#### Supercritical Impurities: Atomic Collapse in Graphene

#### Leonid Levitov

(picture courtesy Mike Crommie)

# Stability of a planetary atom

Classical physics: unstable (energy unbounded)

Quantum theory (Bohr, 1913): stable orbits, Rydberg's formula



$$E_n = -\frac{me^4 Z^2}{2\hbar^2 n^2}$$



Lower bound: 
$$E_1 = -\frac{me^4Z^2}{2\hbar^2}$$



Heisenberg (1926): uncertainty principle

$$\Delta p \Delta x \ge \hbar/2$$

$$K_{\rm nr} = \frac{p^2}{2m} \sim \frac{\hbar^2}{2mr^2} \gg U = -\frac{Ze^2}{r}$$

Planetary atom stabilized by QM (zero-point motion)

# Stability of a Relativistic Atom

**Classical physics: unstable** (energy unbounded)



Relativity: collapsing orbits



V < C

 $|Mc| > |Ze^2|$ 

 $|Mc| < |Ze^2|$ 

09/20/2012

# Stability of a Relativistic Atom

Classical physics: unstable (energy unbounded)



QM orbitals stabilized by zero point motion

$$K_{\rm nr} = \frac{p^2}{2m} \sim \frac{\hbar^2}{2mr^2} \quad \mathbf{E} = \mathbf{K} + \mathbf{U}$$
$$U = -\frac{Ze^2}{r}$$

Relativity: collapsing orbits



**v** < **c** 

 $|Mc| > |Ze^2|$ 

 $|Mc| < |Ze^2|$ 

# Stability of a Relativistic Atom

**Classical physics: unstable** (energy unbounded)



QM orbitals stabilized by zero point motion



09/20/2012

# Dirac atoms can implode:

Subcritical (Z < 137)



**Dirac (1929)** 



Complex energies at

 $\zeta > 1$ 

# Dirac atoms can implode:

Subcritical (Z < 137)



**Dirac (1929)** 



Complex energies at

 $\zeta > 1$ 

What happens at Z > 137?

# Supercritical atom

Pre-collapse (137 < Z < 170) *Pomeranchuk & Smorodinskii (1945); Werner and Wheeler (1957)* 







Finite size of nucleus Pomeranchuk nuclear formfactor  $r_0 \approx 1.2 \cdot 10^{-12} cm$ 1S level dives into Dirac sea at Z = 170

# Supercritical atom

Pre-collapse (137 < Z < 170) *Pomeranchuk & Smorodinskii (1945); Werner and Wheeler (1957)* 







Finite size of nucleus Pomeranchuk nuclear formfactor  $r_0 \approx 1.2 \cdot 10^{-12} cm$ 1S level dives into

Dirac sea at Z = 170

# Supercritical atom Collapse, vacuum reconstruction







Gershteyn, Zeldovich (1969) **Popov (1970)** 

Resonance state in the Dirac sea Screening by pair production?

$$\epsilon = \epsilon_0 - i\gamma \quad \epsilon_0 = -m - a(Z - Z_c)$$
$$\gamma \sim \exp\left(-\frac{b}{\sqrt{Z - Z_c}}\right)$$

**Quasilocalized spatial structure** of the resonance state

## Signatures: supercritical e+ emission

Darmstadt experiment (1980s, revisited in 1990s) UNILAC (EPOS, ORANGE) 3-6 MeV collisions



## Signatures: supercritical e+ emission

Darmstadt experiment (1980s, revisited in 1990s) UNILAC (EPOS, ORANGE) 3-6 MeV collisions No signatures of <u>supercritical</u> emission





# Relativistic massless electrons in graphene

Two sublattices



pseudo-spin (sublattice)  $\hat{H} = v_F \hat{\sigma} \mathbf{p}$ 





09/20/2012

# **Relativistic massless electrons in** graphene

**Two sublattices** 



 $\hat{H} = v_F \hat{\boldsymbol{\sigma}} \mathbf{p} \quad E = \sqrt{c^2 p^2 + m^2 c^4}$ 





degeneracy spin&valley

09/20/2012

# Relativistic massless electrons in<br/>grapheneTwo sublattices $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$

No gap (cond-mat)  $\equiv$  No mass (hep)

pseudo-spin (sublattice)

