffiffiffiffiffiffiffiffiffiffiffiffi
2m2Df

p
and (sDh/2) dg/dg as functions of g, geq

GB is

determined by the intersection(s) of the two curves.

One half of the GB energy, F/2, is the area under the

first curve between 0 and geq
GB plus the area under the

second curve between geq
GB and 1. This graphic con-

struction is similar to the approach used by Cahn in his

critical point wetting theory; in fact, the functional

Eq. 10 is isomorphic to Eq. 4 in Cahn’s original

description of critical point wetting [28]. The possibility

of a first-order GB order–disorder transition below Tm

is illustrated in Fig. 2(b). At temperatures significantly

below Tm, e.g., T1 in Fig. 2(b), the two curves intersect

once at an geq
GB close to 1, which predicts a relatively

ordered GB structure. When increasing T toward Tm,

the meta-stable minimum of Df at g = 0 is lowered

gradually to 0, causing the two curves to approach each

other at low geq
GB. At T2 (> T1) in Fig. 2(b), three

intersections are produced. The rightmost intersection

represents an ordered GB that also exists at T1. The

leftmost intersection represents a (meta-)stable disor-

dered GB of crystallinity geq�dis
GB ,while the middle one is

an unstable solution because it maximizes the area

below the two curves. According to the graphic con-

struction of GB excess energy, the relative stability of

the two solutions for ordered and disordered GBs

depends on the difference between area A and B

shown in Fig. 2(b). When the three-intersection con-

figuration first appears with increasing T, area A is less

than B and the ordered GB solution is more stable.

Because area A increases with temperature, it may

become larger than B at higher T; if so, the disordered

GB becomes the more stable structure. At the tem-

perature where area A equals B, a first-order GB

transition occurs and the equilibrium GB crystallinity

and thickness have a discontinuity. Fig. 2 also shows

that the intersection for the ordered GB may merge

with the middle intersection and disappear at temper-

atures very close to Tm, leaving the disordered GB as

the only stable structure. As T fi Tm, it has been

shown [26] that geq�dis
GB ! 0 and the thickness of the

disordered GB diverges logarithmically. Therefore, the

disordered GB is perfectly wet by liquid (i.e., its stable

thickness is unbounded) at the melting point.

The existence of a first-order GB transition can also

be seen from the Dh – gGB diagram. Dh can be expressed

as a function of gGB and T with Eq. 11 as

Dh ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2Df ðgGB; TÞ

p
s

dg
dg ðgGBÞ

ð12Þ

Dh vs. gGB is plotted at different fixed values of T

(isotherms) in Fig. 3 with model parameters g(g) = g2

and q = 4 in Eq. 2. Dh and T in the plot are non-

dimensionalized as ~Dh ¼ sDh=ðamÞ and ~T ¼ DHm

ðT � TmÞ=ða2TmÞ (the tilde signs above the rescaled

variables are dropped in the figure for convenience).

Figure 3 shows that at relatively low temperatures

(curves with colors from green to red (pdf version)),

GBs have increased disorder with increased misorien-

tation. However, a local minimum and maximum

appear on the curve above a critical temperature.

Misorientations with values between the local mini-

mum and maximum have three corresponding geq
GB

values: the middle one is an unstable solution, and the

other two are solutions for a (meta-)stable ordered or

disordered GB. Among these misorientations, there

exists one Dh that has two GB solutions with equal

energies. This particular misorientation is indicated by

a horizontal tie line (dashed black) in Fig.3. A tie-line

divides a Dh – gGB curve into three parts, i.e., the

disordered GB fraction above the line, the ordered GB

Fig. 2 (a) Graphical determination of the equilibrium GB
crystallinity geq

GB and excess energy F. geq
GB is the intersection

of the two curves in the figure, and F/2 is equal to the hatched
area. (b) Illustration of a possible GB order–disorder transition
below the melting point. T1 < T2 < T3 < Tm. At T = T2, two
(meta-)stable GB structure exist, whose local crystallinities are
geq�ord

