PHYSICAL REVIEW E 73, 011402 (2006)

Ionic colloidal crystals: Ordered, multicomponent structures via controlled heterocoagulation
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We propose a new type of ordered colloid, the “ionic colloidal crystal” (ICC), which is stabilized by
attractive electrostatic interactions analogous to those in atomic ionic materials. The rapid self-organization of
colloids via this method should result in a diversity of orderings that are analogous to ionic compounds. Most
of these complex structures would be difficult to produce by other methods. We use a Madelung summation
approach to evaluate the conditions where ICC’s are thermodynamically stable. Using this model, we compare
the relative electrostatic energies of various structures showing that the regions of ICC stability are determined
by two dimensionless parameters representing charge balance and the spatial extent of the electrostatic inter-
actions. Parallels and distinctions between ICC’s and classical ionic crystals are discussed. Monte Carlo
simulations are utilized to examine the glass transition and melting temperatures, between which crystallization
can occur, of a model system having the rocksalt structure. These tools allow us to make a first-order prediction
of the experimentally accessible regions of surface charge, particle size, ionic strength, and temperature where

ICC formation is probable.
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I. INTRODUCTION

Natural opal’s unique optical properties arise from micro-
scopic particles ordering in large arrays. With the availability
of monodisperse colloidal particles, extended ordered arrays
have been produced artificially through various techniques
including hard-sphere interactions, fluid flow, and electro-
static repulsion [1-8]. These arrays are generally composed
of a single-particle type, limiting the number of possible
structures. To produce a wider variety of structures, various
two-component approaches have been implemented [9-17].
The resulting structures are those that occur in metallic sys-
tems, such as the AB, AB,, and AB,; structure types. While
some of these structures have ionic analogues (such as CsCl),
their stability does not arise from attractive electrostatic
forces. These systems exhibit strong variations with the par-
ticle volume fraction, the number ratio of the two particles,
the size ratios of the two particles, and the degree of size
dispersity. This phase space typically has multiple phases
present in equilibrium, with one phase often being a colloidal
liquidlike phase, where particles have high mobility and can
readily rearrange.

In this work, we investigate the possibility of a new type
of two-component colloidal crystal that is stabilized by at-
tractive electrostatic interactions. Such attractions are widely
considered to only allow random aggregation; however, we
show that a mixture of positively and negatively charged
particles tailored within certain experimental constraints is
energetically and kinetically likely to form an “ionic colloi-
dal crystal” (ICC) [18,19], stabilized by long-range attractive
forces. In previous colloidal crystals utilizing repulsive elec-
trostatic interactions, the ordered state minimizes the repul-
sive energy between many particles in a confined volume;
however, in an ICC, the attractive forces involved in crystal-
lization should result in dense ordered aggregates with no
need for volumetric confinement. The utilization of con-
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trolled attractive interactions makes ICC’s a fundamentally
new colloidal phenomenon.

A system utilizing attractive forces should allow rapid
crystallization while also allowing a more diverse colloidal
phase space through the variation of system parameters that
tune the relevant interactions. Being fundamentally enthalpy
driven rather than entropy driven, ionic colloidal crystalliza-
tion is more likely to yield robust equilibrium phases, similar
to natural ionic compounds. Structures that could be poten-
tially realized include zincblende, which should exhibit a
complete photonic band gap with relatively low refractive
index contrasts [20], and rutile, which has potential catalysis
and filtration applications due to the presence of ordered
structural channels. In this paper, we predict the conditions
under which ICC’s are energetically stable by developing a
model reducible to a pair of dimensionless parameters: a
screening ratio (A), characterizing the spatial extent of the
electrostatic interaction, and a representative point-charge ra-
tio (Q). We discuss the control of heterocoagulation that is
necessary to avoid low packing density noncrystalline
reaction-limited cluster aggregation (RLCA) and diffusion-
limited cluster aggregation (DLCA) [21-23], both of which
are more typically observed in colloidal systems where both
signs of charge are present. We find the conditions under
which ICC’s are energetically and kinetically favorable to be
restrictive, suggesting that they are unlikely to occur
accidentally.

