
MIT Sloan School of Management

MIT Sloan Working Paper 4568-06
January 2006

Improving Product Development Processes to Manage Development Risk

Darian W. Unger and Steven D. Eppinger

© by Darian W. Unger and Steven D. Eppinger
All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without

explicit permission, provided that full credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=876618

http://ssrn.com/abstract=874097

Improving Product Development Processes to Manage Development Risk

Darian W. Unger and Steven D. Eppinger

Abstract

To create new products, firms employ a product development process (PDP) to generate new product concepts, to
translate the best of these concepts into quality products, and to manage the risks inherent in bringing such new products
to the market. A well-designed PDP is necessary to reduce development time, create better products, increase market
share, and generate profit.

This paper investigates the relationship between product development risk and PDP management and seeks to help
companies improve their processes. We begin by discussing product development risks and describing a spectrum of
different PDPs. We compare the traditional, rigid, staged PDP with the alternative, flexible, spiral PDP and other
variants. We then propose several iteration- and review-based metrics by which PDPs can be effectively identified and
compared.

Data from ten company case studies exemplify a wide variety of actual PDPs, demonstrate the utility of iteration and
review metrics in distinguishing PDPs, and illustrate how different processes manage different risks. Case study
findings indicate that software companies face rapidly changing markets, generally perform quick iterations and tests,
and are likely to employ flexible PDPs. In contrast, manufacturing companies that face greater integration difficulties
and technical risks are likely to employ more rigid PDPs. We find that a company’s risk profile is instrumental in
determining the applicability of different PDPs. We employ the case study lessons to propose a method for improved
PDP design based on risk management. To demonstrate the method, it is applied to redesign one company’s PDP.

We conclude that PDPs vary more than previously documented; that the proposed metrics are useful in
distinguishing PDPs; and that companies facing different risk scenarios can effectively tailor their PDP designs to suit
their own unique circumstances.

Index terms: Product development strategy, product development process, research and development management,

innovation management

1. Introduction

 Successful product development is critical to industrial performance. Rapid and innovative

product development (PD) can provide critical competitive advantages to firms (Jachimowicz, 2000;

Ulrich and Eppinger, 2004). Despite the importance of PD, companies currently have difficulty

designing or choosing from an extensive array of PD processes. If companies design their processes

poorly, they may endanger the success of their products, their competitiveness, and possibly their

survival. There are currently no established criteria for comparing, selecting, or designing PD

processes; nor is any single process ideal for all circumstances and companies.

 This article explains a variety of product development processes (PDPs) and aims to help

companies better design their own PDPs. A review of literature reveals that current categorizations

of PDPs are insufficient for effective management comparison or application. Using a combination

of existing literature and case study research, we propose that two risk management activities –

development iterations and reviews – can be used as metrics to describe and compare different

PDPs. We then use the case studies to examine the variation among PDPs and to demonstrate the

utility of the proposed metrics. Finally, we use the lessons of the case studies to suggest a

framework for improved PDP design based on systematic iterations and reviews.

2. Background and literature review

 Prior literature and existing practice in product development management provides useful

background for this study. This review examines PDP characteristics and explains different PDPs.

2.1 Product development process steps and risks

 PDPs are not uniform, but they often use similar actions to manage development risks. Prevailing

literature and industry practices present PDPs that involve a common series of actions, steps or

stages. Most companies follow at least some form of the following steps: product planning, project

planning, concept creation, system-level design, detailed design, testing/prototyping, and release.

The purpose of PDPs that include these steps is to provide a structure for managing the many

uncertainties and risks that companies face. Segmenting the process into smaller actions is one way

of controlling risks.

 Risk management is a fundamental PD concern because risk, defined as exposure to danger or

loss, is prevalent in all development projects. Balancing risks and potential rewards is an enduring

theme of engineering and program management (Ansel and Wharton, 1992; Foster and Kaplan,

2001; MacCrimmon and Wehrung, 1986). The risks of PD can lead to several forms of development

failure: a slow or late product may miss a market opportunity and incur too many development costs;

a technically challenging product might be impossible to design, may lack the expected features, or

be of poor quality; and a product with misguided specifications may not fulfill customer needs and

therefore completely miss a market niche.

 Existing literature suggests several ways of categorizing PD risks. This research uses a

traditional categorization of risk by source of uncertainty underlying the risk. A successful PD

process should be able to manage or mitigate the following four major types of risk:

Technical risk - Uncertainty regarding whether a new product is technologically feasible and

 whether it will perform as expected, given clear and valid product specifications.

Market risk - Uncertainty regarding whether a new product accurately addresses changing

 customer needs and whether the product is well positioned relative to competition.

 Unlike the technical difficulty of building “to a specification,” market risk concerns

 whether an achievable specification brings the wrong product to market.

 2

Schedule risk - Uncertainty regarding whether a new product can be developed in the time

 available.

Financial risk - Uncertainty regarding whether a new product can be developed on budget and

 whether the project will pay back the investment.

These four general types of risk are neither comprehensive nor entirely independent of each other.

Many other factors may also present uncertainty, but they can be subsumed by the larger risks

detailed above. For example, quality assurance or integration risk may be considered technical risk.

The risks are also occasionally interdependent and overlapping. For example, “scope creep,” a

common problem involving feature addition during development, frequently occurs in an attempt to

address market risk, but tends to increase technical, schedule, and budget risks. It is therefore

impossible to completely separate the types of risks faced in PD, although the categorizations are

useful in planning PDPs.

 Prior research explores the roles, categorizations, and management of risk. De Meyer and others

organize risk by type and warn of the need to observe these risks carefully in order to improve

project and development management (DeMeyer, et. al., 2002; Hartmann and Myers, 2001). More

general risk literature stresses the importance of maximizing expected values and introduces

traditional risk management methods such as hedging, decision analysis, and parallel development

(Ansell and Wharton, 1992; De Neufville, 1990).

 In a new perspective on risk management for PD, we consider how the PDP itself actually

addresses risk through product development iterations, integrations, and reviews. Iterations often

address market risk while reviews often address technical risk. Planned iterations – often in the form

of early prototypes, simulations, or analytical models –provide feedback for improved design. As

later sections show, the cost, time, and fidelity or quality of integrations vary widely across

industries. For example, some hardware-based prototypes are difficult or expensive to build because

they require tooling, construction, and complex electro-mechanical integrations. In contrast,

computer-based, soft prototypes may be easier to build and integrate, but may not provide as much

quality feedback if the computer models do not capture key real-world aspects of the product. PD

managers must weigh the benefits and costs of system integrations to ensure that they reduce more

risks than they create; early integrations or prototypes are not always practical or possible.

However, information gained from system integrations, tests, and feedback generally improves the

evolving product. Similarly, performance validations and testing are critical to reducing companies’

 3

technical risks (Boehm, 1988; Otto and Wood, 2001; Cooper, 2001). Both integrations and

validations manage risk, although the risks they manage are often different.

