
Numerical Analysis of the Shapes and Energies of Droplets on
Micropatterned Substrates

Dominique Chatain,*,† Dan Lewis,‡ Jean-Pierre Baland,§ and W. Craig Carter|

Centre de Recherche en Matie`re Condense´e et Nanosciences, Laboratoire Propre du CNRS associe´ aux
UniVersités d’Aix-Marseille 2 et 3, CNRS, campus de Luminy, case 913, 13288 Marseille Cedex 9, France,

Ceramic and Metallurgy Technologies, General Electric Company, Building MB-223, One Research
Circle, Niskayuna, New York 12309, Centre de Recherche de Mode´lisation Moléculaire, UniVersitéde
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The shapes and energies of drops on substrates patterned with either holes or posts are computed using Surface
Evolver software. The holes and posts are cylindrical in shape and distributed in a 6-fold symmetric pattern. The
wetting conditions are such that the liquid does not fill the holes and the interface between the drop and the substrate
is composite, i.e., partly solid/liquid and partly liquid/vapor. The sequence of stable drop configurations with increasing
volume is analyzed and provides, in part, an explanation for superhydrophobic drop spreading.

Introduction

Wetting and spreading of a drop on a heterogeneous surface
is related to the pinning of its triple line. When a solid surface
is two-phased, made up of discontinuous patches of one phase
on another, and the equilibrium (or Young) contact angles of a
liquid on these two phases are larger than few degrees, the motion
of the triple line across the field of discontinuous surface features
cannot be analytically solved. This paper focuses on surfaces
where composite wetting takes place, i.e., for drops with
macroscopic contact angles much larger than 90°. This surface
phenomenon was identified in 1964 by Dettre´ and Johnson1during
studies of wetting of water on rough wax surfaces. It also takes
place when metallic liquids are in contact with inert rough oxide
surfaces.2 In the framework of wetting by water, the composite
wetting phenomenon has recently been renamed superhydro-
phobicity and is a topic which has received a great deal of recent
interest. To explain some of the experimental features described
in the companion paper,3 Surface Evolver software is used here
to calculate the shape and energy of drops on surfaces with
cylindrical holes and posts distributed in a 6-fold symmetric
pattern. That software was also used recently to investigate the
shape of drops on a rough surface.4 This computational approach
can provide a means for optimizing the superhydrophobicity of
surfaces.

Evolver Data File for Composite Interfaces

Surface Evolver5 is an interactive, finite-element-based
program for the study of surface-energy-defined shapes. Given
a set of user-defined surfaces and constraints, the program adjusts

the geometric elements of the surface toward a minimum energy
configuration using a conjugate gradient method. Because it
minimizes total energy (which may include a combination of
surface and gravitational energies) and can handle arbitrary
topology as well as a wide range of constraints (such as constant
volume and contact angle), Surface Evolver is well suited to
modeling the shape of drops on two-phase surfaces.

In this paper, the shapes of drops are calculated in the absence
of gravity. The drop resides on a two-phase surface that consists
of a continuous so-called “matrix” (phase 1), containing
discontinuous circular patches (phase 2). Two cases are
considered: one where the patches are holes and the matrix is
solid and a second where the patches are solid and the matrix
is a hole. In both cases, the circular patches occupy 50% of the
substrate surface area and the distance between their centers is
1 unit of length. All of the linear dimensions are expressed in
terms of this unit. The interface where the liquid does not contact
the solid, i.e., above the holes, is defined to be flat and coplanar
with the solid/liquid interface. This assumption is not strictly
true as the liquid surface curvature should be constant at any
point of the surface (in the absence of gravity) as noted by the
Laplace equation. In the absence of gravity, this equation can
be written as

where∆P is the constant difference in pressure across the liquid
surface,γLV is the surface energy of the liquid, andR1 andR2

are the two principal radii of curvature of the surface.
If one of the in-plane dimensions of the hole is small relative

to the size of the drop, the liquid surface above the hole is nearly
flat.6

The interfacial potential energy part of the total configurational
energy of a drop calculated with Evolver is

whereγIJ are the energies of the interfaces IJ (liquid/vapor, solid/
vapor, and solid/liquid) andAIJ are the areas of the interfaces.
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E ) γLVALV + Σ(γSL - γSV)ASL (2)
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The summation in eq 2 pertains to the interface between the drop
and the substrate and accounts for the heterogeneity of the interface
that is made up of hole and planar solid. For each of these
components of the substrate, an equilibrium contact angle can
be defined as follows:

Thus,E may be written

which shows that the energy of the drop scales with the liquid
surface energy.

TheθE values used in the calculations are 110° on the solid
surface (which is the contact angle of Pb on SiO2 found in the
companion paper3) and 180° on the top of a hole. For the sake
of simplicity, the liquid surface energy has been set to a value
of 1 unit of surface energy.

Example of Shape

Figure 1 shows four views of a calculated drop residing over 7
holes in the substrate. The volume of the drop is 23 (length
unit)3, and the stability of the drop at this volume and in this con-
figuration has been verified. That is, any small deviations from
the drop shape and position displayed in Figure 1 are unstable.

The top left image (Figure 1a) is a view from the bottom of
the drop and shows the solid/liquid interface (in blue) and the
coplanar liquid surface above the circular holes (in yellow). This
image shows the discretization of the surfaces and interfaces
into triangular areas as performed by the Evolver software. The
triple line of the drop wanders around a mean circular position:
it is indented along the edges of the next ring of holes and protrudes
on the planar solid surface between them. The local contact
angle varies along the triple line: on the plain solid surface, it
approaches the equilibrium contact angle of 110°, and where the
triple line touches the edges of the next ring of holes, it ranges
between 110° and 180°. The calculated local contact angle in the
finite-element simulation will deviate from the true local angle
depending on mesh refinement. In the vicinity of the triple line,
the surface shape of the drop deviates from a spherical cap because
of the wandering of the triple line. The images in panels c and
d are two noteworthy profiles of the sessile drop marked by
arrows in Figure 1a. In the profile in panel c, the contact diameter

of the drop is a maximum and the local contact angle is equal
to 110°, the equilibrium contact angle on the solid surface. The
radius of curvature at the top of the drop isRt1. Fitting the drop
surface with a circle of radiusRt1 gives an estimate of 120° for
the macroscopic contact angle. Thus, the drop profile protrudes
out of that fitted circle in the vicinity of the substrate. In the pro-
file in panel d, the contact diameter is a minimum. The radius of
curvature at the top of the drop,Rt2, is equal toRt1. The circle of
radiusRt2, almost fits the whole drop profile. When approaching
the junction with the substrate, the liquid surface deviates inward
toward the center of the fitted circle, because the triple line is
pinned to the edge of the uncovered holes. For both of the profiles
in panels c and d, the liquid surface deviation is of the order of
the wandering length of the triple line on the pinning defects.
The top view of the drop profile in panel b is a circle of radiusRt

) Rt1 ) Rt2. For this drop, the liquid surface deviation in the vi-
cinity the foot of the drop does not extend above the equatorial
diameter of the drop. Thus, the macroscopic angle of 120° can
be estimated by fitting any drop profile with the Laplace equation,
as long as the fitting process is truncated at a distance from the sub-
strate equal to the amplitude of the triple line wandering on the
defects.

Energy of a Drop
In the following discussion, we investigate changes in the shape

and energy of a drop as a function of volume and number of cir-
cular defects contacted at the interface. It is convenient to discuss
the relative stabilities of drops of different volumes by comparing
their normalized energy, written in the following manner:

whereV is the volume of the drop.
Enorm is a dimensionless number that characterizes the

equilibrium state of a drop shape. For identical wetting conditions,
this number has a constant value for different volumes of liquid.
For example, consider a sessile drop on a smooth surface
containing no discontinuities, whereEnorm is a function of only
its equilibrium contact angle,θE. Figure 2a showsEnorm for the
sessile drop as a function ofθE, which is here equivalent to its
macroscopic contact angle. This curve is independent of the
volume of the drop; that is, any sessile drop of equilibrium contact
angle,θE, has the sameEnorm, given by one point on the curve
of Figure 2a.