II. BACKGROUND

Colloidal interactions have been widely studied since the
seminal works of Derjaguin and Landau [24] and Verwey
and Overbeek [25]. The Poisson-Boltzmann equation, which
describes the interactions of solvated ions in the potential
field of a charged surface, has been widely used to model and
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predict a variety of colloidal behavior. Here, we utilize the
linearized Poisson-Boltzmann equation [Eq. (1)] to model
the electrostatic interactions in ICC systems:
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Here ¢ is the electrostatic potential, « is the Debye param-
eter, p is the spatial charge distribution, and gye, is the per-
meability of the solvent. The linearized Poisson-Boltzmann
equation (PBE) strictly applies only for small electrostatic
potentials. In the present work its main strength is that it
allows analytical solutions that provide physical insight into
the experimental parameter spaces favorable for ICC forma-
tion. In cases where the electrostatic potential is large, the
analytical solutions obtained herein will be less accurate in
terms of predicting phase stability, but still useful for illus-
trating behavioral trends and identifying regimes in which
more detailed models are necessary. While numerical solu-
tions to the nonlinear PBE could be used to obtain more
accurate results, we use the less computationally intensive
analytical solutions to enable characterization of a large
phase space, as shown in the results below. Furthermore, for
Monte Carlo or Brownian dynamics simulations, it is neces-
sary to linearize the PBE allowing the superposition of par-
ticle interactions, as solving the nonlinear PBE for the poten-
tial fields in a many-particle system is computationally
prohibitive.

It is also necessary to choose appropriate boundary con-
ditions at the particle surfaces in order to accurately model
closely approaching colloids. Consider the two limiting cases
of a constant surface potential or a constant surface charge.
While the constant surface potential boundary condition has
been widely used to model heterocoagulation behavior, ex-
emplified by the theory of Hogg, Healy, and Fuerstenau
(HHF) [26], models based on this approximation diverge to
an infinite binding energy at contact. In reality, at some point
during the approach of two oppositely charged particles, the
surface must reach a limiting maximum charge in order to
maintain a finite energy. Thus, in dense colloidal suspensions
we expect particle surfaces to exhibit constant surface charge
behavior. Systems in the heterocoagulation regime exhibiting
such behavior have been demonstrated [18].

The choice of a suitable interparticle potential is of course
also critical. Three principal potentials exist for treating
constant-surface-charge behavior under the linearized
Poisson-Boltzmann equation [Eq.(1)]: the Yukawa-type po-
tential (or screened Coulomb potential common to DLVO
theory [24,25]), the Ohshima potential [27], and the Wiese-
Healy potential [28]. Consider the underlying assumptions
for each. An important assumption of the Yukawa-type po-
tential is that the ionic strengths of the particle interior and
the solution phase are identical. As there are no assumptions
about additional neighboring particles, superposition is pos-
sible. This potential is commonly used across a wide range
of colloidal conditions to model repulsive interactions. How-
ever, this potential has not to our knowledge been used to
model behavior in attractive systems, primarily due to the
fact that it breaks down at close range if the particle core and
the solution differ. However, for systems of low ionic

PHYSICAL REVIEW E 73, 011402 (2006)

strength, particularly for those with nearly identical dielectric
constants of the solution and particles, it can be shown that
the deviations of the Yukawa-type potential from solutions
obtained by numerically solving the linearized Poisson-
Boltzmann equation over a periodic structure such as an ICC
are small as would be expected from the approximations
used in developing the potential [18].

The Ohshima potential improves upon the Yukawa-type
potential by adding iterative terms correcting for the dielec-
tric constant and ionic strength of the particle core. It in-
cludes the Yukawa-type potential as the first-order term, but
adds a series of converging infinite sums for these correc-
tions. However, in making these corrections, a new assump-
tion is made that the two interacting particles are only sur-
rounded by solution. Therefore, in dense colloidal
suspensions and particularly at low ionic strengths where
multiparticle interactions must be taken into account, this
model becomes inaccurate.

The Wiese-Healy model assumes that the ionic strength is
large, utilizing the Derjaguin approximation [29] to develop
the potential. The Ohshima potential converges to the Wiese-
Healy potential at large ionic strengths, but is useful over a
much larger range of ionic strengths. Therefore the Wiese-
Healy potential carries the same limitations as the Ohshima
potential.

