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Pole-Zero Phase Maps
Kent H. Lundberg

INTRODUCTION

Determining the phase of the loop transfer functionL(s) at
arbitrary points on thes-plane is an important skill for stu-
dents in introductory control subjects. Evans showed that the
magnitude and phase of a transfer function can be determined
from the pole-zero map using simple vector geometry [1], [2].
For example, the magnitude and phase of a transfer function
of the form

L(s) =
s − z

s − p

at a particular value ofs = s1 can be evaluated from the
vectors shown in Figure 1. The complex numbers1 − z in the
numerator is represented by the vector from the points = z to
the points = s1. The lengthrz of this vector is the magnitude
of s1−z, and the angleφz that this vector makes with respect
to the real axis is the phase ofs1 − z. Writing both vectors as
complex numbers in polar form yields

L(s1) =
s1 − z

s1 − p
=

rze
jφz

rpe
jφp

=
rz

rp

ej(φz−φp)

or, simply,

|L(s1)| =
rz

rp

, 6 L(s1) = φz − φp.

Despite the simplicity of this calculation, students often
have some initial difficulty visualizing the effects of poles
and zeros on the phase ofL(s) throughout thes-plane. Using
Matlab to produce arrow plots, the phase ofL(s) can be
displayed on a pole-zero map. For example, Figure 2 shows
the phase of the single-pole transfer function

L(s) =
1

s + 1
.

The blue arrows point in the direction of the phase ofL(s).
Students can verify the vector-geometry arguments above by
exploring a few test points.

ACCURATE PHASE CHARACTERISTICS ONBODE PLOTS

Once students grow accustomed to these phase maps,s-
plane relationships leading to the development of Bode plots
and Evans root-locus plots can be demonstrated. For example,
Figure 3 shows that the two poles ats = −1 of

L(s) =
1

s(s + 1)2

cause a slowly varying phase characteristic on the imaginary
axis, while Figure 4 shows that the two lightly damped
complex-conjugate poles of

L(s) =
1

s(s2 + 0.2s + 1)

s1

rp rz

jω

σ
φp φz

Fig. 1. Vector geometry for finding the magnitude and phase ofL(s1). The
quantitys1 − p is represented by a vector whose length isrp and which has
the angleφp. The magnitude ofL(s1) is equal torz/rp, and the phase of
L(s1) is equal toφz − φp.
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Fig. 2. Pole-zero phase map ofL(s) = 1/(s + 1). The transfer-function
pole is shown ats = −1. The blue arrows point in the direction of the phase
of L(s) for the value ofs at the base of the arrow. For example, the phase
of L(s) is zero degrees for values ofs on the positive real axis.

create a much sharper transition in the phase of the frequency
response. This distinction is evident in the Bode plots shown
in Figure 5. The pole-zero phase map helps students visualize
the cause of the sharper phase transition of the lightly damped
poles.

FINDING THE EVANS ROOT LOCUS

The branches of the Evans root locus are found where the
phase of the loop transfer function is an odd integer multiple
of −180◦. Satisfying this root-locus angle condition for

L(s) =
K

s(s2 + 0.2s + 1)

is accomplished by finding the blue arrows that point to the
left in Figure 4. Figure 6 shows the Evans root-locus plot for
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Fig. 3. Pole-zero phase map ofL(s) = 1/s(s + 1)2. With all poles on the
real axis, the phase ofL(jω) along the imaginary axis changes slowly from
−90◦ at the origin to−270◦ for large positive values ofω.
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Fig. 4. Pole-zero phase map ofL(s) = 1/s(s2 + 0.2s + 1). The phase of
L(jω) along the imaginary axis changes quickly from−90◦ to −270◦ near
the locations of the lightly damped complex-conjugate poles.
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Fig. 5. Bode plots ofL(s) = 1/s(s + 1)2 (blue) andL(s) = 1/s(s2 +
0.2s+1) (green). The phase transition for the latter transfer function is much
sharper due to the complex-conjugate poles close to the imaginary axis, as
shown in Figure 4.
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Fig. 6. Evans root-locus plot ofL(s) = K/s(s2 +0.2s+1). The branches
of the root locus lie where the phase ofL(s) is −180◦, which corresponds
to the arrows pointing left in Figure 4.

this transfer function, tracing the paths of the blue arrowsthat
point to the left.

DEMONSTRATING COMPENSATION

Pole-zero phase maps can help students appreciate the
interrelation of classical-control analysis tools and measures of
relative stability. For example, the effect of lead compensation
on phase margin and the centroid of the asymptotes of the root
locus can be seen on a single pole-zero phase map. Consider
the double integrator

L(s) =
K

s2
.

The phase of the frequency response is always−180◦, as
shown in Figure 7. This system can be stabilized with a lead
compensator yielding the loop transfer function

L(s) =
K

s2

(

s + 1

0.25s + 1

)

,

which provides a positive phase margin. Examination of the
pole-zero phase map in Figure 8 reveals that the compensated
system has phase that approaches−140◦ along the positive
imaginary axis, implying a phase margin greater than35◦.
The branches of the root locus have been moved into the left
half plane as desired, as seen from the new locations of the
−180◦ arrows.

CONCLUSIONS

Using pole-zero phase maps helps students to determine
the phase of a transfer function from a plot of the poles and
zeros. This visualization of the phase ofL(s) helps students
develop s-plane intuition and facilitates the introduction of
the analytical tools of classical control, such as Bode plots,
Nyquist diagrams, and Evans root-locus plots.



APPEARED IN IEEE CONTROL SYSTEMS MAGAZINE, VOL. 25, NO. 1, PP. 84–87, FEBRUARY 2005 3

−5 −4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

Real Axis

Im
ag

in
ar

y 
A

xi
s

Fig. 7. Pole-zero phase map (blue) and root locus (red) of the double
integratorL(s) = K/s2. Since the phase along the imaginary axis is always
−180◦, the root locus is confined to the imaginary axis, and thus the closed-
loop system is unstable for all positiveK.
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Fig. 8. Pole-zero phase map (blue) and root locus (red) ofL(s) =
K(s + 1)/s2(0.25s + 1). With lead compensation, the double integrator
can be stabilized. The lead zero affects the phase ofL(jω) along the positive
imaginary axis (improving the phase margin, as desired). This compensation
moves the locations of−180◦ phase into the left half plane, thus shifting the
branches of the root locus into the left half plane.
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SIDE BAR

Caveat: The vectors that represent

L(s1) =
s1 − z

s1 − p

are identical to the vectors that represent

L(s1) = −10

(

s1 − z

s1 − p

)

.

Evans’ vector method therefore works only to within a system-
atic multiplicative factor, which can change the loop-transfer-
function magnitude by an arbitrary amount and change the
phase by180◦.

SIDE BAR

MATLAB commands for Figure 2:

[x,y] = meshgrid(-2:0.2:2,-2:0.2:2);
p = angle(1./(x+j*y+1));
u = cos(p); v = sin(p);
u(11,6) = 0; % no arrow at pole
quiver(x,y,u,v,0.7);
axis(2.2*[-1 1 -1 1])
hold on
s = tf(’s’);
pzmap(1/(s+1),’r’)
hold off
title(’Pole-Zero Phase Map’)
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