We can useEnormto discuss the wetting hysteresis of a sessile
drop because the location of its triple line depends on its volume.
If we fix the triple line of a drop at its equilibrium position for
a given volume,Enorm becomes dependent on the volume of the
drop. Starting with a volume of 1, the normalized energy of such
a constrained drop withθE ) 110° was calculated as a function
of its volume. The result is displayed in Figure 2b. The curve
has a minimum at a volume of 1 where the macroscopic angle
is equal toθE. This minimum corresponds to the stable shape
of the drop. For any volume other than 1, the drop shape is
constrained and metastable. Assigning the constraint to the triple
line, the additional elastic energy due to the nonequilibrium
position of the triple line can be written as

whereke is the elastic constant of the triple line andx andx0 are
the constrained and equilibrium positions of the triple line,
respectively.

Figure 2c compares the normalized energies of constrained
and free sessile drops (Figure 2a) as a function of their macroscopic

Figure 1. Different views of a drop sitting on seven holes. (a) The
bottom view displays the wandering of the triple line; (b) top view;
(c) side view corresponding to the largest contact diameter (horizontal
arrow in panel a); (d) side view corresponding to the smallest contact
diameter (vertical arrow in panel a).

Enorm ) E/γLV(V2/3) (5)

Eel ) 1/2ke(x - x0)
2 (6)

(γSL - γSV) ) -γLV cosθE (3)

E ) γLV[ALV - Σ ASL cosθE] (4)
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contact angles. When the constraint on the triple line is released,
the drops with macroscopic angles lower or higher than 110°
recede or advance, respectively.

Throughout the remainder of this discussion, the normalized
energy will be used for discussing the stability of different
configurations of a drop residing on different numbers of defects
as its volume is increased or decreased.

Shape and Energy of a Drop Centered on 1 and 3
Holes

Figure 3a presents a series of calculated drops centered on-top
of 1 hole as viewed from beneath the drop. The volume of each
drop is given under each picture. The equilibrium contact angle
on the solid is 110°. Figure 3b shows the macroscopic contact
angles of these drops as a function of volume. These angles are
calculated from the radii of curvature at the top of the drops,Rt,
and the heights of the drop,ht, both computed by Surface Evolver,
as follows:

In Figure 3c, both the total and normalized energies of the drop

are plotted as a function of volume. The total energy increases
monotonically with the volume; however, there is a minimum
in the normalized energy near a volume of 2. This minimum in
normalized energy corresponds to the stable drop shape. For any
other volume, the drop shape is metastable. Figure 3d compares
the normalized energies of a drop centered on 1 hole and of a
free sessile drop (similar to Figure 2a) as a function of their
macroscopic contact angles. The stable drop centered on 1 hole
has the same normalized energy as a free sessile drop on a plain
solid with an equilibrium contact angle of 123°. For that stable
drop centered on 1 hole, the area fraction of the solid/liquid
interface was found to be 69.8% from the Surface Evolver
calculation. For a two-phase surface, the relationship between
area fraction and equilibrium contact angle has been described
by Cassie and Baxter7 and is given by

whereai is the area fraction of each component of the interface
(solid/liquid or liquid/vapor).

(7) Cassie, A. B. D.; Baxter, S.Trans. Faraday Soc.1944, 40, 546.

Figure 2. (a) Normalized energy of a free sessile drop as a function of its equilibrium contact angle; (b) normalized energy of a sessile
drop of 110° equilibrium contact angle, with a triple line fixed at the equilibrium position corresponding to a volume of 1, as a function
of drop volume. (c) Comparison of the normalized energies of a constrained sessile drop with a 110° equilibrium contact angle (black line)
and of a free (grey line) sessile drop as a function of their macroscopic contact angles.