2.2 The spectrum of PDPs

 Product development literature provides many examples of how companies manage development

risks. This section presents and describes two common PDPs that constitute the two ends of a

spectrum of PDPs. At one end of the spectrum is the staged process, the traditional and dominant

PDP in American industry. The spiral process, at the other end, is a more flexible process that

incorporates cross-phase iteration and is commonly used in the software industry.

 The most widely used type of product development process, and the standard for comparison in

this research, is the traditional staged process shown in Figure 1 (Cooper, 2001; McConnell, 1996;

Smith and Reinertsen, 1992; Ulrich and Eppinger, 2004). This process, also called waterfall, stage

gate, phase gate, toll gate, checkpoint, life cycle, or structured PD by various authors and

practitioners, has been dominant in US industry for almost 30 years.

Release

 Planning

Concept
Design

System-Level
Design

Detailed
Design

Integration &
Test

Reviews

Cross-Phase
Iterations

(unplanned)

Figure 1: The traditional, staged product development process

The ideal staged process proceeds in distinct stages, or phases, from product planning to product

release. The intermediate phases include concept design and specification analysis, system-level

design, detailed design, and testing or prototyping. At the end of each phase is a review, or gate, to

evaluate whether the previous phase was successfully completed. If the project is reviewed

positively, work proceeds to the next phase. If not, then the project iterates within that phase until it

can successfully pass the review or the project may be terminated.

 4

 In Figure 1, the reverse arrows, or cross-phase iterations, indicate that it is possible to revisit

earlier phases, but such iterations are difficult and costly. These major unplanned iterations are

generally avoided whenever possible. Instead, most iterations occur within stages; the resulting

narrowness of iteration has both advantages and disadvantages.

 One major advantage of staged processes is the controlled structure that they impose on

development by reaching sharp product definitions and specifications early in PD. Technical risk is

reduced because narrow iterations and reviews freeze specifications early. Rigid specifications help

design teams by giving them clear goals towards which to work. The stable product definition also

helps to avoid errors because midstream corrections are infrequent. Furthermore, the inherent clarity

of the process allows early forecasting and minimal planning overhead.

 Staged processes perform well in cases when product cycles have stable product definitions and

when the product uses well understood technologies (as in the case of upgrades or maintenance

improvements to existing product). In these cases, staged processes help to find errors in the early

stages of a project, when costs of changes are low. Staged processes also work well for projects that

are dominated by quality requirements rather than cost or schedule requirements. In these cases,

where quality and error-avoidance are high priorities, the most attractive path is a direct one with

early specification freeze and no subsequent changes that increase the likelihood of mistakes.

 Inflexibility is the main disadvantage of narrow iterations constrained within phases. Because

they do not cross phase boundaries, narrow iterations cannot incorporate feedback from later phases.

It is difficult to fully specify requirements in the beginning of a project, especially in a dynamic

market. Poor or misleading specifications can lead to great market risk. Failure may result if early

specs and assumptions are proven wrong by subsequent market research, detailed design, or

prototyping. The staged process does not handle these midstream changes well and can be ill-suited

for projects in which requirements are poorly understood in the beginning.

 Staged processes sometimes poorly suit companies when time-to-market is more important than

extra functionality or total quality. Staged processes mandate potentially burdensome

documentation and may also have difficulty incorporating cross-phase activities that do not fit neatly

into individual process stages. Finally, staged processes sometimes have difficulty handling parallel

tasks within stages. As a result, the length of each stage may be constrained by the slowest activity

within the stage, thus lengthening the development process (Smith and Reinertsen, 1992).

 The spiral PDP differs from the staged process because of its emphasis on flexibility and

comprehensive iteration. Unlike the staged processes, the spiral process includes a series of planned

 5

iterations that span several phases of development. It is a relatively recent product development

process that has been adopted by many in the software industry. Spiral process proponents assert

that it reduces burdensome and expensive rework in software, thus lowering development time and

cost (Boehm, 1988; Gilb, 1988; McConnell, 1996).

System-
Level

Design

Figure 2: Th

 The spiral PDP can lead to the de

budget by managing risks early. As

including concept development, syste

The process is flexible; the actual num

 The spiral process requires manag

relatively low. Risk in this context e

poorly understood requirements and

potential problems in developing speci

spiral process helps to screen them ear

 A simple spiral process with mini

staged process. However, most proj

their risks with multiple cross-phase

through many stages with the full exp

brief glimpse into the future which

information from later stages that can

Detailed
Design

Pla

R

e spiral product development

velopment of a competitive

 shown in Figure 2, its spira

m level design, detailed des

ber and span of loops can vary

ers to evaluate risk early in

ntails all four major areas of

 architecture, performance p

fic technologies. These risks

ly, before major costs are incu

mal uncertainty and only one

ects entail uncertainty; comp

 iterations choose a signific

ectation of returning to them

is not allowed by staged p

 be incorporated in early conc
Integration
& Test
nning

Cost
(Cumulative

effort)

Reviews

elease
Concept
Design
process

product on schedule and within

ling form repeats regular steps,

ign, and integration and testing.

.

the project, when costs are still

 risk described earlier, including

roblems, market changes, and

can all threaten a project, but the

rred (Boehm, 1988).

 loop would closely resemble a

anies that evaluate and manage

antly different path. By going

later, the spiral process allows a

rocesses. This glimpse yields

epts, requirement specifications,

6

and architectures, thus reducing risk. The risk reduction comes at the cost of more flexible product

specifications, but this flexibility can be advantageous in dynamic environments. In this way, the

spiral process overcomes difficulties presented by unclear initial product requirements, a challenge

which is poorly handled by the classic staged process.

 The spiral process has several disadvantages. First, it is more sophisticated and complex than

other processes, and thus requires more management attention. Second, the lack of rigid

specifications can potentially lead to delays in developing complex subsystems. Finally, the spiral

process may be overkill for simple projects that could use a simpler waterfall process (Boehm,

1994).

 A key distinguishing feature of the spiral process is the planned, large-scale nature of iterations.

Risks are assessed in each iteration, allowing managers to plan an effective approach for the next

iteration. Unlike the expected small iterations which occur within individual stages of staged

processes, and unlike the large but unplanned and unwanted feedback loops which can occur in less

successful staged processes, iterations in the spiral process are planned and span several phases of

the development process. Despite this distinction, critics may consider it similar to a staged process

if the milestones and deliverables between each spiral round act merely as stage reviews.

 Recent literature sources often recognize PDPs as risk management structures but often focus on

one process rather than comparative PDPs. For example, Cooper argues persuasively for the

effectiveness of the stage gate PDP (Cooper, 2001). Other sources, including those general sources

mentioned in the beginning of this section, take more tacit approaches but implicitly endorse this

point of view (Pahl and Beitz, 1996; Smith and Reinertsen, 1992). Boehm advocates the use of the

spiral process in software development, and is joined by others who denounce the deficiencies of

rigid waterfall processes and call for flexible prototyping (Boehm, 1988; Boehm and Bose, 1994;

Gilb, 1988; Hekmatpour and Ince, 1988). This stream of PD literature is strengthened by many

studies of individual companies’ PD efforts, ranging from software designers to automobile

manufacturers (Cusumano and Selby, 1995; Cusumano and Nobeoka, 1999; MacCormack, 2000;

Ward et. al., 1995).

