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Abstract

In this paper we explore design aspects of adaptive modulation based on orthogonal frequency divi-

sion multiplexing (OFDM) for underwater acoustic (UWA) communications, and study its performance

using real-time at-sea experiments. Our design criterion is to maximize the system throughput under a

target average bit error rate (BER). We consider two different schemes based on the level of adaptivity:
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in the first scheme only the modulation levels are adjusted while the power is allocated uniformly across

the sub-carriers, whereas in the second scheme, both the modulation levels and the power are adjusted

adaptively. For both schemes we linearly predict the channel one travel time ahead so as to improve

the performance in the presence of a long propagation delay.The system design assumes a feedback

link from the receiver that is exploited in two forms: one that conveys the modulation alphabet and

quantized power levels to be used for each sub-carrier, and the other that conveys a quantized estimate of

the sparse channel impulse response. The second approach isshown to be advantageous, as it requires

significantly fewer feedback bits for the same system throughput. The effectiveness of the proposed

adaptive schemes is demonstrated using computer simulations, real channel measurements recorded in

shallow water off the western coast of Kauai, Hawaii, in June2008, and real-time at-sea experiments

conducted at the same location in July 2011. We note that thisis the first paper that presents adaptive

modulation results for UWA links with real-time at-sea experiments.

Index Terms

Underwater acoustic communication, orthogonal frequency-division multiplexing (OFDM), adaptive

modulation, feedback.

I. INTRODUCTION

Underwater acoustic (UWA) channels are considered as some of the most challenging commu-

nication media, generally characterized by low propagation speed of sound in water (nominally

1500 m/s), limited bandwidth and randomly time-varying multipath propagation which results

in frequency-selective fading [1]. Delay spreading in an UWA channel can occur over tens of

milliseconds; however, the channel impulse response oftenhas a sparse structure, with only a

few propagation paths carrying most of the channel energy.

Orthogonal frequency division multiplexing (OFDM) has recently emerged as a promising

alternative to single-carrier systems for UWA communications because of its robustness to

channels that exhibit long delay spreads and frequency selectivity [2]–[14]. However, applying

OFDM to UWA channels is a challenging task because of its sensitivity to frequency offset
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that arises due to motion. In particular, because of the low speed of sound and the fact that

acoustic communication signals occupy a bandwidth that is not negligible with respect to the

center frequency, motion-induced Doppler effects result in major problems such as non-uniform

frequency shift across the signal bandwidth and inter-carrier interference (ICI) [15][16].

Time-varying multipath propagation and limited bandwidthplace significant constraints on the

achievable throughput of UWA communication systems. In order to support high spectral effi-

cienciesover long time intervals in such non-stationary environment, we consider communication

systems employing adaptive modulation schemes. While adaptive signaling techniques have been

extensively studied for radio channels [17]–[21], only preliminary results for UWA channels are

reported in [22] and [23], where simulations and recorded data are used to demonstrate the

effectiveness of the proposed adaptation metrics.

The performance of an adaptive system depends on the transmitter’s knowledge of the channel

which is provided via feedback from the receiver. Since sound propagates at a very low speed,

the design and implementation of an adaptive system essentially relies on the ability to predict

the channel at least one travel time ahead. This is a very challenging task for communications

in the range of several kilometers which imposes significantlimitations on the use of feedback.

However, our prior work has shown that channel prediction ispossible over such intervals of time

using a low-order predictor [24]. Crucial to successful channel prediction is motion compensation

that stabilizes the non-uniform Doppler shift and enables (sparse) channel estimation. The so-

obtained channel estimates contain only a few significant coefficients that are shown to be stable

enough to support prediction several seconds into the future.

In this paper we design an adaptive OFDM system and study its performance using recorded

test channels and real-time at-sea experiments. Our approach and contributions are the following:

• We estimate small Doppler rates (less then10−4) that correspond either to drifting of the

instruments, or residuals after initial resampling in mobile systems (e.g. systems using

autonomous underwater vehicles). Proper Doppler compensation ensures stability over in-
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tervals of time that are long enough to support channel prediction several seconds ahead.

• We exploit the sparse multipath structure of the channel impulse response to estimate the

most significant channel paths and simplify the prediction problem. Specifically, we estimate

only a few significant paths of the channel within a possibly large overall delay spread.

We treat the statistical properties of the underlying random process of the channel fading

as unknown, and compute the parameters of a linear predictoradaptively, by applying a

recursive least squares (RLS) algorithm [26].

• We develop two modulation schemes, distinguished by the level of adaptivity: Scheme1

adjusts only the modulation level and assumes a uniform power allocation, while Scheme2

adjusts both the modulation level and the power allotted to each sub-carrier.Both schemes

are based on a greedy algorithm whose optimality was discussed in [20].

• We propose a new design criterion for an adaptive OFDM systembased on the information

that is fed back to the transmitter. Specifically, we consider two cases. In the first case,

the information about the modulation alphabet and the quantized power level for each sub-

carrier is computed at the receiver and fed back to the transmitter. In the second case, the

quantized channel estimates are fed back, and the adaptive algorithm for bit-loading and

power allocation is implemented at the transmitter.