 $\hat{H} = v_F \hat{\sigma} \mathbf{p}$   $E = \sqrt{c^2 p^2}$ 

4-fold degeneracy spin&valley

**K'** 

#### Relativistic massless electrons in graphene Two sublattices

 $\hat{H} = v_F \hat{\sigma} \mathbf{p} \quad E = \sqrt{c^2 p^2}$ No gap (cond-mat) = No mass (hep)  $v_F \approx 10^6 m/s = \frac{c}{300} \quad \alpha = e^2/\hbar v \approx 2.5$ Slow, but ultra-relativistic
Dirac fermions

 $\psi = \left(\begin{array}{c} \psi_1 \\ \psi_2 \end{array}\right) \mathbf{4}$ 

pseudo-spin (sublattice)

4-fold degeneracy spin&valley

### Atomic collapse for massless fermions

- Large fine structure constant,  $\alpha = \frac{e^2}{\hbar v} \approx 2.5$ , low collapse threshold Z~1
- Massless Dirac equation: continuum spectrum only, no discrete spectrum
- Manifestation of collapse: formation of resonances (infinite family, quasilocalized spatial structure)
- Strong effects in vacuum polarization: screening cloud may extend indefinitely (*cf.* cutoff at Compton wavelength for massive Dirac electron)

A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, PRL 99, 236801 (2007), PRL 99, 246802 (2007)

#### Quasistationary states



# Resonances in the local density of states, can be probed by STM Tunneling spectroscopy $\beta = Ze^2/\kappa \hbar v$



<sup>09/20/2012</sup> Energy scales as the width  $\Gamma$  and as 1/(localization radius)

## Reaching collapse (critical Z values)

- Vary Z. Critical value affected by intrinsic screening. Accounting for self-consistent nonlinear screening challenging. Optimistic estimates yield 1<Z<2.
- Experiment (Crommie): Co trimers, Ca dimers
- Recent work: AB flux as a vehicle to control collapse, Z<<1
- Can be realized for dislocations (pseudo-B field), or vortices in a superconductor adjacent to graphene







09/20/2012

Aharonov-Bohm flux  $\Phi/\Phi_0$ 



# Screening cloud: transition between dielectric and metallic behavior

- Subcritical regime: dielectric behavior, 1/r potential, screening charge concentrated on the lattice scale
- Supercritical regime: metallic behavior, large-scale screening cloud with a power law tale
- Predict scaling exponent value from exact solution

$$V(\rho \gg a) \sim \rho^{-\eta} \qquad 1 < \eta < 2$$

#### Take-home message

- AB flux a knob to tune collapse (in addition to Z)
- A bi-critical point, two regimes: "dielectric" and "metallic"
- Exact solution for vacuum polarization and the screening cloud structure
- Experimental search for supercritical potential.

#### Take-home message

- AB flux a knob to tune collapse (in addition to Z)
- A bi-critical point, two regimes: "dielectric" and "metallic"
- Exact solution for vacuum polarization and the screening cloud structure
- Experimental search for supercritical potential.
   Just found it

#### How do we make a supercritical potential? Ca dimers on G/BN, Crommie's Lab (Berkeley)



Previous work (probed intrinsic screening for Co trimers) Wang, Brar, Shytov, Wu, Regan, Tsai, Zettl, Levitov, Crommie, Nat Phys 8, 653 (2012)

#### **Ca Dimer Has an Advantage: Can Manipulate it**

#### Ca Dimers are Moveable Charge Centers n=3 dimer cluster





#### **Tuning Z by Building Artificial Nuclei from Ca Dimers**



#### **Compare to Simulated Behavior**



#### **Atomic Collapse Spatial Dependence n=5 Cluster**



Distance (nm)

#### **Dependence on Electron Occupation**



#### **Observed Density Dependence NOT Symmetric**



#### Why the Strong Suppression for Occupied Regime?

**Possible explanation:** <u>electron-electron interactions</u>



**Suppression of Single-Particle Spectral Density** 

#### **Atomic collapse in graphene**

1. Graphene: relativistic high-energy physics in a condensed matter system. Atomic collapse near charge impurities, Z~1.

2. Manifestations: formation of resonances and Dirac vacuum polarization. STM experiments with Z~1 impurities. Collapse observed on artificial nuclei (few-impurity clusters)

3. Use Aharonov-Bohm solenoid (B field or pseudo-B field) to bring collapse threshold from Z~1 down to Z<<1. Exact solution for screening cloud near critical point.



- (1) New electron-electron interaction effects
- (2) Impurity-impurity interactions
- (3) Supercriticality in other systems? (Topol. insulators; mass  $\neq$  0)
- (4) Spin Effects