 Finally, some sources begin to compare different PDPs. Krubasik argues for the need to

customize PD, suggesting that “product development is not monochromatic…not all product

development is alike. Each situation has a different context…[implying] different managerial

actions” (Krubasik, 1998). Other authors offer brief and balanced comparisons of different PDPs,

but limit the scope to theoretical examples (McConnell, 1996). Finally, some sources use

 7

comparative empirical studies to suggest a method of matching PDPs and context, but do not relate

these to PD success (MacCormack, 2000 and 2001).

2.3 PDP variation and problem definition

 Staged PDPs facilitate managerial control while spiral PDPs allow more flexibility, and there are

many other PDP variations that fall between these extremes. The array of variants includes modified

staged processes, evolutionary prototyping and delivery processes, and design-to-schedule or design-

to-budget processes. Each of these PDP variants has distinct advantages and disadvantages, but PDP

differences are poorly understood and not yet fully acknowledged in existing literature and practice.

As a result, companies have difficulty designing or selecting PDPs.

 Our research has three goals, all of which help to bridge the knowledge gap in existing literature

and industrial decision making. First we seek to identify different PDPs and establish that variety

exists. To do so, we define parameters that allow for evenhanded comparisons between PDPs.

Second, we demonstrate how different PDPs can address different risks through integrations,

iterations, and reviews. Finally, we use lessons from observation and comparison to propose a

method for improved PDP design and selection based on risk. Our overall research goal is to help

academics and business managers with the difficult task of identifying, comparing, and successfully

designing PDPs for risk management.

3. Characteristics for specific PDP comparison

 This section proposes characteristics by which different PDPs can be defined, compared, and

contrasted. Companies try to balance structure and flexibility in their PDPs, but have difficulty

measuring degrees of either structure or flexibility. Characterizing PDPs requires identifying basic

traits that are shared by all processes: all PDPs employ design reviews, which uphold standards

and/or mark milestones; and all PDPs include iterations, which incorporate changes and feedback

between design groups or project phases. Characterizing PDPs also requires tenets that set PDPs

apart: although all PDPs use reviews and iterations, the manner of reviews and iterations varies

dramatically. They may vary in rigidity, frequency, scope, or several other parameters that affect

risk management. Thus, reviews and iterations – incorporating specifications, milestones,

integrations, and tests – are advanced as useful characteristics for distinguishing PDPs. These two

characteristics are useful metrics for PDP comparison because all PDPs include some combination

of iterations and reviews.

 8

3.1 Design/Integrate/Test cycles

 We focus our attention on the design-build-test-redesign and the design-analyze-redesign cycles

(the hard and soft forms of design iteration, respectively). Given the uncertainties inherent in PD,

iteration is inevitable and must be managed effectively. Iteration is technically defined as the

repetition of an action or process. This definition can be perceived positively (as in renewal and

improvement) or negatively (as in wasteful repetition). Our research defines iterations broadly to

include almost any kind of stepwise work that involves correction or feedback between

interdependent parts, people, or processes. Integrations and tests are types of iteration that allow

feedback from early versions of products.

 Interdependent and complex tasks that require feedback introduce the potential of burdensome

and expensive rework if poorly managed. Rework, a combination of feedback and corrective action,

is also a type of iteration but is generally wasteful because it is a response to avoidable mistakes.

Although rework can be considered a specific and unfortunate type of iteration, iteration is not

synonymous with rework. Instead, well-managed design iteration can prevent rework and therefore

reduce technical, schedule and budget risks. Other types of iteration, such as presenting a customer

with a prototype to gauge consumer demands, can also alleviate market risk. Effective iteration can

prevent waste and overcome the uncertainties inherent in interdependent tasks.

 Iterations in PD can vary in three main ways. First, they can vary in breadth or scope of iteration.

Second, they can vary in the number of inter-phase loops they entail. Finally, iterations can vary in

degree of planning. These three parameters are shown in Figure 3, along with the scales we use to

measure each one.

 The first parameter, the breadth or scope of iteration, is a critical descriptor of a company’s PDP.

Breadth can range from narrow to comprehensive. Narrow iteration is within phases, exemplified by

several rounds of interdependent detailed design tasks. Comprehensive iteration is across phases,

exemplified by processes that cycle not just around a specific stage, but rather over a range of

process stages from concept to prototyping.

 The number of iterations can also greatly affect the nature of a PDP and its success in managing

risks. Whether a design is considered several times or just once is a major distinguishing feature

between processes. Only the cross-phase loops are of importance to this part of the study because

intra-phase loops are so common (and often automated in CAD programs) that they can barely be

distinguished from one another.

 9

Breadth of iterations

 1 2 3

 Narrow Comprehensive
 (Within 1 phase) (Across 3 or more phases)

Number of cross-phase iterations
 0 1 2 3 4

 No iteration Multiple iterations

Degree of planning of cross-phase iterations
 1 2 3 4 5

 None Anticipated Planned &
 (Unexpected) Scheduled

Figure 3: Three parameters for measuring PDP iterations

 Finally, the degree to which cross-phase iterations are planned also varies. Processes may have

unplanned, anticipated, or scheduled iterations. Unplanned iterations occur when mistakes or

feedback loops unexpectedly require a step backward, often in the form of rework. Anticipated

iterations are iterations that are planned or expected, but that do not have specific schedules and

which may not happen at all. For example, a manager who expects several rounds of detailed design

on a specific component may be familiar with the design process and expect to succeed on the third

try. A fourth try is not out of the question, and a lucky estimation might allow for success on the

first try. Here, the iteration is anticipated – it is tacitly expected and the routine is known – but the

number and time of iterations is not planned. Finally, scheduled iterations are both anticipated and

planned. The number of cross-phase cycles may be planned, may be subject to time and budget

constraints, or may be dependent on customer satisfaction and quality assurance.

3.2 Design reviews

 Design reviews are critical to product development. Like iterations, they are present but different

in all PDPs. Design reviews can be termed gates, checkpoints, approvals, or milestones, but always

involve a decision or assessment of progress. Reviews examine the deliverable of previous action

and decide whether to continue on to the next step, stage, or series of stages.

 Companies developing products handle reviews in different ways. The goal of some reviews is to

assess completion, while the role of others is to ensure that there are no technical design problems.

Sometimes the reviews are internal and performed by the design groups themselves, while other

 10

times reviews are performed by upper management or by peers from other projects. The level of

formality of the reviews also varies dramatically.