• We demonstrate the effectiveness of the proposed adaptive schemes using computer sim-

ulations, test channels recorded during the Kauai AcousticCommunications MURI 2008

(KAM08) experiment in shallow water off the western coast ofKauai, Hawaii, in June 2008,

and real-time at-sea experiments conducted during the Kauai Acoustic Communications

MURI 2011 (KAM11) experiment at the same location in July 2011. The numerical and

experimental results show that the adaptive modulation scheme can provide significant

throughput improvements as compared to conventional, nonadaptive modulation for the

same power and target BER.

The paper is organized as follows. In Section II, we describethe system and the channel model
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that characterizes an UWA channel. In Section III, we introduce a linear RLS predictor for the

channel tap coefficients. In Section IV, we introduce the rules for selection of the modulation

levels, the information that is fed back to the transmitter,and the adaptive OFDM schemes. In

Section V, we demonstrate the performance of the proposed adaptive schemes using numerical

and experimental results that are based on recorded test channels and real-time at-sea trials,

respectively. In Section VI, we provide concluding remarks.

II. SYSTEM AND CHANNEL MODEL

Let us consider an OFDM system withK sub-carriers, where then-th block of the input data

symbolsXk,n, k = 0, 1, . . . , K−1, is modulated using the inverse fast Fourier transform (IFFT).

The block of input data consists of information-bearing symbols and pilots, with corresponding

sets denoted asSd andSp, respectively. We assume that the information symbols are independent,

while candidate modulation schemes are BPSK, QPSK,8PSK and16QAM with two-dimensional

Gray mapping. In other words, for thek-th sub-carrier, wherek ∈ Sd, and then-th block, the

modulation levelMk,n ∈ {2, 4, 8, 16}, and if no data is transmittedMk,n = 1. It is assumed that

the pilot symbols (k ∈ Sp) take values from the QPSK modulation alphabet. For each modulation

alphabet, we assume a uniform distribution of the constellation points with a normalized average

power. The transmitter sends frames of OFDM blocks, such that one OFDM block occupies an

interval T ′ = T + Tg, whereT and Tg are the symbol duration and the guard time interval,

respectively. We denote byB = K/T the total bandwidth of the system, byf0 the frequency of

the first sub-carrier, byfc = f0 +B/2 the central frequency, and by∆f = 1/T the sub-carrier

separation.

In this paper, we consider an adaptive system illustrated inFig. 1. The different functional

blocks of the system, such as channel and Doppler estimation, channel prediction, adaptive

allocation, and feedback information, are discussed in therest of the paper.
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A. Channel Model

Let us now define the impulse response of the overall channel

h(τ, t) =

P−1∑

p=0

hp(t)δ(τ − τp(t)), (1)

whereP is the number of distinct propagation paths,τ is the delay variable andt is the time

at which the channel is observed. The coefficienthp(t) represents the real-valued gain of the

p-th path, andτp(t) represents the corresponding delay. Here, we emphasize that the channel

model (1) includes the initial resampling operation at the receiver by a common Doppler factor.

Assuming a high bandwidth (sufficient resolution in the delay variableτ ), the set of coefficients

{h0(t), . . . , hP−1(t)} offers a good representation of the actual propagation paths. The received

signalr(t) is given as

r(t) =

P−1∑

p=0

hp(t)s(t− τp(t)) + n(t), (2)

where s(t) is the transmitted signal andn(t) represents the additive white Gaussian noise

(AWGN) process with zero-mean and power spectral density normalized to unity.1 If we also

define the equivalent baseband signalsu(t) andv(t) with respect to the frequencyfc, such that

s(t) = Re
{
u(t)ej2πfct

}
,

r(t) = Re
{
v(t)ej2πfct

}
, (3)

we then obtain

v(t) =

P−1∑

p=0

cp(t)u(t− τp(t)) + w(t), (4)

where

cp(t) = hp(t)e
−j2πfcτp(t), (5)

1The AWGN assumption incurs no loss of generality of the proposed adaptive scheme even though acoustic noise is not

white.



7

and w(t) is the equivalent baseband noise. Eq. (4) implies the equivalent baseband channel

response

c(τ, t) =

P−1∑

p=0

cp(t)δ(τ − τp(t)). (6)

B. Modeling of the time-varying path delayτp(t)

Following the approach from our previous work [24], we modelthe time-varying path delays

as

τp(t) = τp0 −

∫ t

x=0

ap(x)dx, (7)

whereap(t) is the Doppler scaling factor which is some function of time.This model includes

the fixed termτp0 which describes the nominal propagation delay corresponding to the system

geometry at the time of transmission, and an additional term
∫ t

x=0
ap(x)dx that describes the

effect of motion at the time of observation either due to drifting of the instruments (Doppler

rates less then10−4) in stationary systems, or residuals after initial resampling in mobile systems

(e.g. systems using autonomous underwater vehicles). The system motion during a period of time

corresponding to a few seconds (or several data packets) is modeled by velocity and acceleration

terms which lead to a linear Doppler rateap(t). A more accurate model could include higher-

order terms; however, experimental results confirm that this is not necessary. Specifically, we

modelap(t) as a piecewise linear function

ap(t) = ap[n− 1] + (ap[n]− ap[n− 1])

(
t

T ′
− n+ 1

)
, (8)

where (n − 1)T ′ ≤ t ≤ nT ′, and ap[n] are the Doppler scaling factors evaluated at time

instancesnT ′.