While no potential is available that is applicable over all
regimes of colloidal behavior, we utilize the Yukawa-type
potential in this study since low ionic strengths are necessary
to develop the repulsion between next-nearest and farther
neighbors essential for structural rearrangement into ordered
arrays. A simple thought experiment illustrates this point
(Fig. 1). Consider the surface of a disordered aggregate. If
potentials are only short ranged, meaning the interaction has
a shorter length scale than the particle size, a particle in
solution can attach to a dissimilar particle on the heteroag-
gregate, but the energy of this particle is nearly identical to
that of a free dipole having only one particle-particle inter-
action. In the absence of longer-range repulsion, dissociation
of the heteroaggregated dipole must occur to allow particle
rearrangement. Therefore, a system with only short-ranged
interactions will either form, above a critical temperature, a
plasmalike suspension of particles attracted to dissimilar par-
ticles or, below the critical temperature, a glass consisting of
aggregates with no colloidal mobility. This plasmalike and
glassy behavior has been reported in DNA-based systems
[30] which have predominantly short-ranged interactions.
While tunable “melting” points could be achieved, crystalli-
zation was prohibited due to the sharp transition to a glassy
state. Note that this behavior is not dependent on the exact
physical forces but only on the range of the force relative to
the particle sizes.

However, in systems with long-range next-nearest-
neighbor repulsive interactions, the binding energy of a par-
ticle adhered to the surface can be significantly lower than
that of a free dipole. In such systems surface and bulk reor-
ganization are possible at temperatures below that required
to break all dipoles. The reorganization necessary for crys-
tallization now becomes possible. For electrostatic interac-
tions, in general a low ionic strength will be required to
produce these long-range interactions, allowing us to use the
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FIG. 1. Three possible environments are considered for a col-
loidal particle to illustrate the influence of the range of interaction
potentials on heterocoagulation behavior. In the first case (a) high
ionic strengths lead to large screening and short-range interactions
(black circle). This case as drawn is nearly identical in energy to
that for an isolated dipole pair (b). The particle in question only
interacts significantly with one part. In both of these cases, mobility
of the colloids requires a temperature similar to that necessary to
make a colloidal “plasma” (where no particles are associated and
the aggregate dissociates rather than rearranges). For such a system,
only two states may exist: a glassy (frozen state) and a plasmalike
state (all free flowing particles). In a system with a low ionic
strength (c), the long-range potentials give repulsion between simi-
lar particles in the aggregate. The binding energy of a particle to the
surface is significantly reduced from that of the dipole state. Here,
at a temperature well below the “plasma” temperature, the system
can rearrange. This construction illustrates why systems with only
short range forces (i.e., van der Waals forces or DNA-mediated
interactions) generally either have no mobility (glass like) or are
fully dispersed (plasma like). The rearrangement necessary to ob-
tain ICC’s requires long-ranged potentials that can be achieved in
low-ionic-strength systems.

Yukawa-type potential to describe the pair interaction energy
(U,,) for particles separated by a distance r:

exp(— «r)

1
Ulz(”) = e 0,0, (2

41
Here the representative point charge (Q,), Eq. (3), is defined
as the magnitude of the point charge located at the particle
center necessary to generate equivalent electrostatic fields
(outside the particle) to those from a spherical shell of charge
with the same radius as the particle (q;). For clarity, we
present the representative point charge in terms of both the
total surface charge (g;) and the surface charge density (o;):

exp(xa) _
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Other theories of charged-particle interactions in a me-
dium of charged species have been proposed as alternatives
to Poisson-Boltzmann theory. For example, Sogami-Ise
theory [31] is developed to explain behaviors not explained
by traditional DLVO theory, but does not appear to accu-
rately model colloidal interactions [32]. Another example of
an alternative model [33] was developed to simulate experi-
mental situations where the particles and ions are of similar
size, breaking the assumption of ergodicity necessary in
Poisson-Boltzmann theory. We do not utilize these or other
alternative approaches in this work mainly because these
theories currently lack the volume of experimental confirma-
tion available for DLVO potentials. The Yukawa-type poten-

0;= (3)
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tial has been used since the inception of DLVO theory to
successfully describe many aspects of colloidal behavior and
is the most suitable of available potentials to describe an ICC
system given that the colloids considered here do not violate
the approximations of Poisson-Boltzmann theory.