 Figure 4 shows two parameter scales, rigidity and frequency, which we use as metrics to

characterize design reviews. Rigidity of review is defined by the degree to which deliverables are

held to previously-established criteria. In a rigid review, a project is probed for problems and not

allowed to continue until each deliverable meets established criteria. In more flexible situations,

projects or designs may conditionally pass reviews, subject to assurances of future change. In the

most flexible cases, reviews can be merely a team check-in or a project status report.

 Rigidity
 1 2 3 4 5

More rigid Less rigid
(Final standard) (Phase check)

Frequency

 1 2 3 4 5

More frequent Less frequent
(After each phase) (After 3 or more phases)

Figure 4: Parameters for measuring PDP reviews

 Frequency of reviews also affects the character of the PDP. Some companies have reviews at

rigid time intervals, thus forcing the completion of activities or integrations on a regular schedule.

However, most companies schedule design reviews at the planned completion of certain

deliverables. Deliverable-based reviews have the advantage of always having deliverables in

existence to judge, but may occur at irregular intervals. Irregular timing can be due to schedule

delays, to variation in the amount of time it takes to complete different phases, or to variation in

whether the deliverables are the result of either one or several phases. For example, in staged PDPs,

reviews occur after each stage. In spiral PDPs, reviews may occur after each spiral, or series of

stages.

3.3 Identifying and distinguishing PDPs

 We distinguish the variety of PDPs as combinations of iterations and reviews. For example,

staged processes entail narrow iterations and rigid reviews after each stage. Conversely, spiral

processes employ more comprehensive iterations and flexible reviews after several stages. These

measures of iteration and review allow PDPs to be compared more precisely than before. Earlier

investigations of PDPs either identified only one main process or identified a few and distinguished

 11

them only with descriptions of their diagram shapes or broad generalizations of their perceived

strengths and weaknesses. Here, the characterizations of iterations and reviews become the basis on

which all PDPs can be distinguished.

 Each iteration/review combination also manages risk differently; no single PDP is suitable for all

risk circumstances. A product with many interfaces and interdependencies between hardware and

software may face a high degree of technical uncertainty. That technical uncertainty might be best

addressed with predictable, early iterations that test the technological feasibility of the concept

design and early specifications. In contrast, a product in an immature industry may face entirely

different risks if specifications are defined and frozen early. A company in this situation may opt to

employ early market tests to make sure that the specifications accurately reflect rapidly changing

customer needs.

4. Research Method

 This section explains the methodology of the company case studies that underlie our research

findings. Case study methodology suits the goals of this research for four reasons. First, it provides

empirical data to help build theory about the complex and poorly understood relationship between

PDPs and risk. Second, it demonstrates the utility of using quantitative iteration and review metrics

to characterize PDPs and distinguish them from each other. Third, the resulting understanding of

several real PDPs provides counterexamples to conventional wisdom regarding the applicability of

certain processes. Finally, case study research is useful for understanding phenomena and building

theory, especially in the immature field of PD management. The case study methodology also

supports our proposal of new, quantitative characteristics that describe and distinguish different

PDPs while comparing them to earlier qualitative process information (Judd, 1991). The limitations

of case study research were of relatively minor consequence to this research. Case study

methodology has difficulty in proving causality because cases demonstrate only their own existence.

However, this research does not attempt to prove causality between development risk management

and PDP design. Rather, its main goal is to establish the existence and identities of different PDPs

and to build grounded theory relating PDP design to effective management (Dougherty, 2002).

4.1 Case study method

 The goal of each case study was to gain a rich understanding of the company’s risks and PDPs.

The challenges were to identify what type of subjective risks were greatest and to learn of any

 12

differences between official company PDPs and the processes that were actually implemented.

Meeting those challenges required conducting interviews, administering questionnaires, reviewing

public company literature, and studying private company PDP documentation.

 In most cases, one company manager served as a lead contact and provided process documents

and lists of employees working on specific product development teams. In some cases, the lead

contact would also recommend studying certain product lines in response to the request to examine

both “new” and “variant” products. When available, official process documents were always read

first. Later, project team members were interviewed or given questionnaires about their PDPs.

 Interviews followed the procedures for semi-structured “interview-conversations” described by

Blum, Buchanan, and Burgess (Blum, 1952; Buchanan, 1988; Burgess, 1984). Some common PDP

questions were asked consistently in all interviews, but in most interviews the latter half was

conversational and varied according to the person interviewed. Areas of questioning included both

the PDP and the development context. PDP questions dealt with review and iteration characteristics,

implementation of the official PDP, and perceived problems and advantages of the PDP. Contextual

questions probed the types and timing of prototypes, tests and validations, program schedules,

budgets, and major risks.

 Most interviews were one-on-one discussions with employee expectations of anonymity.

Anonymity remains important because of the sensitivity of some questions about PDP

implementation. In some cases, official PDPs were not followed faithfully or were criticized by

interviewees, who were more at ease making admissions or accusations because they were assured

that they would not be personally identified. Some interviews were recorded on cassette tape when

allowed, but only for purposes of later transcription. In addition to private interviews, case studies at

two companies also included public group discussions of the companies’ PDPs, prompting open and

lively debate on the implementation, merits and disadvantages of their development processes.

Some companies were investigated with the help of public data in addition to interviews. In these

cases, such as Microsoft and Ford, existing literature and previous sources were considered first,

followed by data from interviews.

 Because the case studies attempt to paint a realistic, “as-is” portrait of the PDPs, they do not

simply repeat official company process documentation. What companies say they do is not always

what they actually do. The case studies in this section reach beyond formal company descriptions to

include individual engineers’ and managers’ assessments of how the PDPs are actually implemented.

 13

5. PDP case studies and analysis of results

 This section presents nine of our company PDP case studies. The primary company case studies

examine Siemens Westinghouse Power Generation (SWPG), Integrated Development Enterprise

(IDe), ITT Industries, Aviation Technology Systems (ATS), Ford Motor Company, United

Technologies Corporation (UTC), DeskArtes, and Microsoft.

 These case study companies represent several different industries and operating environments.

Four of the case study companies produce mostly software. Five of the case study companies

produce mostly manufactured goods, although several include important software components in

their products. Most case study subjects are large corporations, although three of them are smaller

companies with hundreds of employees rather than tens of thousands. Some of the companies

provided multiple case studies. ITT Industries and Xerox, for example, have units following

different processes. In those cases, two different projects were investigated. ITT was also included

because it was anticipated that its role as a defense contractor would lead it to have a uniquely

different risk profile from most other companies in this study. Two of the case studies, Ford and

Microsoft, were selected in part because of the availability of public PDP information. This use of

public data provides other researchers or reviewers with the means of independently examining

source data. It also allows readers who are familiar with these companies’ PDPs – which have been

extensively investigated by several other researchers – to compare these research findings to their

own knowledge and interpretations. The case study companies can be seen together in Figure 5.