This channel model is deemed suitable for the time scales of interest to an adaptive UWA

communication system, since providing a reliable predicted channel state information (CSI)

depends on the availability of a stable signal reference that can be obtained through accurate

motion compensation. For example, for a2 km link and the center frequencyfc = 20 kHz, a
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small Doppler rateap(t) ∼ 10−5 can cause the phase ofcp(t) in Eq. (5) to change up toπ radians

during a time interval of1.33 seconds that corresponds to the propagation delay of one travel

time.2 Such a phase shift can considerably degrade the performanceof channel prediction and

the reliability of the corresponding CSI. In other words, proper Doppler compensation ensures

stability over intervals of time that are long enough to support channel prediction several seconds

ahead.

The model (7) allows one to decouple the phase2πfcτp(t) into two terms, one that is not related

to motion, and another that is related to motion. While the first term may not be predictable

with sufficient accuracy because the frequencyfc may be several orders of magnitude larger

than the inverse of the path delay, the second term can be predicted using the estimates of the

Doppler scaling factorsap[n]. With this fact in mind, we proceed to develop a channel prediction

method that focuses on two general terms: a complex-valued coefficientgp(t) = hp(t)e
−j2πfcτp0 ,

and a motion-induced phaseθp(t) = 2πfc
∫ t

x=0
ap(x)dx. In other words, we model the baseband

channel response as

c(τ, t) =
P−1∑

p=0

gp(t)e
jθp(t)δ(τ − τp(t)) (9)

where we treat eachgp(t) as an unknown complex-valued channel coefficient, which is assumed

to be stable over a prolonged period of time (tens of seconds), andθp(t) as an unknown motion-

induced phase, which is modeled as a second-order polynomial based on the expressions (7)

and (8). We emphasize that this model is valid for some interval of time, but its parameters may

change from one such interval to another.

Our goal is to develop a two-step procedure in which we first estimate the channel coefficients

at the receiver from a probe signal, and then use the so-obtained estimates to form predictions,

2Here we should make a distinction between making the prediction for one travel time ahead, and for the round-trip time

(two travel times ahead), since the two cases correspond to different feedback implementation strategies, i.e. different functions

performed by the two ends of a link.
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which are finally fed back to the transmitter. This CSI will beused at the receiver (or the

transmitter) to perform adaptive allocation of the modulation levels and power for each sub-

carrier in the current OFDM block transmission.

C. Channel estimation

Channel estimation consists of two steps. In the first step, initial phase compensation is

performed to produce a stable reference signal. This step includes resampling by a nominal

(average) Doppler factor and removal of the phase offsetθp(t). Here, we should emphasize that

the process relies on the estimates of the Doppler scaling factorsap[n], which are assumed to be

available with a certain precision (e.g. from a dedicated synchronization preamble). In the second

step, the so-obtained signal is used to estimate the path coefficientsgp(t). The Doppler factors are

not needed thereafter, as we conjecture that the channel coefficients after motion-compensation

exhibit sufficient stability to allow prediction several seconds into the future.

Fig. 2 illustrates the channel estimates obtained from realdata collected during the KAM08

experiment.Specifically, in this subsection we will focus on channel estimates obtained from a

short probe signal described in [25]. After the initial phase compensationwhere a phase-locked

loop (PLL) was used, we perform channel estimation from the received signal using the matching

pursuit (MP) algorithm [27]. Note from Fig. 2 that the MP algorithm produces8 coefficients,

where neighboring coefficients belong to the same propagation path due to the path dispersion [1].

For further analysis weweigh the adjacent coefficients based on the channel tap power and merge

them, so as to represent the channel via four propagation pathsg0, g1, g2 andg3. Therefore, the

MP algorithm provides estimates of the channel coefficientsgp(t), assuming thatP = 4 channel

coefficients are sufficient for the description of the sparsemultipath structure. These estimates

are denoted bỹgp[n], and computed at time instancesnT ′ separated byT ′ = 155 ms. For

comparison purposes, we also provide the channel estimate obtained using the RLS algorithm.

Different peaks in the channel estimates can be associated with multiple surface and bottom
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reflections calculated from the geometry of the experiment.As it can be seen from the figure,

the MP algorithm successfully estimates the significant channel coefficients, and reduces the

estimation error with respect to that incurred by the RLS algorithm.

We emphasize that positions of the significant paths may drift on a larger time scale (tens of

seconds), and therefore have to be updated accordingly. In Fig. 3, we show the magnitudes and

phases of the significant paths over a time period of8 s. As we initially conjectured, the phases

of gp(t) remain relatively stable for more than a few seconds (a propagation delay over several

kilometers).

III. CHANNEL PREDICTION

As we previously reported in [24], the future values ofgp(t) are predicted from the estimates

g̃p(t). In particular, if the OFDM blocks are periodically transmitted at time instancest = nT ′,

we useM observations made at timesn, n − 1, ..., n − M + 1 to predict the channel at time

n+1. To account for possible correlation between the path coefficients, we allow for their joint

prediction. In other words, we use allP channel coefficients to predict each new coefficient.

The prediction is thus made as

ĝ[n+ 1] = WH [n]g̃M [n], (10)

where

ĝ[n + 1] = [g̃0[n + 1] g̃1[n+ 1] . . . g̃P−1[n+ 1]]T , (11)

g̃M [n] = [g̃0[n] . . . g̃0[n−M+1]g̃1[n] . . . g̃1[n−M+1]g̃P−1[n] . . . g̃P−1[n−M+1]]T. (12)

The matrixW[n] containsMP × P prediction coefficients that are to be determined.