Figure 3. (a) Bottom view of a series of drops of different volumes sitting on one hole. The equilibrium contact angle on the solid is 110°.
The volume of each drop is given under each picture. (b) Macroscopic contact angle (calculated from the drop height and the radius of curvature
at its top) as a function of the drop volume. (c) Normalized energy (black line) and energy (grey line) of a drop on one hole as a function
of volume. (d) Normalized energy of a drop on one hole (black line) and of a free sessile drop (grey line) on a plain solid surface as a function
of their macroscopic contact angles.

cos(θmacro) ) (1 - ht/Rt) (7)

cosθCB ) asolid cosθE
solid + ahole cosθE

hole (8)
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Using the area fraction calculated by Surface Evolver, the
Cassie-Baxter contact angle is found to be 123°. This result is
not a coincidence. Indeed,θCB decreases as the volume of the
drop increases due to the increase of the area fraction of the
actual solid/liquid interface. Thus, the stable drop centered on
1 hole has the equilibrium angle for that heterogeneous surface.
If we refer to the previous discussion of the hysteresis of a sessile
drop, the stable drop shape centered on 1 hole has an unconstrained
triple line. This shape corresponds to a unique optimization of
the areas of the different interfaces of the drop on the solid. Only
a numerical minimization such as that enabled by Surface Evolver
can handle the complexity of such drop shapes to allow the
present analysis.

For a droplet having a constant macroscopic contact angle of
110°, Figure 3c shows that the normalized energy first decreases
as the volume of the drop increases. The decrease in energy up
to a volume of 1 is related to the increase in the fraction of the
solid/liquid interfacial area. This decrease continues until the
volume is approximately 2. For drop volumes other than 2, there
is an additional elastic energy due to the nonequilibrium position
of the triple line.

Figure4a-ddisplaysdata related todropsplacedsymmetrically
over 3 holes. Their wetting behavior is similar to that of drops
centered on 1 hole. Figure 4a presents a series of drops centered
on 3 holes, viewed from the bottom, as a function of drop volume.
At lower volumes, the triple line touches the edges of three
neighboring holes, and above a volume of 8, the triple line partly
runs along the edges of nine neighboring holes. As the volume
increases beyond 8, the equatorial diameter of the drop increases
faster than the mean contact diameter. Thus, as for the drop on
top of 1 hole, the macroscopic contact angle increases with the
volume of the drop.

The normalized energy plotted against drop volume in Figure
4b and against the macroscopic contact angle in Figure 4c displays

the same trends as those observed for a drop on top of 1 hole.
For the smallest and the largest volumes investigated, the calcu-
lated shapes are metastable. The normalized energy has a mini-
mum for a volume of about 11.5 and a macroscopic contact angle
of 127°. Comparison with the normalized energy with a free ses-
sile drop shows again that the minimum corresponds to the stable
unconstrained shape of the drop. The area fraction of the actual
solid/liquid interface calculated with Evolver is 64.7%. It
corresponds to a macroscopic Cassie-Baxter angle of 125°, which
is close to the macroscopic contact angle of 127°, calculated for
a volume of 11.5. The discrepancy between these two angles is
related to the large number of triangles required to calculate a
drop with a complex shape. Further refinement of the mesh may
improve the correlation; however, this has not yet been attempted.

From the geometric data of the shape of the drop given by
Evolver, different macroscopic contact angles can be calculated.
These are plotted in Figure 4d as a function of the volume of
the drop. The figure caption gives details on the methods of
calculation. All of the curves display increasing contact angles
with the increasing volume of the drop. The two smallest
macroscopic angles are calculated from the macroscopic dimen-
sions of the drop (height, radius of curvature, and average contact
radius). They have similar values, consistent with measurements
at the macroscopic scale. The two largest angles are determined
by using an average of local contact angles along the triple line.
These clearly deviate from the measurable macroscopic contact
angle. Thus, the local angles do not determine the macroscopic
contact angle of a drop.