5.1 Company and process descriptions

 The first case study company, SWPG, is a large engineering and manufacturing company that

employs a strict staged PDP to develop turbomachinery for power generation. It faces major

technical risk, especially in the areas of quality assurance and thermal efficiency. Market risks are

mitigated by early contracts and system of guaranteed liquidated damages, which effectively transfer

market risk to technical risk by driving up engineering requirements. Cycle times for this company

are slow, with up to several years between the introduction of new products.

 The second case study company, IDe, is a small software company that employs an evolutionary

delivery PDP to develop its internet-based development management products. It faces major

market risk, frequently must customize products to customers’ specifications, and operates with a

very fast cycle time of only a few months.

 14

 The third case study company, ITT Industries, is a large defense contractor whose products

include military electronics. ITT faces technical and schedule risks, but market risk is often limited

by the monopsonistic nature of the defense industry. The company uses a staged PDP with

“progressive freezes,” but applies it differently to different products. Progressive freezes mean that

specifications can be set in a piecewise fashion without delaying the entire development program.

Subsequent work can start on those requirements or design aspects that are known to be solidly

defined and unlikely to change. ITT’s experimentation with PDPs yielded two different results

because one process was used for development of a global positioning satellite (GPS) product while

another process was used in developing a military special unit operations radio (SUO).

 The fourth case study company, Xerox, is a large manufacturing and software company that

develops copiers and document centers. Its considerable market risk forces a corporate culture of

on-time delivery and thus translates to schedule risk among design engineering groups. The

company uses a hybrid PDP that employs a staged process to develop the electro-mechanical

systems and a spiral process for the software systems.

 The fifth case study, a collaboration of DeskArtes and Arabia, investigates small software and

manufacturing companies that use ray-tracing CAD software developed by DeskArtes to design

ceramic tableware manufactured by Arabia. The major risks include market risk inherent in visual

product aesthetics and industrial design. Use of the software allows an evolutionary prototyping

PDP and extensive customer testing of electronic prototypes.

 The sixth and seventh case studies, ATS and Microsoft, both examine companies that use spiral

PDPs to develop software. Both faced primarily technical risk because industry dynamics subdued

market risk for both companies. The final case studies, UTC and Ford, both analyze large

manufacturing companies which employ staged PDPs despite facing considerably different risks.

Ford is more concerned with market risk and meeting disparate customer needs, while UTC is more

concerned with technical risks stemming from quality assurance.

5.2 Comparative case study findings
 Qualitative comparison between individual case studies reaffirms the difficulty companies have

in designing PDPs. The quantitative data applies the parameters proposed in Section 3 to actual

company processes. The resulting view demonstrates the existence of considerable variety among

company processes. The PDP distinctions also suggest that PDPs address risk and integration

differently, a principal finding that will be used later in the development of a PDP design method.

 15

 Qualitatively, the case studies reveal management difficulty in designing and implementing

PDPs. The cases demonstrate various reasons and inconsistent methods for choosing PDPs. The

cases also display frequent discrepancies between companies’ written and implemented processes

 There appears to be no consistent method by which companies design or select their PDPs.

Although the case studies did not examine the underlying philosophy of management decisions that

led to PDP definitions, several disparate paths were evident. First, some companies changed their

PDPs due to organizational shifts. For example, SWPG formalized and added rigidity to its process

after a corporate acquisition and merger. Second, some companies redesigned their processes when

leading individuals perceived and wanted to address specific problems. For example, IDe

progressed slowly from a loosely-designed and flexible process to a more rigid evolutionary

development decision as its four lead managers determined that the company’s rapidly-growing

workforce required more order. Similarly, the Xerox process was reformed by the company’s chief

engineer in part to overcome persistent PD delays. Finally, some companies had their own

idiosyncratic reasons for PDP designs. Several of these companies hired consultants to help them

design or redesign their PD efforts; one of them specifically adopted a process “as a management

fad” that was promoted by a consultant. On the other hand, Microsoft modeled its PDP after the

culture of its developers by retaining “hacker” traits of frequent changes in development code. In

summary, some companies carefully consider the PDPs they implement, but others employ PDPs

with little regard for the suitability of those processes to company-specific risks or challenges.

Companies seem to have based their PDP decisions on many different factors, including their

disparate risk scenarios, but none had an analytical process to follow.

 We observed that companies also have difficulty implementing the official processes they design.

The case studies investigate and probe actual, implemented PDPs because they frequently differ

from companies’ written processes. One of the few commonalities among all case studies is that

every one reveals discrepancies between written and implemented processes. Sometimes, those

differences are due to informal improvements to the written PDP, such as when ITT allows program

managers to omit process sections that they deem extraneous. Other times, differences between

written and actual PDPs are harmful and the result of poor implementation of good ideas. These

discrepancies must be noted in order to gain accurate understanding of companies’ PDPs.

 Quantitatively, the case studies demonstrate the utility of the proposed metrics and display

differences among multiple, distinct processes. Section 3 reasoned that all companies use iterations

and reviews, and these findings confirm that this is true for each of the case study companies. No

 16

two columns of defining characteristics are identical in Figure 5, suggesting that the corresponding

PDPs are also different. As described in section 3.3, each column represents a PDP’s “signature”

and identifies a different PDP.

Company SWPG IDe ITT Xerox ATS Markem UTC Ford DeskArtes
/Arabia Microsoft

PDP description Strict
stage gate

Evol.
Delivery

Progressive
freeze Hybrid Spiral Aspiring

stage gate Stage gate
Stage gate
with quasi
prototypes

Evol.
Delivery Spiral

Breadth 1 2 1-2 1-3 3 1-2 2 2 1-2 2-3
of inter-

phase loop s 0 3 1-2 0-3 3-4 1-2 2 3 3-4 5 Iteration
Planning 1 4 3-4 3-4 4 1 3 3 4 4
Rigidity 2 4 3-4 1-4 4 4 1 1 3 3 Review Frequency 1 5 1-2 1-3 3 1-2 1 1 4 3

Risk
Profile

Tech
risks
dominate
(i.e. heat
rate).
Mild risk
muted by
contract
structure

Major
risk is
market –
new
company
is highly
customer
sensitive

Major risks
are tech and
schedule,
depending on
product.
Military
contracting
limits market
risk.

Market
risk
translates
to
schedule
concerns

Major
risks are
tech,
primarily
quality
assurance

Mkt. on one
project, Tech
on the other
from late
integration

Major
risks are
tech –
FAA
regulation
s and
quality
requireme
nts

Mkt. risk
greatest, but
complex
tech and
budget risk
also high

Mkt. Risk
dominate –
customer
aesthetics

All risks
muted by
market
dominance;
features
driven by
mkt. risk,
tech risk
dominates

Figure 5: Comparative summary of findings

 Figure 6 plots company process data by composite review flexibility and iteration. High iteration

and review values indicate a process favoring flexibility while low iteration and review values

indicate a process favoring control. Companies are plotted individually, except for Xerox and ITT,

which are represented by two points each due to their internal divisions. In the figure,

manufacturing companies tend to be positioned in the lower left of the chart because they employ

more rigid reviews and have fewer cross-phase iterations. Arabia and ITT SUO are notable

exceptions, and demonstrate the use of flexible processes in the development of manufactured

products. Software companies tend to be positioned in the upper right of the chart, while companies

with mixed manufacturing and software components fall in the middle. However, the considerable

scatter in the plot that suggests a key finding: although software developers are more likely than

manufacturers to favor flexibility in their PDPs, the software versus manufacturing distinction alone

does not predict PDP flexibility.