Because the second-order statistics are not available for the random processg [n+ 1], we

computeW[n] adaptively, by applying the RLS algorithm as specified in Table I. In Eq. (21),

R is anMP × MP matrix which represents an estimate of the inverse joint auto-correlation
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matrix E
{

g̃M [n]g̃H
M [n]

}
and δ is a small constant, typically a fraction of the minimum among

variances of the channel coefficients jointly predicted by the RLS algorithm.

As discussed earlier, UWA systems suffer from inherently long propagation delays, which pose

additional challenges in the design of a predictor. To counteract this problem, channel prediction

one travel time ahead is achieved by using an RLS predictor ofa low orderM (e.g.M = 1 or

M = 2) and a small forgetting factorλ (e.g.λ = 0.5 ∼ 0.75, which corresponds to an effective

window of lengthLeff = 1/(1 − λ) = 2 ∼ 4). Note that the forgetting factorλ is uniquely

specified for allP channel coefficients. With a small orderM and only a few significant paths,

i.e. a smallP , computational complexity of joint channel prediction is sufficiently low to allow

for a practical implementation.

The structure of the matrixW[n] is primarily driven by the geometry of the propagation

environment, i.e. not all of the propagation paths are mutually correlated. In the present data

set, the strongest arrival often exhibits more stability, and the contribution from the other,

weaker paths in its prediction appears to be negligible. Therefore, the strongest path can be

predicted independently, without loss in performance. In other words, if the channel coefficient

k corresponds to the strongest path, Eq. (25) can be modified asfollows: the k-th column of

W[n] is recursively updated only for those elements that correspond to the prior observations of

the k-th coefficient (̃gk[n], g̃k[n− 1], . . . , g̃k[n−M + 1]). In addition, exploiting the correlation

among the remaining paths may lead to a performance improvement, whose exact amount is

determined by the environmental profile, and accuracy of thechannel and Doppler estimates.

After performing channel prediction at the receiver, the so-obtained CSI is used to initialize

adaptive allocation of the modulation levels and power across the OFDM sub-carriers. As we will

discuss later, depending on which end of the communication link performs adaptive allocation,

different types of information are fed back over a low-rate feedback channel. In the following,

we describe the design framework, initially proposed in [23], under which we developed two

practical adaptive modulation schemes, and we also discussthe design of band-limited feedback.
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IV. A DAPTIVE MODULATION AND POWER ALLOCATION

The system model assumes that residual Doppler effects are negligible after proper initial

motion compensation (resampling by a nominal Doppler factor and removal of the phase offset

θp(t)). After this initial step, it is also assumed that the channel is constant at least over the

transmission intervalT of one OFDM block. Therefore, the received signal can be expressed as

Yk,n = Gk,n

√
Ck,nXk,n +Nk,n, (13)

where

Gk,n =

P−1∑

p=0

gp[n]e
−j2π(k∆f−B/2)τp0 , (14)

andYk,n, Ck,n, andNk,n are, respectively, the received signal after fast Fourier transform (FFT)

demodulation, the transmitted power, and zero-mean circularly symmetric complex AWGN with

varianceσ2
N /2 per dimension. The noise term includes the effects of ambient noise and residual

ICI on the k-th sub-carrier and then-th OFDM block, which is approximated as a Gaussian

random variable.

For the transmission of each OFDM block we adaptively compute the size of the modulation

alphabetMk,n and the transmission powerCk,n. The objective of our adaptive OFDM system

is to maximize the throughput by maintaining a target average BER. In order to maintain the

BER at a fixed value, we propose the following optimization criterion:

maximize
M0,n,...,MK−1,n

K−1∑

k=0

log2Mk,n

subject to
K−1∑

k=0

Ck,n ≤ Cn,

1

K

K−1∑

k=0

Pe,k = Pb,

(15)

whereCn is the overall average power allocated to then-th OFDM block,Pe,k is the average

BER for the k-th sub-carrier, andPb is the target average BER. The average power can be

expressed asCn = C + Cres
n−1 whereC is a constant andCres

n−1 is the residual power from the
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previous block which was not allocated (i.e.,Cres
n−1 is less than the minimum power increment

required by the algorithm for a one-bit increase of the overall throughput). Here, we should

emphasize the difference between total power allocation and distribution of this total power

among the sub-carriers. In the former case, one can design anadaptive scheme where the total

powerC is adaptively allocated (and uniformly distributed among the sub-carriers) in order to

achieve the prespecified performance (e.g. the target average BER or SNR at the receiver) for

thefixedsystem throughput, whereas in the latter case, the fixed total powerC is non-uniformly

distributed among the sub-carriers to achieve the prespecified performance, and tomaximizethe

system throughput.For the purpose of experimental sea-trials, the total powerallocationC is

initially set to a value which is able to support the target error rate, and avoid the outage scenario

(no data transmission).

In order to reduce the computational complexity of the adaptive algorithm, the sub-carriers of

then-th OFDM block can be grouped into clusters. If we assumeK = 2d, we group consecutive

sub-carriers intoQ = 2dQ clusters, whereK/Q = 2d−dQ is the size of each cluster. We denote

by CQ
q,n and MQ

q,n, respectively, the allocated power and the modulation level corresponding

to the q-th cluster,q = 0, 1, . . . , Q − 1. The optimal power level for each clusterq depends

on the transfer function of the channel. If the channel does not change much within a cluster,

computation ofCQ
q,n and MQ

q,n is performed based on the average channel gain in clusterq.

