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Stability of a planetary atom
Classical physics: unstable
(energy unbounded)

Quantum theory (Bohr, 1913):
stable orbits, Rydberg's formula

Heisenberg (1926): uncertainty principle

Planetary atom stabilized by QM (zero-point motion)

Lower bound:

E=K+U
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Stability of a Relativistic Atom
Classical physics: unstable
(energy unbounded)

Relativity: collapsing orbits
v < c
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Stability of a Relativistic Atom
Classical physics: unstable
(energy unbounded)

QM orbitals stabilized by 
zero point motion

Relativity: collapsing orbits Relativity + QM: 
v < c

Collapse?

?

E=K+U
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Dirac atoms can implode:

Dirac (1929)

D = 3

Subcritical (Z < 137)

Complex energies at

Real Complex
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Dirac atoms can implode:

Dirac (1929)

What happens at 
Z > 137?

D = 3

Subcritical (Z < 137)

Complex energies at

Real Complex
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Supercritical atom

Finite size of nucleus 
Pomeranchuk nuclear 
formfactor 

1S level dives into 
Dirac sea at Z = 170

Pomeranchuk & Smorodinskii (1945); 
Werner and Wheeler (1957)

Pre-collapse  (137 < Z < 170)

r0≈1.2⋅10−12cm
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Supercritical atom

Finite size of nucleus 
Pomeranchuk nuclear 
formfactor 

1S level dives into 
Dirac sea at Z = 170

Pomeranchuk & Smorodinskii (1945); 
Werner and Wheeler (1957)

Z > 170?

Pre-collapse  (137 < Z < 170)

r0≈1.2⋅10−12cm
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Supercritical atom
Collapse, vacuum reconstruction
                (Z > Zc = 170)

Gershteyn, Zeldovich (1969)
Popov (1970)

Resonance state in the Dirac sea
Screening by pair production?

Quasilocalized spatial structure
of the resonance state
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U(+92) U(+92)

e+

Darmstadt experiment (1980s, 
revisited in 1990s)
UNILAC (EPOS, ORANGE)
3-6 MeV collisions

Signatures: supercritical e+ emission
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U(+92) U(+92)

e+

Darmstadt experiment (1980s, 
revisited in 1990s)
UNILAC (EPOS, ORANGE)
3-6 MeV collisions
No signatures of supercritical emission

Signatures: supercritical e+ emission
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pseudo-spin (sublattice)

Two sublattices

K
K'

4-fold 
degeneracy
spin&valley

Relativistic massless electrons in 
graphene
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pseudo-spin (sublattice)

Two sublattices

No gap (cond-mat) ≡ No  mass (hep) K
K'

4-fold 
degeneracy
spin&valley

Relativistic massless electrons in 
graphene
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pseudo-spin (sublattice)

Two sublattices

Slow, but ultra-relativistic
Dirac fermions

No gap (cond-mat) ≡ No  mass (hep) K
K'

4-fold 
degeneracy
spin&valley

Relativistic massless electrons in 
graphene

α=e2/ ℏ v≈2.5
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Atomic collapse for massless fermions
● Large fine structure constant,                     , low 

collapse threshold Z~1 
● Massless Dirac equation: continuum spectrum only, 

no discrete spectrum
● Manifestation of collapse: formation of resonances 

(infinite family, quasilocalized spatial structure)
● Strong effects in vacuum polarization: screening 

cloud may extend indefinitely (cf. cutoff at Compton 
wavelength for massive Dirac electron)

α=
e2

ℏ v
≈2.5

A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, 
PRL 99, 236801 (2007), PRL 99, 246802 (2007)
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Quasistationary states

Quasi-Rydberg family

Atomic collapse
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Resonances in the local density of 
states, can be probed by STM

Tunneling spectroscopy

Energy scales as the width  and as 1/(localization radius)

β=Ze2/κ ℏ v
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Reaching collapse (critical Z values)
● Vary Z. Critical value affected by intrinsic screening. 

Accounting for self-consistent nonlinear screening 
challenging. Optimistic estimates yield 1<Z<2.

