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Klein tunneling

Klein paradox: transmission of relativistic
particles is unimpeded even by highest

barriers
Reason: negative energy states;

Physical picture: particle/hole pairs
Katsnelson, Novoselov,
Geim
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Electron confinement in a p—n-p

Junction

Gate-induced potential well, e.g. V(x) =ax*2 + E
Momentum conserved along y-axis:

Effective D=1 potential ,, ~_ ~_ o2+ pl + V().

Savchenko & Guinea

7\ / Confinement
' /\ by gates difficult!

Klein tunneling

No discrete spectrum, instead:
(i) quasistationary states (resonances);
(ii) collimated transmission




Quasiclassical treatment

Silvestrov, Efetov

Classical trajectories
Potential V(x) = U(x/x0)"2 + E J
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Geometric confinement in
ribbons and dots

Nanoribbons: quantized ky = w/width

Geometric energy gap A = hvr/width

Coulomb blockade in

graphene Geim, Novoselov; Ensslin group
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Graphene p-n junctions:
collimated transmission

¢ Ballistic transmission at normal incidence
(contrast tunneling in conventional p-n
junctions);

¢ Ohmic conduction (cf. direct/reverse bias
asymmetry in conventional p-n junctions)

¢ No minority/majority carriers



Signatures of collimated

Exeter group: 170 nm

narrow gate (air bridge) NP . R
simulated electrostatic top gate —— — [2500m
potential, density profile graphlane T“ -

compare expected and
measured resistance,
find an excess part
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Besides collimated
transmission, are there any
other observable signatures

of the Klein physics?

Negative refraction and electron lense (Cheianov, Falko, Altshuler);
Magnetoresistance (Cheianov & Falko)

Shytov, Rudner & LL, arXiv:0808.0488
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Klein backscattering and

Fabry-Perot resonances
Momentum-conserving tunneling, no disorder
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Phase of backreflection:
(i) phase jump by & at normal
incidence shows up in FP interference; —eBL/2 < py o < eBL /2
(i) the net FP phase depends on the sign of | |

inner incidence angles;
(i) CAN BE ALTERED by B field

py(z) = pyo —eBz,

py(x1) > 0 and py(z2) <0



Transmission at B=0 and B>0

Momentum pyfp*

Energy ale,

Interpretation of scattering

problem: fictitious time t=x;
repeated Landau-Zener
transitions; Stuckelberg
oscillations
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Top-gate potential,

Dirac hamiltonian
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Quasiclassical analysis

U(z) = az® — ¢,

Confining potential and
Dirac hamiltonian

p-n interfaces at x = 2., z. =+/¢/a
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FP contrast in

Energies ¢

Resistance R/R,
1

n
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FP phase
contrast not
washed out after
Integration over

Py

Magnetic field B/B,
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Landauer formula:
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Half-a-period phase shift
iInduced by magnetic field

MR same as in Cheianov, Falko

Energy sfs,



Interpretation of the W-shift
as a Berry's phase

Trajectory in momentum space yields
an effective time-dependent “Zeeman” field

H=v oc.p(t)
Weak B: Strong B:
zero not enclosed, A6 =0 zero enclosed, AO=m
py * pﬁ‘w
| \--/ |
px Px

Berry's phase must be added to the WKB phase



FP oscillations (experiment)

Columbia group (2008):

FP resonances in zero B; crossover to
Shubnikov-deHaas oscillations at B>1T
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Scattering on disorder:

Shubnikov - de Haas

effect 1n a p—n-p
structure

O Nen worin




Oscillations: LDOS, i1mpurity
scattering, conductance

i Momentum-resolved DOS at x=0, B=0 | Densrty Of States
j I“” (momentum-resolved)

5 3 within the p-n-p structure
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Magnetic field B/B,

Total density of states

Total DOS at x=0
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Energy-derivative

The oscillatory part of DOS at x=0 (energy derivative dN/de)
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Magnetic field B/B,

Adding momentum-conserving
contribution ;2~§:E conductance

The oscillatory part of DOS at x=0 (energy derivative dN/dz)
' g Conductance, momenturmn conserving
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Part I1I

Lorentz boost and
magnetoresistance of p-n
junctions



Electron i1n a single p—-n

junction
Potential step instead of a barrier (smooth or sharp)

Cheianov, Falko

0 p, p-n junction schematic:
H = F'ur’."I:}Z] + 'n",r.'t,f (jf a ) . L= .!"j}j,

f /
+1(-1) for points K(K") 2
sl |

/

nooe——
smooth step:  sharp step: \ /

H"[ 5.} - “E:.—T."[.'!:rd'ZHilT3 E. ]'Tﬂup{ f—}} — 'L”.H:-rj 4 gates
(nontrivial) (straightforward)

In both cases, perfect transmission in the forward
direction: manifestation of chiral dynamics



Exact solution i1in a uniform
electric field (“Landau-Zener”)

Use momentum representation (direct access to asymptotic
plane wave scattering states)