Comparison between Different Configurations of
Drops

Drops on Holes.For a more complete analysis, we have
calculated the shape of drops on highly symmetric positions
with respect to a distribution of circular holes. We have selected

Figure 4. (a) Bottom view of a series of drops of different volumes sitting on top of 3 holes. (b) Normalized energy of a drop on top of
3 holes as a function of its volume. (c) Normalized energy of a drop on top of 3 holes and of a free sessile drop as a function of their macroscopic
contact angles. (d) Macroscopic contact angles as a function of the volume of the drop; angle_ht_Rt is calculated with eq 7; angle_ht_radius
is equal to 2 atan(ht/r) wherer is the average contact radius of the drop.r is the average of the distances between the drop center and the
middle of each edge (tl local) along the triple line; angle_local_av is the average of the local contact angles of each triangle of the liquid surface
along the triple line (θ ) Σ(tl localθlocal)/Σ tl local); and angle_acos_av which is equal to acos(Σ(tl local cosθlocal)/Σ tl local) results from a Cassie
type energy average along the triple line.
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drops between 3 holes, between 2 holes, and on top of 1, 2, 3,
4, 5, and 7 holes. The 6-hole configuration was always found
to be unstable relative to the 5- and 7-hole configurations. For
a given volume, the stability of each configuration was checked
by displacing the drop slightly along pertinent paths (generally
high-symmetry axes of the pattern) and allowing Evolver to
move the drop so as to reach the minimum configuration energy.

Figure 5a shows the normalized energy curves as a function
of the drop volume for the different configurations calculated.
For each configuration, the normalized energy is calculated for
volumes around the minimum value. As discussed previously,
the minima in normalized energy correspond to the stable
configurations. Bottom views of each of the calculated con-
figurations are shown in Figure 5b. The color of the frame
surrounding the pictures corresponds to the color of the related
energy curve displayed in Figure 5a.

When the contact area of the drop with the substrate increases
(decreases), the number of holes at the drop-substrate interface
should increase (decrease). There is a minimum envelope of the
curves of Figure 5a that corresponds to the stable configurations
for each volume. When two curves intersect, the configurations
described by these curves are simultaneously stable. For a given
initial condition, changing the volume across such an intersection
indicates a change in drop configuration. The liquid has to spread
between the holes along certain paths for the drop to reach the
next configuration. Along these paths, the drop distorts and
reduces its symmetry; this produces an increase in the liquid

surface area and energy. Thus, a drop cannot change its
configuration until it can overcome the activation energy barrier
separating the configurations, i.e., until it has reached a volume
for which the energy barrier disappears. Because of this energy
barrier, a drop will not be able to access certain configurations
of the minimum envelope of normalized energy.

Figure 6 shows configurations of a drop upon successive vol-
ume increments, starting from “in-between 3 holes” (A) and go-
ing to “on-top of 3 holes” (D). The transition from (A) to the “in-
between 2 holes” (B) occurs at a volume equal to 1. The next
transition to “on-top of 1 hole” (C) takes place when the volume
of the (B) configuration reaches 1.5. The transition from (C) to
“on-top of 2 holes” cannot proceed in the range of volume for
which this configuration is the stablest one because the energy
required to distort the drop is too large. Thus, the drop switches
directly from the (C) to the (D) configuration when its volume
reaches 11. Once a drop has enough energy to pass the barrier,
the transitions from one symmetric configuration to the next is
spontaneous. At the volume for which the transition is allowed,
the normalized energy decreases abruptly. Thus, the images of
the “transition configurations” do not correspond to minima in the
normalized energy, but are snapshots grabbed during the
transition. These images are shown to clarify the path taken by
the drop to change from one configuration to the next. The series
of pictures of Figure 6 show that, when changing between these
configurations, the entire drop undergoes displacement relative
to the substrate.