● Experiment (Crommie): Co trimers, Ca dimers
● Recent work: AB flux as a vehicle to control 

collapse, Z<<1
● Can be realized for dislocations (pseudo-B field), or 

vortices in a superconductor adjacent to graphene 
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Atomic collapse in the presence of 
an Aharonov-Bohm solenoid

H=v σ ( p⃗−A⃗ (ρ))−
Z e2

ρ A⃗(ρ)= Φ
2πρ

(− y , x )

E⃗

B⃗=Φδ(ρ)
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Atomic collapse in the presence of 
an Aharonov-Bohm solenoid

H=v σ ( p⃗−A⃗ (ρ))−
Z e2

ρ A⃗(ρ)= Φ
2πρ

(− y , x )

E⃗

B⃗=Φδ(ρ)

Exact solution 
near bi-critical 
point  =1/2



09/20/2012

Screening cloud: transition between 
dielectric and metallic behavior

● Subcritical regime: dielectric behavior, 1/r potential, 
screening charge concentrated on the lattice scale

● Supercritical regime: metallic behavior, large-scale 
screening cloud with a power law tale

● Predict scaling exponent value from exact solution 

V (ρ≫a)∼ρ
−η 1<η<2
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Take-home message

● AB flux a knob to tune collapse (in addition to Z)
● A bi-critical point, two regimes: “dielectric” and 

“metallic”
● Exact solution for vacuum polarization and the 

screening cloud structure
● Experimental search for supercritical potential. 
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Take-home message

● AB flux a knob to tune collapse (in addition to Z)
● A bi-critical point, two regimes: “dielectric” and 

“metallic”
● Exact solution for vacuum polarization and the 

screening cloud structure
● Experimental search for supercritical potential. 

Just found it



How do we make a supercritical potential? 
Ca dimers on G/BN, Crommie's Lab (Berkeley) 
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STS for 1 Dimer Simulation for 1 Dimer

Subcritical...Z < Zc

Ca dimer 

0.6
c

Z

Z
≈

Experiment Theory

Wang, Brar, Shytov, Wu, Regan, Tsai, Zettl, Levitov, Crommie,
Nat Phys 8, 653 (2012) 

Previous work (probed intrinsic screening for Co trimers)



Ca Dimer Has an Advantage: Can Manipulate it

Ca Dimers are Moveable Charge Centers

Fabricate Artificial Nuclei

+ +

+
+++

+ +

Tune Z above Zc

n=3 dimer cluster



Tuning Z by Building Artificial Nuclei from Ca Dimers
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Compare to Simulated Behavior
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Experiment:
n=1

Theory:
Z/Zc = 0.6

Theory:
Z/Zc = 1.4

Theory:
Z/Zc = 2.2

Experiment:
n=3

Experiment:
n=5

Theory fit parameter:  Z/Zc   (Levitov, Shytov)

Atomic 
Collapse



Atomic Collapse Spatial Dependence n=5 Cluster
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Dependence on Electron Occupation

E

LDOS

EF

Strongly 
p-doped

Atomic Collapse State
(positive impurity)

E

LDOS

EF

Low doping

E

LDOS

EF

Strongly 
n-doped

Low 
Screening

High 
Screening

High 
Screening

Expect similar behavior in single-particle picture 



Observed Density Dependence NOT Symmetric

High p-doped
n ~ 3 × 1012   cm-2

High n-doped
n ~ 3 × 1012   cm-2

Low p-doped
n ~ 4 × 1011   cm-2

Strong 
Suppression

Gate dependent spectra
4 nm from 5 Ca-dimer cluster



Why the Strong Suppression for Occupied Regime?

STM 
tip

EF

EF

e-

+

-

Vb

STM 
tip

EF

EF

e-

+

-

Vb

U=Coulomb 
repulsion 

      4 electrons 
(2 spins x 2 valleys) 

Suppression of Single-Particle Spectral Density

p-doped case n-doped case (electron occupied)

At. Coll. 
state

Possible explanation: electron-electron interactions



09/20/2012

Atomic collapse in graphene

1. Graphene: relativistic high-energy physics in a condensed 
matter system. Atomic collapse near charge impurities, Z~1.

2. Manifestations: formation of resonances and Dirac vacuum 
polarization. STM experiments with Z~1 impurities. Collapse 
observed on artificial nuclei (few-impurity clusters)

3. Use Aharonov-Bohm solenoid (B field or pseudo-B field)
to bring collapse threshold from Z~1 down to Z<<1. 
Exact solution for screening cloud near critical point. 



Future:

(1) New electron-electron interaction effects 

(2) Impurity-impurity interactions

(3) Supercriticality in other systems? (Topol. 
insulators;  mass ≠ 0)

(4) Spin Effects
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