In any colloidal system other short- and long-range inter-
actions may also be present including van der Waals, acid-
base, and depletion interactions, as well as gravitational or
other imposed fields. We focus on the interactions that lead
to attractive electrostatic stabilization of a crystalline array,
recognizing that other interactions may modify the results.
These interactions can be incorporated into the electrostatic
model of ICC stability presented here and experimentally
can often be tailored separately from the electrostatic inter-
actions. As one example, the usually attractive van der Waals
interactions can be rendered negligible or even repulsive de-
pending on the dielectric response functions of the materials
and the solvent [34].

III. MADELUNG SUMMATION

Using the Yukawa-type potential, we constructed a model
based on a Madelung summation [35] to identify conditions
of crystalline stability in systems of oppositely charged par-
ticles. The Madelung sum gives the electrostatic energy of a
crystal, relative to that of an equal number of isolated lowest-
energy formula units for that structure type, and by conven-
tion, is greater than unity for an electrostatically stable crys-
tal. It is calculated by first summing the interaction potential
over all nonequivalent lattice positions. For a two-
component system, the energy of one site (U,) is

,exp(— kry)

<N1Q1Q2 - + N0 .
1 2

wm) )

r3

exp(— kry)
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41e €
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Here, N; corresponds to the number of symmetry equivalent
particles at each distance (r;). This is then normalized with
respect to the individual bond strength, which is simply the
nearest-neighbor interaction energy, giving the Madelung
sum («,) for that site:

r r
a =N, + Nzg—l exp(kr| — kry) +Ng—1 exp(kr| — kr3)
272 T3
+ e (5)

Equation (5) can be rewritten in terms of two dimensionless
parameters with simple physical meanings, a representative
point-charge ratio (Q) and a screening ratio (A):

a%o-, exp(ka,)(ka, + 1)

(6)

T a30, exp(kay)(kay + 1)

A=«kri=«k(a,+a,). (7)

In classical ionic crystals, Q is limited to values resulting
from the valence of the constituent ions and the stoichiom-
etry of the compound. However, for ICC’s, Q can be a con-
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FIG. 2. The Madelung constant for a rocksalt structure is shown
as a function of the dimensionless length A and the representative
point charge ratio Q. At high values of A, the Madelung constant
approaches a maximum value of six (equal to the number of nearest
neighbors) corresponding to only nearest-neighbor interactions. At
lower values of A next-nearest-neighbor repulsion becomes more
significant, reducing the Madelung sum. The unfilled regions at left
have a Madelung constant below one, indicating that this crystal
structure is not stable under those conditions. The summation is
reciprocally symmetric about Q=1 for this structure.

tinuum of charge ratios because the charge on the particles is
essentially continuously variable. This allows ICC’s to have
a nonideal charge ratio for a given structure, while still re-
maining energetically stable in that structure. The second di-
mensionless parameter A gives the spatial extent of the
screening relative to the particle radii.

By substituting these dimensionless parameters into Eq.
(5), a simplified expression for the Madelung constant is ob-
tained:

a; =N, —NZQ? exp(A - A—2> +N3? exp(A - AB>
2

’
r 3 r

b )

Both the number of particles at each nth-nearest-neighbor
site and the ratios of the distances, r;/r;, are characteristic of
a given structure and are not variables in the final summa-
tion. From Eq. (8) we see that the Madelung “constant” for
an ICC system is not a single value, but actually a Madelung
surface, varying with the dimensionless parameters Q and A.
This surface can be used to determine the experimental con-
ditions under which different ICC structures are stable.

The last step of this Madelung formulation is a weighted
summation of the Madelung sum from each nonequivalent
lattice site; the number of which is determined by the struc-
ture type under consideration. For the rocksalt structure type,
there are two nonequivalent sites, the cation and anion sites,
which make the first terms of the total Madelung sum (ay):

(Q 1 )exp[A(l - VE)] exp[A(1 - \E)]
ar=6-12\ =+ — +8
220 2 &)
Q1 \explAL-\4)]
- 6( 2 " ZQ) V4 ' ©)

Figure 2 shows the Madelung surface for the rocksalt
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FIG. 3. By comparing the Madelung sum of various structures,
a phase stability diagram can be constructed showing the most
stable structure of those considered for a given Q and A. While
other situations are possible, here a 1:1 number ratio of particles is
considered. Various phase fields can be removed via Pauling’s rules
to give all of the structures accessible at a certain size ratio. For a
given system of particles, the relation of A and Q is given by a
monotonic function. Three different size ratios of particles are illus-
trated here. Movement along a curve is only due to an increase in
the ionic strength of the system as all other parameters are held
constant. The system becomes more sensitive to changes in ionic
strength as the size ratio moves away from unity.