 17

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5

C
om

po
si

te
 re

vi
ew

Series1

Figu

5.3 Case study analysis

 Our case studies sugges

descriptor and determina

software/manufacturing di

more widely across the sp

simulation, or prototype

companies is whether the

worth the cost and time

mechanical products, may

example of integration diff

its first “prototype” to a c

for a reduced price or serv

overall systems, but the fi

e

O

S

S

Arabia/
DeskArtes

W

Sta

Spiral
Flexible Reviews:
soft requirements
and less frequent

Rigid Reviews:
firm requirements
and more frequent

Narrow Iterations:
planned within phase

SWPG
1 1.5 2 2.5 3 3

Composite iteration

re 6: Overall PDP flexibility by iteration a

t that a company’s ability to integrate an

nt of PDPs. Our analysis moves bey

stinctions of Figure 6 to better understa

ectrum of PDPs. Product integration ofte

involving interdependent components or

value of the information they gain from

of the integration. Some integrations,

 require too much time or be too costly

iculty can be seen in the SWPG case study

ustomer willing to take a risk on buying

ice guarantees. SWPG of course also use

delity and quality of these simulations ar

Cged

s

Manufacturing company

Software company

Mixed manufacturing and softwar
ID
ITT SU
ITT GP
Ford
.5 4

nd review

d test produ

ond the u

nd how com

n includes

 modules.

 such a test

such as pro

 to afford

, where the

an untested

s computer s

e not as goo

Compre
plann

e
AT
UT
Xerox HW
Xerox S
s

a

m

e

Microsoft
4.5 5

cts can be a critical

eful but imperfect

panies can operate

n early model, test,

A key question for

or feedback loop is

totypes of complex

ultiple tests. One

company often sells

product in exchange

imulations to model

d as the first actual

hensive Iterations:
d across phases

18

prototype. Other companies, such as DeskArtes/Arabia, Microsoft, and ATS, can test their products

more easily because integrations of their software products require no physical construction or major

production expense. Their simulations are not merely models of reality; they are actual parts of the

code that later become the final product.

 The importance of integration differences among companies can be seen in Figure 7, which offers

additional insight into why companies use certain PDPs. Figure 7 resolves the case studies into clear

groups or clusters by categorizing the companies by the ease with which they can integrate and test

prototypes as part of the PDP. The ease of integration categorization reflects our understanding of

the feasibility, cost, and time required for integrations relative to the value of information gained

from such tests. Some companies call these integrations “prototypes,” while others call them

“builds” or “stubs,” but they all represent a form of iteration and attempted risk reduction. Such

integrations not only address certain risks by providing information feedback from prototypes, but

also represent risks of their own by potentially costing a company time, funds, and effort. Thus,

these integrations become particularly useful lenses by which to view and categorize companies.

Figure 7 shows distinct clusters of companies in the two corners of the chart, each grouped with

other companies in the same category. This suggests that ease of integration is a powerful

determinant of the process type that companies may employ.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5

C
om

po
si

te
 re

vi
ew

Series1

Flexible Reviews:
soft requirements
and less frequent

e

O

S

S

Arabia/
DeskArtes

W

Sta

Spiral

Rigid Reviews:
firm requirements
 and more frequent

Narrow Iterations:
planned within phas

SWPG
1 1.5 2 2.5 3 3

Composite iteration

Cged

es

Difficult Moderate

Ease of integration
ID
ITT SU
ITT GP
Ford
.5 4

Com
pl

Easy
AT
UT
Xerox HW
Xerox S
Microsoft
4.5 5

prehensive Iterations:
anned across phases

19

Figure 7: Case studies charted by ability to perform integrations

 These comparative charts of Figures 6 and 7 suggest that many PDPs in commercial practice

cluster towards two corners. Exceptions tend to occupy the lower right hand quadrant, suggesting

that companies are more flexible with their iterations than their reviews. It may be possible in the

future to find PDPs that would occupy the upper left corner of the charts, but such are likely rare

because of the difficulty of maintaining rigid iterations while simultaneously loosening reviews.

5.4 Additional research findings

 The case studies and application of PDP metrics have already demonstrated the existence of

multiple PDP variants. Our research also suggests that risk and integration characteristics are useful

indicators of which process can be applied most effectively. The ensuing section points out two

additional, but related, findings. First, the proposed metrics are a useful means of comparing

processes. Second, the relationship between PD cycle times and design flexibility is

counterintuitive.

 The proposed iteration and review parameters are found to be useful metrics for several reasons.

First, they fill a gap in PDP practice in literature. The metrics are necessary because previous

literature provided no equitable way of comparing or contrasting PDPs on a common scale. Indeed,

prior literature that attempted to compare PDPs did so based on either diagram shape or subjective

advantages and disadvantages. These proved to be difficult criteria by which to compare the initial

case studies. These iteration and review metrics provided a much-needed common language in

which different PDPs could be identified. Every PDP encountered could be described in terms of

review and iteration metrics. Once described quantitatively, the PDPs could be uniquely identified,

compared, and contrasted. Finally, these metrics have shown to be both understood and welcomed

by practitioners, who valued metrics as a way to better understand their own processes. The metrics

are easy to communicate and access: managers are frequently able to describe major iterations and

engineers are intimately familiar with the character of design and development reviews. Together,

the conceptual ease of communication and general applicability of the metrics made them useful.

 The data also suggest that PD cycle time can be a misleading indicator of PDP choice. One might

expect that companies with long cycle times would be particularly attuned to market risk because

market needs can change over the duration of PD. Thus, companies with long cycle times would

 20

emphasize prototyping, customer involvement, and cross-phase iterations. Conversely, one would

expect that companies with short cycle times, software companies for example, could afford to avoid

such market feedback efforts because customer testing would take valuable time and any potential

improvements could be included in the next product version, usually already in the pipeline.

 Such assumptions about PDP choice would be misleading. Although most companies face the

common difficulty of writing specifications, companies in fast-paced markets tend to favor flexible

processes, such as the spiral process or evolutionary delivery process, that incorporate frequent

customer interaction or testing. This preference may be because the benefits of market feedback

outweigh the costs of prototyping and testing the product. Meanwhile, manufacturing companies

that release products less frequently tend to use fewer planned, cross-phase iterations and therefore

build fewer integrated prototypes. This occurs because of product complexity, steep prototyping

costs, and the long lead times necessary to build physical models. The counterintuitive result of this

mismatch is that companies with the greatest need for market flexibility are sometimes the least

likely to generate customer feedback during a PD cycle. Companies that are less sensitive to market

changes because of short cycle times nevertheless frequently incorporate market feedback.