Note that if a cluster is affected by a deep fade, it will be dominated by the sub-carrier with

the lowest channel gain. Clustering reduces the computational load(see [23] for more details),

but impliespossible error penalization and/ora decrease in throughput as compared to the full

computation of modulation levels and powers for all sub-carriers.

A. Thresholds for modulation levelsMk,n

Due to the large propagation delays, the proposed adaptive OFDM transmission relies on

channel prediction. We obtain predictions of the channel gainsGk,n one travel time ahead based
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on the time-domain predictions of the most significant channel coefficients (10). We model

the prediction error on thep-th channel path as a complex zero-mean circularly symmetric

Gaussian random variable with varianceσ2
e,p/2 per dimension. Furthermore, based on thea

priori knowledge obtained from the channel prediction, we modelGk,n as a complex Gaussian

random variable with mean

Ĝk,n =
P−1∑

p=0

ĝp[n]e
−j2π(k∆f−B/2)τp0 , (16)

and varianceσ2
e =

∑P−1
p=0 σ2

e,p, where P is the number of significant time-domain channel

coefficients. Assuming that the current channel gainGk,n is perfectly known, we apply maximum

likelihood symbol detection for the AWGN channel at the output of the matched filter. Thus, the

probability of bit error for thek-th sub-carrier for MPSK/MQAM is well approximated by [18]

Pk(Gk,n, Ck,n,Mk,n) ≈ 0.2e
−

m(Mk,n)

2(Mk,n−1)

Ck,n

σ2
N

|Gk,n|
2

, (17)

where the coefficientsm(Mk,n) are determined numerically for each modulation alphabet, as

accurately as desired for the BER approximation and take values2.2, 3.3, 3.5 and3.6 for Mk,n =

2, 4, 8 and16, respectively.

For transmission of then-th OFDM block, the adaptive system has knowledge of the predicted

valuesĜk,n, but not of the full channelGk,n. Therefore, from Eq. (17), the average BER on the

k-th sub-carrier is obtained as [18]

Pe,k ≈ E [Pk(Gk,n, Ck,n,Mk,n)| Ĝk,n]

≈ 0.2

exp

(
−

|Ĝk,n|
2

σ2
e

(
1− 1

1+
m(Mk,n)

2(Mk,n−1)

Ck,n

σ2
N

σ2
e

))

1 +
m(Mk,n)

2(Mk,n−1)

Ck,n

σ2
N

σ2
e

. (18)

For a given targetPe,k, we now compute the thresholdsC∗
k,n(Mk,n) for the available modu-

lation levels. The solution forC∗
k,n(Mk,n) is given by

C∗
k,n(Mk,n) =

2(Mk,n − 1)σ2
N

m(Mk,n)σ2
e




|Ĝk,n|

2

σ2
e

[
W0

(
|Ĝk,n|

2

σ2
e

e

(
|Ĝk,n|2

σ2
e

+ln
Pe,k

0.2

))]−1

− 1



 , (19)
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whereW0(x) (x > −1/e) is the principal branch of the LambertW-function, the inverse function

of x = W exp(W ). Note that, if |Ĝk,n|
2/σ2

e ≫ ln(Pe,k/0.2), the threshold goes to zero, i.e.

C∗
k,n(Mk,n) → 0. This case corresponds either to high SNR regimes with reliable CSI, or to

very high target BERs of the system. Reasonably accurate approximations forW0(x), which

can be computed efficiently, are provided in [28]. We should emphasize that different thresholds

correspond to different average values ofĈk,n, since all of the sub-carriers are affected by the

prediction error of the same varianceσ2
e .

The optimization problem (15) is hard to solve from the standpoint of a practical implementa-

tion, because it is computationally too intensive to be run at the receiver (or the transmitter) for

every OFDM block. Therefore, we pursue sub-optimal solutions which are obtained by relaxing

one of the problem constraints. Specifically, we focus on twoadaptive schemes in the rest of

this section.

B. Adaptive Scheme 1

The optimal solution for (15) includes a non-uniform power allocation for a maximum at-

tainable throughput, such that the target average BER isPb. This causes that each sub-carrier

contributes to the average BER differently, due to the frequency selectivity of the channel.

However, the problem can be simplified if we consider adaptive allocation of the modulation

levels while distributing the power uniformly among the sub-carriers. Since we adaptively allocate

only the modulation levels, the so-obtained solution for (15) will be sub-optimal. Specifically,

we apply a greedy algorithm that computes the modulation levels in a given blockn using the

allocations from the previous blockn− 1 for initialization. The proposed algorithm is given in

Table II. Similar greedy algorithms have already been considered in [29] and [30].

After initialization of the algorithm for each sub-carrier, as given by Eqs. (27)–(30), we

successively increase the modulation levels for those sub-carriers that require the smallest power

increment (31)–(43), while maintaining the average BER below the targetPb. If the set of
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modulation levels from the previous transmission intervalis not a greedy-based solution for the

currently available CSI{Ĝk,n}, the algorithm greedily searches for the closest solution which is

used as a new initialization point of the algorithm. Also, ifthe algorithm does not support the

throughput from the previous transmission interval (i.e.,it fails during the initialization step),

it searches for the sub-carrierk∗ with the largest power decrement that is required in order to

decrease the modulation levelMk∗,n. The algorithm is terminated when the pre-specifiedPb is

achieved.

