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Klein tunneling

Klein paradox: transmission of relativistic 
particles is unimpeded even by highest 
barriers
Reason: negative energy states;
Physical picture: particle/hole pairs

Example: potential step

Transmission, 
angular dependence

Limit of extremely 
high barrier:  finite T

Chiral dynamics of 
massless Dirac particles: 
no backward scattering 
(perfect transmission at 
zero angle)

Katsnelson, Novoselov, 
Geim



Electron confinement in a p-n-p 
junction

Gate-induced potential well, e.g.  V(x) = ax^2 + E

Klein tunneling

No discrete spectrum, instead: 
(i) quasistationary states (resonances); 
(ii) collimated transmission

Confinement 
by gates difficult!

Momentum conserved along y-axis:

Effective D=1 potential

Savchenko & Guinea



Quasiclassical treatment

Potential  V(x) = U(x/x0)^2 + E

Bohr-Sommerfeld quantization

Finite lifetime

Classical trajectories

Tunneling Turning 
points:

Silvestrov, Efetov

Degree of confinement can be tuned 
by gates; BUT:
no confinement for py=0



Geometric confinement in 
ribbons and dots

Nanoribbons:  quantized ky = /width

Geometric energy gap   = hvF/width

Coulomb blockade in 
graphene

Geim, Novoselov; Ensslin group



Graphene p-n junctions: 
collimated transmission

 Ballistic transmission at normal incidence 
(contrast tunneling in conventional p-n 
junctions);

 Ohmic conduction (cf. direct/reverse bias 
asymmetry in conventional p-n junctions)

 No minority/majority carriers



Signatures of collimated 
transmission in pnp structures

Exeter group:
narrow gate (air bridge)

simulated electrostatic 
potential, density profile

compare expected and
measured resistance, 
find an excess part

Stanford group: 
sharp confining potential
(the top gate ~10 times closer)

analyze the antisymmetric 
bipolar/unipolar part of resistance 

R agrees w. Klein picture, BUT: 
a small effect, model-sensitive



Besides collimated 
transmission, are there any 
other observable signatures 

of the Klein physics?

Shytov, Rudner & LL, arXiv:0808.0488

Fabry-Perot 
resonances
mixed with UCF?

Exeter 
group

Stanford 
group

Negative refraction and electron lense (Cheianov, Falko, Altshuler);
Magnetoresistance (Cheianov & Falko)



Klein backscattering and 
Fabry-Perot resonances

Phase of backreflection:
(i) phase jump by  at normal
incidence shows up in FP interference;
(ii) the net FP phase depends on the sign of 
inner incidence angles;
(iii) CAN BE ALTERED by B field

Momentum-conserving tunneling, no disorder



Transmission at B=0 and B>0

Reversal of fringe 
contrast on the lines

B=0

B>0Interpretation of scattering 
problem: fictitious time t=x; 
repeated Landau-Zener 
transitions; Stuckelberg 
oscillations

Top-gate potential; 
Dirac hamiltonian



Quasiclassical analysis

Confining potential and 
Dirac hamiltonian

WKB wavefunction

Transmission 
and reflection 
amplitudes

Sign change 
(phase jump)



FP contrast in conductance
Landauer formula:

Signature of : 
Half-a-period phase shift 
induced by magnetic field

FP phase 
contrast not 
washed out after 
integration over 
py

MR same as in Cheianov, Falko



Interpretation of the -shift 
as a Berry's phase

H = v .p(t)

Trajectory in momentum space yields
an effective time-dependent “Zeeman” field

Weak B: 
zero not enclosed, = 0

Strong B: 
zero enclosed, 

pypy

pxpx

Berry's phase must be added to the WKB phase



FP oscillations (experiment)

Columbia group (2008): 
FP resonances in zero B;  crossover to
Shubnikov-deHaas oscillations at B>1T



Scattering on disorder: 
Shubnikov – de Haas 
effect in a p-n-p 

structure



Oscillations: LDOS, impurity 
scattering, conductance

Density of states 
(momentum-resolved) 
within the p-n-p structure

B=0
B>0

+ + ...
n

n

n p ppp

SdH



Total density of states

Energy-derivative 

AGREES WITH 
EXPERIMENT?