6. Applying case study lessons: Proposing a PDP design method
 We learned from the case studies that companies implement vastly different PDPs. From these

companies and others, we also heard that managers lack guidance in choosing or designing such

processes. Simply adopting a PDP that works for another company is unlikely to lead to success.

We believe that PDPs should be methodically customized to different companies or programs, and

thus the need for an improved PDP design method is real and immediate. In this section, we apply

lessons from the case studies to propose and apply a helpful tool: a PDP design method that can

assist companies in planning or selecting their PDPs. The PDP design method matches risks to

specific process iterations and reviews, thus helping companies design processes that suit their own

risk profiles and abilities to integrate or prototype. To demonstrate its utility, we apply the method

to redesign the PDP at a manufacturing company.

6.1 PDP design method proposal

In formulating a new PDP design method, the relevant lessons from our case study results include:

• Companies face unique sets of individual development risks and integration abilities that should

be the basis for PDP design.

 21

• PDPs are comprised of design iterations and reviews. We should consider how best to use

iteration and review cycles in customized PDP designs.

• Iterations can be employed to address various risks. The specific risks addressed depend upon

what activities are involved in the iterations and upon the timing of the iterations. For example,

technical and market risks can be handled by iterations spanning design, prototyping, integration,

and testing.

• Design reviews may also help to manage risks, both in conjunction with and independently of

iterations. The types of risks managed depend on the characteristics of the design reviews. For

example, frequent reviews can provide the control necessary to handle schedule and budget risk.

 To translate these descriptive lessons into prescriptive actions that can help companies better

design PDPs, we propose a PDP design method with four key steps. Not every PDP needs to be

designed from scratch, so the same steps can be used to select which of many existing PDPs may

best fit a company, or can be used to modify a process already in use. Figure 8 illustrates the steps

and shows how the proposed PDP design method helps to match companies with PDPs.

Specific
PD situation

Step 2

Assign risks to
iteration cycles,

reviews, or stages

Identify
uncertainties and
prioritize risks d

m

Step 3

Plan iteration &
integration cycle
to address risks

Step 1

Figure 8: PDP design method

 The method begins by identifying and prioritizing the risks fa

program. The risk identification is based both on past experience and

experiences, such as a history of lateness or product quality issues, a

planners to estimate which risks are greatest in a current developme

are recognized, such as ambiguous customer focus group results or th

introducing a new product to an untested customer base, can also he

impact costs are assigned to those uncertainties. The company sho

Customized
PD Process

Schedule key
reviews
PDP
esign
ethod

s

Step 4

ced in a specific development

 recognized uncertainties. Past

re a relatively easy way for PD

nt program. Uncertainties that

e knowledge that a company is

lp identify risks once potential

uld be able to categorize most

22

risks as technical, market, schedule, or budget risks, although some risks will defy classification.

For example, specification definition often falls in the category of market risk, but a

hardware/software interface issue that could arise during integration might result in both technical

and schedule risk. Risks are then prioritized. There are often one or two “showstoppers,” or high-

probability risks that are likely to ensure failure if they are not addressed. The resulting risk profile

becomes the focus of the PDP design method.

 Our case studies have shown how iterations and reviews address risks. After risks have been

identified and prioritized, each risk is then assigned to a planned iteration cycle (either within or

across PD stages) and to a design review. Low priority risks can be simply assigned to stages rather

than to an iteration and review combination. For example, technical risk regarding the design of an

isolated product component can be assigned to a detailed design stage with only minor (intra-stage)

iterations among design engineers. More complicated risks are assigned to specific planned iteration

cycles and reviews. For example, high customer uncertainty and the resulting market risk may be

assigned to two planned, cross-phase iterations that incorporate one prototype or customer test per

cycle. Each iteration provides feedback that reduces risk in the next round. A critical product

launch date, giving rise to high schedule risk (linked also to budget risk) may prompt a company to

include reviews at regular time intervals rather than only at the end of each stage.

 Once the risks are assigned to iteration cycles and reviews, the project stages are planned around

them. The stages are defined as unique combinations of iterations and reviews comprising the PDP.

The result is a PDP prescription that addresses a project’s major development risks.

6.2 Method demonstration: Printco application

 The PDP design method has been successfully applied to a sample company. The company, with

the pseudonym Printco, is a 1500-employee engineering and manufacturing company that develops

printers, coders, and markers for shipping and inventory. Its products are mainly hardware, although

some machines also include important software components. The company expressed interest in

using the lessons of this research immediately because it was in the early stages of reorganizing its

own PDP. This section discusses how the method was used to prescribe process improvements for

Printco, which has implemented PDP changes based in part on these suggestions.

 The application of the PDP design method described in Figure 8 identified unusual risks in the

company’s various PD efforts. For example, some of its derivative, or next-generation products,

faced substantial market risk but only minor technical risk. Other products faced both market and

 23

technical risk, and were delayed by technical challenges that extended late in the program. Printco’s

risk did not match with its existing iteration and review scheme. As shown in Figure 9, the former

Printco PDP incorporated design iterations of medium breadth. Most iterations were intraphase with

usually only one or two interphase loops which were manifested as rework. The degree of planning

of these iterations was low because they were neither encouraged nor overtly expected. Printco

reviews were more frequent than its iterations, but lacked rigidity. The result was a series of late

projects and quality control problems.

Iteration Review

Scope # of cross-
phase loops

Level of
planning

Rigidity Frequency

Former PDP 1-2 1-2 1 4 1-2

Suggested PDP 2-3 2-3 3 2 1

Figure 9: The former and recommended Printco PDPs

 The PDP design method called for reassigning Printco’s risks to iterations and reviews that would

correct the problems of the old process. It was recommended that Printco make some of its reviews

more rigid to establish greater control over market and schedule risk. It was also suggested that,

rather than eliminating the cross-phase iterations (rework) that formerly delayed the product launch,

the company should acknowledge the need for such iterations and plan market prototypes within

them. Other companies have seen success in incorporating both the rigid reviews of staged

processes and the planned, early prototype iterations of spiral processes. Printco, on the other hand,

faced difficulty in building prototypes early enough to garner the information necessary to

substantively change design. Information from “late stages” frequently arrived so late that change

was costly and difficult. The company was not taking advantage of its ability to perform more

frequent integrations.