GB (ordered GB) and geq�dis
GB (disordered GB)

Fig. 3 Isotherms of Dh – gGB from Eq. 12 and Eq. 2. The
temperature and misorientation values in the plot are rescaled
as DHm (T–Tm)/(a2Tm) and sDh/(am), respectively. The temper-
atures of the curves range from – 5 · 10–4 (blue) to 0 (red). The
critical point of the GB transition is numerically determined to
be Tcrit = – 2.00 · 10–4, Dhcrit = 0.160, and gcrit = 0.249
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fraction below the line, and the fraction between the

two end-points of the tie-line that describes meta-sta-

ble GB states. The end-points of all the tie-lines at each

temperature form two curves that bound the region of

stability (solid black) for the ordered and disordered

GBs. The two lines meet at a critical point, (Tcrit, Dhcrit,

gcrit), which satisfies the following conditions

0 ¼ @Dh
@gGB

����
gGB¼gcrit;T¼Tcrit

0 ¼ @2Dh

@g2
GB

����
gGB¼gcrit;T¼Tcrit

Dhcrit ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2Df ðgcrit; TcritÞ

p
s

dg
dg ðgcritÞ

ð13Þ

The Dh–gGB behavior in Fig. 3 is similar to the iso-

therms in a P–V diagram when there is a liquid–vapor

phase transition. The boundary lines for ordered and

disordered GBs are analogous to the saturated vapor

and liquid lines. In Fig. 4, Dh is plotted against T at

constant gGB, and the result is analogous to the P–T

diagram of liquid-vapor transitions. Two families of

constant crystallinity curves can be identified in Fig. 4.

One family of curves (with colors from blue to yellow)

have non-zero Dh values at the melting point, while in

the other family (colors from orange to red) Dh
diminishes to zero when approaching Tm. The two

groups of curves represent ordered and disordered GB

structures, respectively. The boundary of the region

where curves from both families cross is shown as two

dashed lines in Fig. 4. It signifies the spinodals (or

stability limits) of the two GB structures—the upper

boundary is the spinodal line of ordered GBs and the

lower boundary is for disordered GBs. The boundary

lines for ordered and disordered GBs in Fig. 3 become

a single coexistence line (solid black), DhCE(T), in

Fig. 4. This line and the two spinodal lines end at the

critical point that is determined by Eq. 13. According

to Fig. 4, grain boundaries can be categorized into

three groups:

Dh > Dhcrit, GBs disorder continuously and are com-

pletely melted at Tm;

DhCE(Tm) < Dh < Dhcrit,GBs undergo a first-order

premelting transition that also leads to perfect wetting

at Tm;

Dh < DhCE(Tm), no transition occurs and GB struc-

tures remain ordered up to Tm.

The GB structural transitions illustrated by Fig. 2–4

may not appear in all material systems. Their existence

depends on the shapes of functions Df and g(g) [26].

For example, if choosing q = 2 in Eq. 2 instead of

q = 4, the energy barrier between the liquid and crys-

talline states becomes less deep and it is shown [26]

that the coexistence curve shrinks to a single point

Dh = am/s at Tm. GBs either melt continuously with

Dh < am/s or remain partially ordered at Tm with

Dh < am/s, and there is no GB transition producing

discontinuous structural attributes.

We have shown by graphical construction and

numerical examples that grain boundaries may undergo

an order–disorder transition at temperatures below the

melting point. This transition is analogous to the liquid-

vapor transition, as both are first-order and have a crit-

ical point on the coexistence curve. At the melting point,

disordered GBs completely melt and are perfectly wet

by liquid, but ordered GBs remain meta-stable against

wetting. Finally, a similar but more complicated analysis

can be applied to systems where local concentration is

allowed to vary. A coupled premelting/prewetting tran-

sition is predicted to occur below the eutectic point and

below the solidus line in binary eutectic systems. Details

of this work are published elsewhere [29].
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