C. Adaptive Scheme 2

In the second scheme we consider adaptive allocation of the modulation levels and the sub-

carrier powers such thatPe,k = Pb for each sub-carrier.

Once the thresholds are computed from (19), we apply the adaptive algorithm of Table III

to generate the signal of then-th OFDM block. The algorithm is terminated when the avail-

able powerCn is exhausted, or when all sub-carriers achieve the maximum modulation level

(16QAM). Here, we emphasize that for those sub-carriers that are in a deep fade no data is

transmitted (zero power is allocated). In other words, the sub-carrier with indexk is in deep

fade if the thresholdC∗
k,n(Mk,n) is high enough to violate the power constraint in Eq.(15).

Because of the additional freedom to adjust the power, this scheme will achieve a higher

overall throughput as compared to Scheme1.

D. Limited feedback for adaptive UWA systems

We assume that a limited-feedback channel is available for conveying information from the

receiver back to the transmitter. Two types of feedback information are considered in this paper:

the modulation alphabet and the quantized power levels for each sub-carrier/cluster, or the

quantized estimate of the sparse channel impulse response.

If the channel changes slowly across frequencies, neighboring sub-carriers are allocated the

same modulation and power levels. In such a case, it is not necessary to feed back the channel
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information for each sub-carrier, i.e., the total number ofbits that are fed back can be reduced.

Moreover, the power levels can be uniformly quantized, suchthatLc bits are used to represent

each quantization level. Also,Lm bits are used to represent the available modulation levels.For

example, in our case we describe four modulation levels using 2Lm = 8 indices, which is more

than the needed minimum. In contrast,P (2Lg +Lt) bits are required to convey the information

aboutP significant coefficients in the channel impulse response, assuming that2Lg bits and

Lt bits are required to represent the quantized complex gain and the delay of each dominant

channel coefficient, respectively.

Due to the long propagation delay and time-division duplexing, we assume a feedback channel

which imposes a limit on the maximum number of bits that can beconveyed to the transmitter.

Therefore, lossless data compression techniques can be used at the receiver to reduce the number

of bits that are conveyed back to the transmitter. For example, Run–Length–Encoding (RLE) [31]

is a simple coding scheme that provides good compression of data that contains many runs

of zeros or ones. It can be applied together with the well-known Lempel–Ziv–Welch (LZW)

code [32] (used as an inner code), to efficiently compress thefeedback information. As we will

see in the following section, assuming perfect channel state information (CSI) at the receiver,

feeding back the channel state information about the sparsemultipath structure and making the

decision on the transmitter side is shown to be advantageoussince it requires significantly fewer

bits.

V. NUMERICAL AND EXPERIMENTAL RESULTS

In this section we present numerical and experimental results on the performance of the pro-

posed adaptive schemes from Sec. IV. The numerical results are based on channel measurements

recorded during the KAM08 experiment, and experimental results from the real-time at-sea trials

that were conducted during the KAM11 experiment. Both experiments were conducted at the

same location with operational areas marked in Fig. 4.
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A. Numerical results from the KAM08 experiment

The KAM08 experiment took place in100 m deep water, with a communication distance of

4 km. The transmitter was deployed at the location Sta00 (see Fig. 5) as a52.5 m aperture vertical

array of8 ITC-1001 transducers (7.5 m spacing), with a sampling rate offs,Tx = 100 kHz. The

receiver was deployed at the location Sta08 as a56.25 m aperture vertical line array (VLA)

of 16 elements (3.75 m spacing), with a sampling rate offs,Rx = 50 kHz. The performance

results are based on the channel estimates for transmissions between the fourth transducer from

the bottom (49.5 m deep) and the tenth hydrophone from the bottom (65.25 m deep).The total

bandwidth and the guard time areB = 7.8 kHz andTg = 150 ms, respectively. We assume an

OFDM transmission withK = 512 sub-carriers and a frequency separation of15.25 Hz. The

target average BER isPb = 10−3. We estimate the channel using the MP algorithm, and predict

the five significant channel coefficients2.67 s ahead.

Fig. 6 presents achievable throughput results for the OFDM systems that employ Scheme1

and Scheme2 without clustering forσ2
e = −24 dB, which is measured relative to the overall

channel power. We also provide performance results for the non-adaptive scheme (with uniform

power and modulation levels) and the optimal solution, which is evaluated using the interior-point

method [33] to solve the nonlinear convex optimization problem (15). Interestingly, Scheme2

shows a slight performance loss only for the high SNR regime as compared to the optimal

solution, while Scheme1 exhibits a performance degradation for the entire SNR region. Both

schemes significantly outperform the non-adaptive solution.

In Fig. 7 we summarize the feedback requirements of Scheme2 without clustering (Q = 1).

Feeding back the power and modulation level computed at the receiver clearly requires more

bits than feeding back the (sparse) channel response.Lc = 2, 3, 4 and5 bits are used to represent

the quantized power levels, andLm = 3 bits are used to represent the five modulation levels

(no transmission, BPSK, QPSK,8PSK and16QAM), resulting in a total of2560, 3072, 3584

and 4096 bits with K = 512 and Q = 1. The feedback information is then compressed as
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discussed in Sec. IV, resulting in201, 245, 294 and350 bits (the values indicated on thex-axis).