structure as a function of the two dimensionless parameters.
Note that although this structure has an ideal representative
point-charge ratio of unity, for an ICC deviations from this
ideal ratio can still result in a stable crystal («>1) even
though the magnitude of « is not at a maximum for that
value of A. At small values of A (large Debye length), de-
viations from the ideal charge ratio result in a larger ener-
getic penalty since the solution is less able to screen the
imbalance in particle charge. For large A (small Debye
length), particles are highly screened, leaving only nearest-
neighbor interactions. Thus, in this limit, the Madelung sum
approaches a value equal to the number of nearest neighbors,
6 in the case of the rocksalt structure. As discussed earlier,
these next-nearest-neighbor repulsions are important for
structural rearrangement, so a Madelung sum near this over-
all maximum value is nonideal for ICC formation.

We calculate « for six structure types—rocksalt, zinc
blende, wurtzite, cesium chloride, ruthenium oxide, and
fluorite—and show their relative stability for a 1:1 number
ratio of particles in Fig. 3 (other cases are considered in
[18]). Each field identifies the most stable of the six struc-
tures (largest value of «) in that parameter range. At large
values of A, the lowest-energy structure is always that with
the most nearest neighbors. At this extreme, the electrostatic
interactions are short ranged, leaving little next-nearest-
neighbor repulsion. On the other hand, at small values of A,
the Yukawa-type potential reduces to Coulomb’s law, and as
expected, we obtain the established Madelung constants for
atomic ionic crystals (e.g., 1.748 for rocksalt, 1.638 for zinc
blende, and 1.641 for wurtzite). Other structures not yet
evaluated (e.g., rutile, corundum) or defective ICC structures
(e.g., with vacancies for charge compensation) may be stable
as well. For example, ordered vacancy structures such as
bixbyite or pyrochlore could form to compensate non-integer
charge ratios.
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Pauling’s rules provide further criteria for structural sta-
bility [36]. For example, following classical arguments, a
crystal with a 1:1 stoichometry should favor the cesium chlo-
ride structure if the ratio of particle diameters is <1.366, the
rocksalt structure if the ratio is <2.415, and the wurtzite or
zinc-blende structures (which are very close in electrostatic
energy) if the size ratio lies above 2.415 [37]. A structure
with a certain ratio of particle sizes can exhibit a site filling
characteristic of a smaller size ratio, but tends not to exhibit
one characteristic of a larger size ratio, in which the small
ion would not touch all the adjoining nearest neighbors. This
would result in a cage of nearest neighbors of the same
charged species forced together against large repulsion,
while the increased separation between the small ion and its
nearest neighbors results in a reduced attractive force. A
smaller coordination number may then be energetically fa-
vored. Therefore, upon systematically decreasing the size ra-
tio, the rocksalt structure can be made more energetically
favorable than cesium chloride (with a critical size ratio of
=1.366) and wurtzite can be stabilized over both (with a
critical size ratio of =2.415). The phase diagram presented
in Fig. 3 will then change as the size ratio is varied across a
critical size ratio from Pauling’s rules and certain structures
are eliminated.

The surface charges of particles are typically regulated
through materials selection and surface functionalization.
Additionally, the absolute and relative particle sizes can be
independently controlled. However, once the sizes and sur-
face charge densities for a system of particles are chosen, the
energy of the system is constrained to lie along a line given
by Eq. (10). As the solution ionic strength is changed, the Q
and A are related by this function, for which examples are
given by the curves in Fig. 3 for three size ratios

Q(A) —_R Rz- I+A+ Rsize exp(ARsize -1 )
T+ ARy + 1 R +1

—_R 1+A+Rsize (ARsize_l) (10)
ST AR+ 1 TP\ R+ 1)

size

Here, R, is the ratio of surface charge densities, R, is the
ratio of surface charges, and R, is the ratio of particle sizes,
where all ratios are defined for the properties of the large
particle over those of the small particle.