Adding momentum-conserving 
contribution to SdH conductance

Energy-derivative 



Part II

Lorentz boost and 
magnetoresistance of p-n 

junctions



Electron in a single p-n 
junction

p-n junction schematic:

gates

+1(-1) for points K(K')

Potential step instead of a barrier (smooth or sharp) 

smooth step:      sharp step:

In both cases, perfect transmission in the forward 
direction: manifestation of chiral dynamics

(nontrivial)          (straightforward)

Cheianov, Falko



Exact solution in a uniform 
electric field (“Landau-Zener”)

Evolution in a fictitious time with a hermitian 2x2 Hamiltonian

Transmission equals to the LZ probability of staying in the 
diabatic state:

Use momentum representation (direct access to asymptotic 
plane wave scattering states)

Equivalent to Landau-Zener transition at an avoided level 
crossing; 
Interpretation: interband tunneling for p2(t)=vt

Exact transmission matches the WKB result



Single p-n junction in B field
Andrei Shytov, Nan Gu & 
LL

Recall relativistic motion in crossed E, B fields

                              Two regimes:

(i) electric case E>B (“parabolic” trajectories) 
(ii) magnetic case B>E (cyclotron motion + drift)

Electric regime (scattering T-matrix, G>0)

Magnetic regime (Quantum Hall Effect, 
G=0)

Analogous regimes in graphene p-n junction:

c/vF=300



Lorentz transformation

Eliminate B using Lorentz boost:

Transmission coefficient is Lorentz invariant: 

Net conductance (Landauer formula):

Suppression of G in the electric regime precedes the formation 
of Landau levels and edge states at p-n interface

Aronov, Pikus 1967

experiment in Stanford:

At larger B: no bulk transport, only edge transport

Electric regime B<B  ,  critical field
*



 Collimated transmission for 
subcritical B

Electric regime B<B

Perfect transmission at a finite 
angle 

Current switch controled by 
B

*

T=1

Collimation angle reduced by Lorentz contraction



Mapping to the Landau-Zener 
transition problem

Quasiclassical WKB analysis Evolution with a non-hermitian 
Hamiltonian

Eigenvalues:

Exact solution: use momentum representation (gives direct 
access to asymptotic plane wave scattering states)

Equivalent to the Landau-Zener transition 
Interpretation: interband tunneling for 
p2(t)=vt
L-Z result agrees with WKB



Classical trajectories

Two cases, open and closed orbits:

Electron (“comet”) orbits the Dirac point (“Sun”)

a comment by Haldane, 2007



Graphene bilayer: electronic structure and QHE

HH



p-n junction in graphene bilayer

Bilayer Dirac Hamiltonian with vertical field and interlayer coupling 

Dirac eqn with fictitios pseudospin-dependent gauge field:

After Lorentz boost (B eliminated):



Transmission characteristics

Zero transmission near
u=0 --- tunable! 

4x4 transfer matrix in 
momentum space
(effectively 2x2)

Tunneling at small p
suppressed by B field

Gapped spectrum at
finite vertical field

Perfect transmission 
for certain u and p



Transport in pn junctions,
Manifestations of 

relativistic Dirac physics:

  Klein backreflection contributes a  phase 
to interference ;

 Bilayers: a 2 phase;
 Half a period phase shift a hallmark of Klein 

scattering
 electric and magnetic regimes B<300E and 

B>300E (300=c/vF)
 Consistent with FP oscillations and  

magnetoresistance of existing p-n junctions



:0 ?



:) !



Also: a momentum-conserving 
contribution to conductance