If the channel response is fed back,Lg = 3, 4, . . . , 10 bits are used to represent the real and the

imaginary parts of each quantized channel coefficient, andLt = 8 bits are used to represent the

corresponding delays. The feedback information is then compressed similarly as in the previous

strategy. We note that the minimum number of bits required tomaintain the target average BER

at 10−3 is 350 and120 for the two cases, i.e. that feeding back the channel response reduces the

feedback requirements approximately three fold. When clustering is applied, the two feedback

strategies require a similar number of bits to feed back; however, clustering is performed at the

expense of reducing the overall throughput of Scheme2.

B. Experimental results from the KAM11 experiment

The KAM11 experiment took place in100−120 m deep water, with communication distances

of 1, 2 and3 km. The transmitter was deployed from the ship as a1.5 m aperture vertical array of

4 ITC-1032 transducers (0.5 m spacing) at different locations within the operational area while

the ship was stationary. The sampling rate wasfs,Tx = 100 kHz. The RF-coupled receiver was

deployed at the location Sta05 and Sta10 (see Fig. 8) as a0.6 m aperture VLA of4 elements

(0.2 m spacing), with a sampling rate offs,Rx = 100 kHz. Both the transmitter and the receiver

were deployed in the middle of the water column. A feedback from the recorder buoy was

provided using an RF link. The geometry of the experiment andthe setup of the system are

given in Fig. 9.Due to the variations of the channel that are inherently present, and different

communication distances tested in the field, a typical SNR atthe receiver varied between2 and

20 dB.

The OFDM frame contains4 blocks with K = 1024 sub-carriers per block, at a central

frequency offc = 30 kHz. The receiver operates coherently where50% of sub-carriers are

used as pilotsto accommodate for real-time testing of the system, since the channel multipath

structure can significantly change during an experimental trial (tens of minutes or even hours).
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Note that such a high overhead will not be required in practice when a propagation model

can be run prior to deployment to evaluate the multipath extent for a given system geometry.

The total bandwidth and the guard time areB = 10 kHz and Tg = 100 ms, respectively.

Frame synchronization is performed using a PN-sequence of duration 25 ms and the symbol

rate10 ksymb/s. The presented performance results are generated by employing maximal ratio

combining (MRC) of signals received at four elements. However, we should emphasize that even

though MRC is used for data detection, we use only one receiveelement to perform channel

estimation and adaptive allocation in order to minimize theprocessing time at the receiver.

The adaptive system is initialized at the transmitter-end (a terminal at the ship) by sending

activation commands to the receiver-end (a terminal at the RF-coupled buoy) through the wireless

link. Once a confirmation message is received from the receiver terminal, the transmitter-end

execute a sequence of operations such as acquiring the ship position from GPS, gathering various

environmental data, etc. This is followed by the first OFDM frame transmission with a uniform

power allocation and QPSK modulation alphabet for all data sub-carriers. Once the frame is

detected at the receiver, it is stored at the local driver forfurther processing. In particular, we

perform initial synchronization using the PN-preamble,which is followed by PLL-based Doppler

estimation and compensation as suggested in [15]; we then conduct channel estimation over the

uniformly-spaced pilot grid using the orthogonal matchingpursuit (OMP) algorithm [27], and

perform coherent detection for each OFDM block of the received frame; finally, using the channel

estimates, we execute Scheme 2 at the receiver to compute thepower and modulation levels,

which are then fed back to the transmitter and used for the next OFDM frame transmission.

During each real-time trial, we transmitted between30 and 50 consecutive OFDM frames in

order to demonstrate the performance of the proposed adaptive scheme, and the functionality of

the implemented system.

Among various constraints on the real-time implementationof the system (e.g. out-of-band

interference from the other systems simultaneously tested, a weak RF link for certain positions
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of the ship, weather conditions, etc.), the most important limitation is determined to be the total

round-trip time of the system that was on the order of10 − 20 s. This significant delay was

mainly caused by all-level processing of the system at both sides of the link (acquiring GPS and

environmental data before each transmission, and after each reception, data detection, recording,

and data processing, including prediction and adaptive allocation, etc.), while physical propa-

gation contributed with delays of0.67− 2 s. Note that the RF feedback imposes no significant

delay in the system. Since the total round-trip time is mainly limited by high processing delays,

a good performance of the proposed schemes is expected for the channels with the coherence

time of several seconds. In contrast, for rapidly-varying channels, high processing delays will

result in a poor performance of channel prediction and outdated CSI. Here, we should emphasize

that the ultimate performance limitation of an adaptive UWAsystem will not be determined by

the processing delay, but by the physical propagation delay, which gives a lower bound on the

channel coherence time that can be supported.

As discussed in Sections II and III, some channel measurements indicated that the channel

coherence time was3 − 4 seconds (or more), which allowed us to perform channel prediction.

Therefore, in the rest of this section, we will focus on the experimental results obtained from sea-

trials during which channel conditions were calm (e.g. windspeed of2 − 8 knots and Doppler

rates of10−4), and the (average) channel coherence time is on the order ofseconds. We note

that channel conditions in general may not be so calm, resulting in a proportional reduction of

coherence times that can severely limit the performance of our adaptive scheme.