The slopes for the three curves in Fig. 3 further illustrate
that the sensitivity of Q(A) to the ionic strength of the sol-
vent depends on the particle size ratio. For size ratios near
unity, variations in ionic strength have little effect on the
representative point-charge ratio, Q. Therefore, the stability
of crystals should be tolerant to ionic strength. However, for
size ratios far from 1, small changes in ionic strength have a
large effect on the representative point-charge ratio.

We envision fabricating ICC’s from suspensions contain-
ing multiple particle types that are individually nearly mono-
disperse. The effect of particle size polydispersity on ICC
stability is examined using Eq. (10) with the charge density
on the particle surface remaining constant with size varia-
tions. In Fig. 4, variations on Q(A) are illustrated for several
systems. The illustrated regions of stability are constructed
from all possible combinations within one standard deviation
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FIG. 4. Several parameters impact the range of representative
point-charge ratios present in a system with particle size dispersity.
We illustrate the effects of several of these variations for systems
with a constant surface charge density. (a) First, we consider the
effect on dispersity for systems with Q(0)=1, 3% dispersity, and
three different size ratios (1, 2, and 3). The shaded regions corre-
spond to the existing charge ratios for all pair combinations within
one standard deviation of the central particle sizes. The white lines
illustrate the ideal case (i.e., no dispersity) within each region.
These variations in charge ratio, which are larger in higher-size-
ratio systems, can result in several competing stabilized phases thus
frustrating crystallization. The control of screening ratio then be-
comes even more critical. (b) The impact of various size dispersities
is shown for systems of Rj;,,=2 with 1%, 3%, and 5% dispersity.
The large growth in the existing charge ratios with increasing dis-
persity highlights the necessity of minimizing dispersity as much as
possible. Dispersity not only may cause competing phase fields, but
may also result in multiple types of site filling by Pauling’s rules
further increasing the number of competing phases.

of the ideal particle sizes. In Fig. 4(a), the effect of polydis-
persity on three ideal size ratios is considered. Large size
ratios not only cause a sharp increase in the ideal represen-
tative point-charge ratio with screening ratio, but also result
in a more rapidly broadening range of charge ratios present
in the system with increasing screening ratio. These results
demonstrate the difficulty in attaining structures with large
size ratios (such as wurtzite) over those with near-unity size
ratios (such as CsCl). Increased dispersity [as shown in Fig.
4(b)] results in a larger number of competing structures and
can possibly result in two different types of site filling as
given by Pauling’s rules. In both cases, the presence of com-
peting structures will increase the likelihood of frustrated
crystallization (glass formation). Therefore, to maximize the
likelihood of crystallization, the present results emphasize
the need for systems with size distributions narrow enough to
not stabilize other phases.

IV. SIMULATIONS OF ICC FORMATION

While the Madelung summation shows when crystalliza-
tion is favored over dispersed particle pairs, it does not ad-
dress the issue of whether crystallization is kinetically favor-
able over glass formation. Since effective crystallization
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requires the tuning of particle interactions to give a melting
temperature above and glass transition temperature below the
experimental temperature, a computational study of the
“melting” behavior of ICCs can provide fundamental insight
and guide experiments. We utilized a Monte Carlo approach
to calculate the free energy (using the Yukawa potential) of
dense disordered heterocoagulates (liquid or glassy state) and
an ICC of the rocksalt structure. A constant number, pres-
sure, and temperature (NPT) ensemble was utilized at zero
pressure. As the pressure exerted by the solution is uniform
around the particles and therefore does not change between
the various phases, the relevant pressure in calculating the
free energy is that exerted by the free colloidal particles in
solution, which is usually negligible. For example, the pres-
sure of a dilute (1%) colloidal suspension of 1-um particles
at 300 K acting as an ideal gas is 8 X 10~ Pa. In other such
cases of low pressure, a zero-pressure assumption has suc-
cessfully been used to accurately model atomic phase behav-
ior [38]. We modeled a system of particles which based on
the Madelung summation is stable in the rocksalt structure
type. Conditions giving a value of A=3 were used, and the
particle radii and surface charges were chosen to be 1 um
and 767 positive charges (electron equivalents) for the “cat-
ion” and 0.5 um and 1389 negative charges for the “anion,”
giving an actual surface charge ratio of 0.55 and a represen-
tative point-charge ratio of 1. The simulated solvent is given
the properties of 2-propanol at room temperature.