Evolution in a fictitious time with a hermitian 2x2 Hamiltonian

—HE iJFr_;'..‘;:"._f.!ilff_Jj = Hr H = [-J_i'r] Ty — IJErT-:.-] i

Equivalent to Landau-Zener transition at an avoided level
crossing;
Interpretation: interband tunneling for p2(t)=vt

Transmission equals to the LZ probability of staying in the

diabatic state: o _
T'(py) = exp(—mhoppy/|eE|),

Exact transmission matches the WKB result



Single p-n junction in B field

Recall relativistic motion in crossed E, B fields i\fdrei Shytov, Nan Gu &

Two regimes_' Lorentz invariants EE —Ef. E.B
(i) electric case E>B (“parabolic” trajectories)
(i) magnetic case B>E (cyclotron motion + drift)
Analogous regimes in graphene p-n junction:

Dirac equation (4) in a Lorentz-invariant form

p = —;E‘ﬂ, i1 = —L:B:.?J.'. az = 0.
g & '-if”,u‘r — Uy )Y = 0. ’Ifﬁf,n' s T ]|"+ — jf.ir,rr..u- LT”' o |
where ~* are Dirac gamma-matrices, 7’ = o3.
v = —igs, 7% = —ioy, and ¥ is a two-component ¢/vF=300
wave function.
Electric regime (scattering T-matrix, G>0) B < (c/vp)E,
Magnetic regime (Quantum Hall Effect, B > (c/vp)E

G=0)



Lorentz transformation

Electric regime B<B,, critical field &= B.=(c¢/vr)E

Eliminate B using Lorentz boost: 1 v 3 E: y
Aronov, Pikus 1967 0 0 1 vV 1— B2

Transmission coefficient is Lorentz invariant:
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Suppression of G in the electric regime precedes the formation
of Landau levels and edge states at p-n interface

At larger B: no bulk transport, only edge transport



Collimated transmission for
subcritical B

Electric regime B<B

Perfect transmission at a finite p = arcsin B/ B.
angle
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Mapping to the Landau-Zener

transition problem

Evolution with a non-hermitian
Hamiltonian

i0: () = ((¢ + azx)oz +i(p1 + bz)os) P(x) Eigenvalues:
k(z) = +/(e+ azx)? — (p1 + bx)?

Quasiclassical WKB analysis

. o . (pra — eh)?
= ‘.Ef Ime(z)dr = ,""r -
1

5 32 ; 3 oy ;
(e — h ,'I / I'Irfj'j_lll - ':EKI:'L —Tt_ﬁlf"ffr'lf |{’_EI|1|

Exact solution: use momentum representation (gives direct
access to asymptotic plane wave scattering states)

—ieE di /dps = Hy, H=uwvgp (p101 — pP202) — €.

Equivalent to the Landau-Zener transition
Interpretation: interband tunneling for
p2(t)=vt

L-Z result agrees with \WKB



Classical tra‘jectories
a comment by Haldane, 2007

Electron (“comet”) orbits the Dirac point (“Sun”)

H(p,7) =€(p) —eEx, p=p-—cA, A=(0, Br)
Energy integral : e(p) — vp.p=€. vp=E xB/B?

Poisson brackets : [py, ps] = el B

€0

Graphene : e(p) = vp|p|, p(d) = _
vp — vp cos f

Two cases, open and closed orbits:

vp > vp . hyperbola; wvp < wvp : ellipse



Graphene bilayer: electronic structure and QHE

2

Al W07 alp, +p,
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McCann & Falko 2006




P—n junction in graphene bilayer
Bilayer Dirac Hamiltonian with vertical field and interlayer coupling
oA
H = vpp101 — vpp202 + SuT3 + — (1101 + 7202)
Dirac eqgn with fictitios pseudospin-dependent gauge field:

A~ (o - - y w=o - 1 BEE A A\ —
;J{ (p,u. — Uy — fflu.)f.-” = 0, Qi — (“-f 3 — A7 1, A7 2)

After Lorentz boost (B eliminated):
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Transmission characteristics

4x4 transfer matrix in
momentum space
(effectively 2x2)

Gapped spectrum at
finite vertical field

Zero transmission near
u=0 --- tunable!

Perfect transmission
for certain u and p

Tunneling at small p
suppressed by B field

ieE dip /dps = (Hi(p7, p5) — ) ¢
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Transport in pn junctions,
Manifestations of
relativistic Dirac physics:

¢ Klein backreflection contributes a © phase
to interference ;

¢ Bilayers: a 2r phase;

¢ Half a period phase shift a hallmark of Klein
scattering

¢ electric and magnetic regimes B<300E and
B>300E (300=c/vs)

¢ Consistent with FP oscillations and
magnetoresistance of existing p-n junctions
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Also: a momentum-conserving
contribution to conductance

Conductance, momentum conserving

SERRRRRRR 045
0.4

o 10.35
o
E l0.3
11}
7 IHI'““II 10.25
= 10.2
5
- 0.15

0.1

| 0.05

0 2 4 6 8 10 12
Energy =/s,