In summary, when a drop increases its volume, it undergoes
static states and transformations. The static state is where the
drop does not change position and maintains an almost constant
contact area while the macroscopic contact angle increases (see
Figure 3, panels a and b). The transformation occurs when the
volume is large enough for the drop to switch to the next lower
energy configuration by spontaneously expanding its triple line.
Because of the sequential occurrence of static states and trans-
formations on advancing, the triple line successively sticks and
slips as the macroscopic contact angle increases gradually and
then decreases abruptly. Figure 7 illustrates the normalized energy
and the macroscopic contact angle during one stick-slip step on
advancing from configuration C to D (depicted in Figure 6).

When the volume of the drop is decreased (i.e., the triple line
is forced to recede), there is also an energy penalty associated
with configuration changes, and a corresponding stick-slip
motion of the triple line on receding. The change from one
configuration to the next also proceeds through a distortion of
the drop. The distortion of the drop begins before the external
triple line merges with the triple lines surrounding the edges of
the covered holes. The receding transition occurs at a volume
lower than the one at which the normalized energy of the two
configurations are equal, as displayed in Figure 7a in the case
of the receding transition between configuration D and C. Figure
7b shows the whole hysteresis loop of the macroscopic contact
angle between the configurations C and D.

The results of the Evolver calculations are consistent with the
experimental results of the companion paper conducted on
substrates with holes.3 Increasing (decreasing) the volume of a
sessile drop forces the triple line to advance (recede), as in a
liquid bridge experiment where a bridge is compressed (stretched).
In the experiments, the nongravity condition is obeyed for the
triple line formed on the top substrate. In fact, we observe a
stick-slip motion of the triple line and a global motion of the
liquid bridge on advancing and receding.3

Drops on Posts.As in the case of a surface with circular
holes, we have chosen to calculate the shape of drops placed on

Figure 5. (a) Normalized energy of drops of different configurations
on a substrate with holes; (b) the bottom views of the different
configurations calculated with Evolver.
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highly symmetrical positions with respect to the post distribution.
Drops covering up to 7 posts have been calculated. Figure 8
shows drops on 1, 2, 3, 4, 5, and 7 posts. The 6-post configuration
was always found to be unstable as compared to the 5- and
7-post configurations.

Figure 8a shows the normalized energy of drops on a substrate
with circular posts as a function of drop volume. Each of the
calculated configurations is displayed in Figure 8b. The color of
the frame surrounding the pictures corresponds to the color of
the energy curve displayed in Figure 8a. For each configuration
the normalized energy is calculated for different volumes ranging
about the volume for which the normalized energy is a minimum.
As in the case of a surface with holes, there is a minimum envelope
of the curves of Figure 8a that corresponds to the stable
configurations for each volume.

As was discussed previously, both drop configurations are
stable at the intersections of their energy versus volume curves.
At constant volume, the drop configuration having the lowest
normalized energy is preferred. The mechanisms by which a
drop on posts changes its configuration are different from the
one discussed for a drop on holes. The main difference arises
from the fact that a drop in contact with more than one post has
a discontinuous triple line. This point has been stressed by Chen
et al.8 Advancing or receding of the drop is determined by what
happens to the segments of triple line contacting the posts at the
periphery of the macroscopic solid/liquid interface. Two types
of behavior of the triple line are observed. Either it is stuck on
the edge of the peripheral posts or it lies on these posts and
moves across them when the volume of the liquid is increased

(8) Chen, W.; Fadeev, Y.; Hsieh, M. C.; Oner, D.; Youngblood, J.; MacCarthy,
T. J. Langmuir1999, 15, 3395.

Figure 6. Different stages of the shape of a drop as it advances from “in-between 3 holes” to “on-top of 3 holes”. In each row, the drops
have the same volume indicated in the left cell.