First, the free volume of the ordered and disordered sys-
tems was examined. The free volume of the ordered state
smoothly increased with temperature (Fig. 5), while that of
the disordered state shows a change in slope at 6950 K,
which is indicative of a glass transition. Below the glass
transition temperature, each particle can only move within its
potential energy well, while above this temperature particle
diffusion is activated. For ICC formation, the experimental
temperature must lie above the glass transition point.

For both ordered and disordered systems, the internal en-
ergy of the system (the sum of all particle interactions) was
obtained over a wide range of temperatures. A fit of this data
to Eq. (11) was used to calculate the entropy. The free energy
of each phase is then given by Eq. (12), where the pressure
term is equal to zero (Fig. 6):

hc T 9HIOT
S= JdT:f —|PdT, (11)
0 T 0 T

G=U+PV-TS=U-TS. (12)

Here, S is the system entropy, C, is the heat capacity of the
system, T corresponds to the temperature at which the en-
tropy is calculated, H is the system enthalpy, G is the Gibb’s
free energy of the system, P is the pressure applied by col-
loids in solution, V is the system volume, and U is the inter-
nal energy of the system.

Figure 6 shows an ICC melting point of 7850 K, which is
located where the free energies of the disordered heteroco-
agulate and the ICC cross. The transition temperatures for
this system are clearly well above any practical temperature.
This system would be greatly undercooled at room tempera-
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FIG. 5. The free volumes for ordered (ICC) (fit, solid line; data
points, X’s) and disordered states (fit, dashed line; data points, dia-
monds) are shown as a function of temperature for a system of
I-pm particles with 767 positive charges (electron equivalents) for
the “cation” and 0.5 wm and 1389 negative charges for the “anion”
dispersed in 2-propanol. The free volume of the ordered state in-
creases smoothly, while that of the disordered state shows a distinct
discontinuity at 6950 K. This discontinuity is evidence of increased
mobility above this temperature. Below this temperature, the struc-
ture exhibits a glasslike state with little mobility. The discontinuity
is indicative of a glass-transition temperature. For ICC formation to
occur, the experimental temperature must be above the glass tran-
sition temperature. While the temperatures presented seems imprac-
tical, reductions in the particle interactions will result in an equally
scaled glass transition temperature. For example, reducing particle
interactions from those in the simulated system by a factor of 20
reduces the glass transition temperature to 345 K, a much more
accessible temperature.

ture, and a glasslike hit-and-stick behavior would be ex-
pected due to the absence of colloidal mobility. Indeed, this
is the type of behavior normally observed for heterocoagu-
lating colloidal systems. We used these extreme conditions in
this example to illustrate a key finding: most heterocoagulat-
ing systems will have too high a binding energy to kineti-
cally allow crystallization even when the crystal is energeti-
cally the ground state. However, the Monte Carlo
simulations are readily rescaled to show when the critical
temperatures become practical. In the formulation of Monte
Carlo simulations, the interaction energies always appear in
conjunction with temperature; therefore, halving the interac-
tion energy will give identical results at half the temperature.
Reducing the strength of interactions by reducing the amount
of surface charge—i.e., increasing the particle size with a
constant amount of surface charge or otherwise reducing the
interaction energy—will lead to lower ICC critical tempera-
tures.

From the expression for the enthalpy of the system (the
bond strength multiplied by the Madelung sum), the melting
point (7,,,;) can be expressed as a function of system param-
eters as follows:

(- 144 X 10'K/)) @ A mraia3 o oy
eoea) +ay)(kay + 1)(kay +1)
(- 1.44 X 10 K1) @yriq19>

" dmege,(ar +a)(kay + D(kay + 1)

melt =

(13)
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FIG. 6. The free energy as calculated by Monte Carlo simula-
tions is shown for an ordered rocksalt structure (solid line) and a
disordered liquid (dashed line) (same system as in Fig. 5). The
melting point is found to be 7850 K. This gives a narrow range
where crystallization should be possible (between 6950 and
7850 K). The melting point can be reduced by changing the amount
of surface charge or the particle sizes to shift this range. Also, by
reducing the screening ratio, the accessible region where crystalli-
zation can occur should increase. Likewise, increasing the screening
ratio results in further convergence of the melting and glass transi-
tion temperatures. While these temperatures seem impractical, ab-
solute temperatures can be rescaled with changes in particle inter-
actions. For example, a 20-fold reduction in particle interactions
will give glass-transition and melting points of 347 and 392 K,
respectively. These results illustrate that for many colloidal systems
glass formation may occur even if the lowest-energy state is
crystalline.