Suggested PDP incorporates

more comprehensive iterations for greater
market feedback and reduced market risk

Suggested PDP incorporates

more rigid reviews for improved
scheduling and reduced tech risk

 The PDP design method yielded a hybrid approach of rigid reviews and modestly planned

prototyping iterations, as suggested in Figure 9. This would move Printco from the upper left region

of Figure 6 to the lower right quadrant, reflecting increased flexibility in iterations and more

restrictive reviews. These recommendations based on the PDP design method were presented first to

Printco’s senior PD manager and then to an assembly of engineers, marketers, and managers. The

 24

suggestions generated much discussion and were well received. Printco has made PDP changes

based in part on these recommendations, however results of the process changes will not be known

until at least the end of several product development cycles in which they are implemented. The

Printco demonstration does not yet validate the PDP design method, but the positive reaction to the

recommendations and projected cost reductions suggest that the method is a reasoned application of

the iteration and review lessons from earlier cases.

7. Implications and Conclusions

 Product development is a necessary risk for innovative companies. Although it holds the promise

of increased sales, market share and profits, PD can fail due to technical difficulties, cost overruns,

and missed market opportunities. PDPs must therefore not only focus on the final outcome – a new

product – but also on mitigating the many development risks. We exhibit and explain PDPs as risk

management structures. In exploring the relationships between risk management and PDP design,

we make three key contributions.

 First, we analyze several PDPs both theoretically and empirically to demonstrate how PDPs

substantively differ from each other. We build upon previous literature that either does not

adequately distinguish between different processes or makes comparisons based on subjective

criteria. We make a secondary contribution to the field by proposing and supporting new metrics

with which PDPs can be identified and compared. The metrics are based on design reviews and

iterations, which are characteristics of all PDPs.

 Second, we describe how various PDPs manage different development risks. PDPs with planned

iterations and integrations can generate valuable data that are fed back to early process stages and

reduce risk. Software companies tend to favor such processes, but the root cause of differences in

PDP applicability lies not in whether a product is manufactured with parts or written with code, but

rather in a company’s ability to integrate or prototype effectively.

 Our third contribution is the proposal and subsequent application of a PDP design method based

on risk, iteration, and review. This tool is a directly applicable contribution of our research, and can

provide companies with a framework by which they can intelligently design PDPs that suit specific

project needs. The method allows project planners to evaluate risks and to manage those risks with

specific elements of the PDP. Just as segmentation is a valuable tool in marketing products, dividing

PDPs into reviews and iterations, as well as into their traditional stages, can be helpful in product

 25

development. Future application of this method will integrate process changes to existing PDPs at

established companies.

References
Ansell, J., and Wharton, F. (ed.) Risk: Analysis, Assessment and Management, New York: John Wiley & Sons, 1992.
Blum, F.H., “Getting Individuals to Give Information to the Outsider,” Journal of Social Issues, Vol. 8, No. 3, 1952 pp.

34-52.
Boehm, B., “A Spiral Model of Software Development and Enhancement,” IEEE Computer, 1988, pp. 61-72
Boehm, B., and Bose, P., “A Collaborative Spiral Software Process Model Based on Theory W,” 3rd International

Conference on the Software Process, Applying the Software Process, IEEE, Reston, Virginia 1994.
Buchanan, D. et al., “Getting In, Getting On, Getting Out, and Getting Back,” Ch. 3, pp. 53-67, in Doing Research in

Organizations, Alan Bryman ed., New York: Routledge, 1988.
Burgess, R. G., In the Field: An Introduction to Field Research, Boston: George Allen and Unwin, 1984.
Cleland, D., Project Management, Strategic Design and Implementation, 2nd ed. New York: McGraw-Hill, 1994.
Cooper, R.G., Winning at New Products, 3rd ed. Cambridge: Perseus Publishing, 2001.
Cusumano, M. and Selby, R., Microsoft Secrets, New York: The Free Press, 1995.
Cusumano, M. and Nobeoka, “Organizational Requirements for Multi-Project Management,” Ch. 7 in Thinking Beyond

Lean, New York: The Free Press, 1999.
De Meyer, A., Loch, C., and Pich, M., “Managing Project Uncertainty: From Variation to Chaos,” MIT Sloan

Management Review, Winter 2002, Vol. 43, No. 2, pp. 60-67
De Neufville, R., Applied Systems Analysis, New York: McGraw Hill, 1990.
Dougherty, D., “Grounded Theory Research Methods,” in Blackwell Companion to Organizations, Joel Baum, ed.,

Medford, MA: Blackwell Publishers, 2002.
Eppinger, S.D., et. al., “A Model-Based Method for Organizing Tasks in Product Development,” Research in

Engineering Design, 6:1-13, 1994.
Eppinger, S.D., “Innovation at the Speed of Information,” Harvard Business Review, January 2001, Vol. 79, No. 1, pp.

149-158.
Foster, R. and Kaplan, S., Creative Destruction, “Control, Permission, and Risk,” New York: Currency, Ch. 4, 2001.
Gilb, T., Principles of Software Engineering Management, Reading, Mass: Addison-Wesley Publishing Company, 1988.
Hartmann, G. and Myers, M. B. “Technical Risk, Product Specifications, and Market Risk,” in Taking Technical Risk,

by Branscomb, Lewis and Auerswald, Philip, Cambridge: The MIT Press, 2001, pp. 30-43.
Hekmatpour, S. and Ince, D., Software Prototyping, Formal Methods and VDM, Reading, Mass: Addison-Wesley

Publishing Company, 1988.
Jachimowicz, F. et. al., “Industrial-academic Partnerships in Research,” Chemical Innovation, Sept. 2000, pp. 17-20.
Judd, C.M. et. al., Research Methods in Social Relations, 6th ed. Fort Worth: Harcourt Brace Jovanovich, 1991.
Krubasik, E.G., “Customize Your Product Development,” Harvard Business Review, November-December, 1998,

pp. 4-9.
MacCormack, A., Verganti R., and Iansiti, M., "Developing Products on Internet Time: The Anatomy of a Flexible

Development Process." Management Science 47, No. 1 (January 2001)
MacCormack, A., "Towards a Contingent Model of the New Product Development Process: A Comparative Empirical

Study." Harvard Business School Working Paper Series, No. 00-077, 2000.
MacCrimmon, K.R. and Wehrung, D.A., Taking Risks: The Management of Uncertainty, New York: The Free Press,

1986.
McConnell, S., Rapid Development: Taming Wild Software Schedules, Ch. 7: Lifecycle Planning, Redmond: Microsoft

Press, 1996.
Otto, K. and Wood, K., Product Design, New Jersey: Prentice Hall, 2001.
Pahl, G. and Beitz, W., Engineering Design, A Systematic Approach, 2nd ed. London: Springer, 1996.
Smith, P.G. and Reinertsen, D.G., “Shortening the Product Development Cycle,” Research-Technology Management,

May-June, 1992, pp. 44-49
Ulrich, K.T. and Eppinger, S.D. Product Design and Development, 3rd ed. New York: McGraw Hill, 2004.
Ward, A., et. al., “The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster,” Sloan

Management Review, Vol. 36, Issue 3, Spring, 1995, pp.43-61.

 26

	3. Characteristics for specific PDP comparison
	6.1 PDP design method proposal
	6.2 Method demonstration: Printco application