Figure 7. (a) Hysteresis loop on advancing and receding of the
normalized energy of drops from “on-top of 1 hole” to “on-top of
3 holes” as function of volume; (b) corresponding hysteresis loop
of the macroscopic contact angle of the drop versus volume.
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or decreased. This happens when the local contact angle on the
post can adopt the equilibrium value of 110°.

On advancing, a drop cannot jump from one configuration to
the next. To advance, the liquid surface must touch another post
at the foot of the drop. If the volume of a drop on one post is
increased under no-gravity conditions, the drop will remain on
that post whatever its volume. Its shape will just be a spherical
cap truncated by the circular surface of the post. The larger the
volume, the closer the macroscopic contact angle is to 180°. The
same type of situation occurs if the drop resides on several posts.
During advance, the triple line is attached to the edge of the
peripheral posts. This explains the very high advancing angle
under no-gravity conditions, as is observed on the top substrate
of the liquid bridge experiment.3The very high advancing contact
angle partly explains the mobility of drops on such surfaces.8

The liquid surface has to be forced in order to come into contact
with new posts in order for the drop triple line to advance. This
can be achieved by increasing the pressure in the liquid to change
the curvature of the drop. In the liquid bridge experiment, the
contact on the top substrate is forced by compressing, whereas
on the bottom substrate, the hydrostatic pressure forces the contact
with new posts.

On receding, the local contact angle on the post in the Surface
Evolver calculations can reach 110°. Thus, the receding contact
angle will be smaller than the advancing one and lie closer to
the equilibrium angle calculated using the Cassie-Baxter equation

(eq 8). The segments of triple line on the peripheral posts slide
backward during receding, and their lengths on the peripheral
posts monotononically decreases to zero. When the slipping
motion of the line ends, the periphery of the drop is again attached
on another set of posts. If there is any sharp detachment from
a post, it only changes the mean position of the triple line by the
distance between two posts. Thus, the local contact angle can
remain at a value of 110° on this new set of posts.

The macroscopic contact angle changes very little on advancing
or on receding. This would explain the experimentally observed
smooth motion of the triple line on advancing and receding. The
superhydrophobic condition is explained by this feature, as there
is almost no sticking of the triple line on the surface for both the
advancing and receding conditions. The ideal superhydrophobic
surface would correspond to a substrate where the surface fraction
occupied by the posts is very small, such that the receding angle
is close to the advancing one.

Concluding Remarks
The wetting behavior of drops on surfaces with features

consisting of holes and posts was studied by numerical methods
using Surface Evolver. The energetics of wetting and wetting
behavior for droplets on a continuous matrix (smooth surface
with holes) have been shown to differ from droplets that wet
isolated posts (liquid/vapor surface with posts).

For a given volume of liquid, stable drops sit on more posts
than holes. This is because, in the case of holes, a drop can
reduce its energy by spreading between the holes when its volume
increases, without undergoing a change of configuration. In the
case of posts, the drop energy is reduced when the liquid contacts
new posts; that is, the drop changes configuration.

For a constant area fraction of wetted surface, the motion of
a drop on posts is much easier than on a surface with discontinuous
holes because the maximum contact angle hysteresis is nearly
constant. This explains, in part, the phenomenon of superhy-
drophobicity. On surfaces where the triple line is continuous,
droplet advancing and receding proceeds by a stick-slip motion
of the triple line and wetting hysteresis shows significant scatter.
Our calculations show that the drop can be strongly pinned by
the edges of the holes.

When the triple line of a drop moves spontaneously, the whole
drop moves as well because there is no center of symmetry of
the surface features for any value of drop volume. The direction
of motion depends on the location of surface features. When the
distribution of substrate features contains symmetry, as in this
case, there are equivalent displacement directions. Thus, the center
of gravity of a drop on a heterogeneous substrate is not fixed and
can follow a variety of possible paths as a result of volume
increase or decrease.
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Figure 8. (a) Normalized energy of drops of different configurations
on a substrate with posts; (b) bottom views of the different
configurations calculated with Evolver.
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