As an example of the rescaling of temperatures into a prac-
tical range, reducing the surface charge densities of both par-
ticles in the simulations by a factor of 4.5 while leaving other
system parameters unchanged would give a glass transition
temperature of 343 K and a melting point of 393 K. This
system would then have a particle of 1 um radius and 170
positive charges (electron equivalents) for the “cation” and
one with a 0.5 wm radius and 309 negative charges for the
“anion.” Such an experimental system would have an easily
accessible crystallization temperature.

While these results are calculated for a system with A
=3, they give insight into the modifications necessary to ob-
tain crystallization at other values of A. Here, the ratio of the
melting point to the glass transition temperature was 0.89.
While this is a narrow range, the ratio of the glass transition
point to the melting point will be reduced at lower values of
A, while the two will converge for higher values of A.
Again, this underscores the importance of low-A systems to
ICC formation.

V. DISCUSSION

We have shown that multiple materials parameters and
experimental conditions must be controlled to make an ICC
structure thermodynamically and kinetically accessible. It is
essential that the particle interaction strength is reduced to
give a melting point above and a glass transition temperature
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below the experimental temperature. The interaction strength
can be reduced by reducing the surface charge density at
constant particle size or by increasing the particle size for a
constant amount of surface charge. Likewise, low values of
A (preferably lower than A ~3) must be obtained to allow
sufficient mobility for rearrangement. Also, the representa-
tive point-charge ratio must be tailored to favor dense crys-
tallization over the agglomeration of isolated particle clusters
(preferably Q equal to or lower than 3).

We also note that a system with a glass transition tem-
perature well above the experimental temperature may still
crystallize under an external energy source. For example, an
ultrasonic source may possibly be used to give the particles
sufficient pseudo-Brownian motion to approach a regime
where nucleation and growth can occur, providing a larger
effective temperature for the system. Other energy sources
such as turbulent flow fields and randomly varying ac elec-
tric fields may also provide sufficient energy to make crys-
tallization in more systems experimentally accessible.

Higher-order and more complex ICC structures should
also be achievable. For example, a similar treatment can be
used for structures containing more than two particle types.
These could be colloidal analoges of such structures as spinel
and perovskite. In addition to ideally nondirectional “ionic”
bonding, directional bonding could be introduced using non-
spherical particles or anisotropic surface chemistry to synthe-
size a broader family of colloidal crystals analogous to iono-
covalent compounds. An example would be to promote
crystallization of zincblende over wurtzite structures. Con-
trolled imperfections (defects and doping) might also be in-
troduced through the addition of small concentrations of par-
ticles with sizes or compositions different from those in the
bulk of the structure. In addition to accessing a diversity of
ordered structures, the rapid formation rate of ICC’s under
attractive forces suggests that scalable processes could be
developed for ICC’s. Beyond the formation of basic two-
component structures, we believe there are many possible
extensions of the ICC concept.

If the concept present in this work is fully realized, there
are numerous applications of ICC materials. Ordered col-
loids of this type could potentially be prepared as pigmentary
aggregates, films, or extended three-dimensional crystals.
These materials have potential applications including photo-
nics, catalysis, and filtration. Finally, novel mesoscopic ma-
terials exhibiting tunable responses to various input fields
may also be possible, spawning a new class of device
materials.

VI. CONCLUSIONS

We present a formalism for evaluating the stability of a
new class of colloidal crystals that is stabilized by attractive
electrostatic interactions. This model allows regions of ICC
stability to be described as a function of two dimensionless
parameters representing the ratio of particle charges and the
spatial extent of the electrostatic interaction, each of which is
a function of experimental parameters that are readily
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adjusted in colloidal systems. In addition, Monte Carlo cal-
culations have been performed showing the dependence of
crystallization and glass transition temperatures in heteroco-
agulating colloids on these adjustable parameters. Conditions
under which ICC’s are not only the thermodynamic ground
state of the heterocoagulated system, but are also kinetically
accessible, are found to be restricted to a rarely explored
parameter space in colloidal science, specifically weakly in-
teracting monodisperse heterocoagulating systems at low
ionic strength [39].
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