In Fig. 10 we show the channel estimates obtained from the frame synchronization preamble

of a 2 km link for three consecutive non-adaptive QPSK-modulatedOFDM frame transmissions,

labeled asa, b and c. As mentioned earlier, the average time interval between two consecutive

frame transmissions is (roughly)20 s. Note the significant variations of the channel impulse

response within a one-minute time interval. For the given consecutive OFDM frame transmis-

sions, in Fig. 11 we provide the performance results for the receiver with four elements. Note
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that poor performance is achieved for transmissionsa andb, while a fair performance is obtained

for transmissionc, corresponding to very high SNR observed at the receiver (see Fig. 10). If the

target average BER for OFDM systems is set to10−2 − 10−3, the non-adaptive scheme should

use either more power, or reduce the overall throughput by employing the BPSK modulation

alphabet which is preferable for the power limited systems.

In Fig. 12 we illustrate channel estimates of a2 km link for three consecutive adaptive OFDM

frame transmissions, labeled asa, b andc. The available adaptive modulation alphabets are BPSK,

QPSK and8PSK. As in the previous set of non-adaptive OFDM block transmissions, we note

significant variations in the channel impulse response within an one-minute time interval. For the

given consecutive OFDM frame transmissions, in Figs. 13, 14and 15 we provide the performance

results for the receiver with four elements. For the target average BER set to10−2 − 10−3, we

note that a good performance is achieved for all three transmissions (a, b, andc in Figs. 13, 14

and 15, respectively), since Scheme 2 successfully tracks the underlying channel variations. Due

to large propagation delays and channel variations (the coherence time on the order of seconds)

that impose severe limitations on channel prediction, the adaptive scheme tends to oscillate in

performance around the target BER. In Figs. 16, 17 and 18, we illustrate the channel frequency

response, the allocated power and modulation levels acrossthe data sub-carriers, respectively. A

high attenuation in the frequency region30 − 35 kHz is mainly due to the cutoff frequency of

the hydrophones which is located around30 kHz, resulting in a severe roll-off across the upper

part of the operational bandwidth. We emphasize that this system limitation was not knowna

priori , and the whole operational bandwidth (25− 35 kHz) was used for OFDM transmissions.

However, Scheme 2 has successfully demonstrated the ability to adapt to the system limitations

by allocating the power and modulation levels to the lower part of the frequency region as

illustrated in Figs. 17 and 18.Note that the channel gain at the frequency of30.55 kHz is

sufficiently high to allow the algorithm to allocate a QPSK symbol. Since the transition band

of the hydrophone filter is not sharp, we can note an active tone located at35 kHz; this artifact
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results from a sufficiently high channel gain present at the given frequency.

VI. CONCLUSIONS

In this paper we explored design aspects for adaptive OFDM modulation over time-varying

UWA channels. First, we investigated the possibility of predicting an UWA channel at least

one travel time ahead. The key step in providing a stable reference for channel prediction

is compensation of the motion-induced phase offset. Matching pursuit algorithms are used to

identify the significant path coefficients, which are then processed by a low-order adaptive RLS

predictor to account for large prediction lags (long feedback delays). Second, assuming that

the channel is predicted one travel time ahead with a given accuracy, approximate expressions

for the BER of each sub-carrier (or a cluster of adjacent sub-carriers) are obtained. From

these expressions, a set of thresholds is obtained that determine the modulation level and

the power needed on each sub-carrier in order to maximize thethroughput while keeping the

average BER at the target level. Third, spectrally-efficient adaptive schemes (Scheme 1 and

Scheme 2) are applied to allocate the modulation and the power across the OFDM sub-carriers.

Finally, assuming a limited feedback channel, two competitive strategies were analyzed: one that

feeds back the quantized power level for each sub-carrier/cluster, and another that feeds back

the quantized estimate of the significant channel coefficients in the time domain. The second

strategy is found to offer better performance, as it requires significantly fewer feedback bits.

Numerical and experimental results that are obtained with recorded channels and real-time at-

sea experiments, respectively, show that the adaptive modulation scheme provides significant

throughput improvements as compared to conventional, nonadaptive modulation at the same

power and target BER. This work leads us to conclude that adaptive modulation methods may

be viable for reliable, high-rate UWA communications. To our knowledge, this is the first paper

that presents adaptive modulation results for UWA links with real-time at-sea experiments.
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Fig. 4. The KAM08 and KAM11 operational areas are outlined bythe red and blue solid lines, respectively.
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Fig. 5. Mooring deployment positions during the KAM08 in latitude and longitude. The acoustic source array was located at
Sta00, while the VLAs were located at Sta08 and Sta16.
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Fig. 8. Mooring deployment positions during the KAM11 in latitude and longitude. The VLAs were located at Sta05 and
Sta10. The acoustic source array was located at the ship and used when the ship is stationary.
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Fig. 10. Channel estimates from initial frame synchronization preamble for three consecutive non-adaptive OFDM frame
transmissions. The average time interval between two consecutive frame transmissions is (roughly)20 s.
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Fig. 16. A sample estimate of the channel frequency responsefor the OFDM system withK = 1024 sub-carriers.
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Fig. 17. A sample power allocation for data sub-carriers based on Scheme 2 and the channel response from Fig. 16.
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Fig. 18. A sample constellation level allocation for data sub-carriers based on Scheme 2 and the channel response from Fig. 16.
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TABLE I
PREDICTION RLS ALGORITHM

The algorithm initialization:

W[0] = 0 (20)

R[0] = δ
−1I (δ is a small positive constant) (21)

The joint RLS algorithm (for n = 1, 2, . . .):

k[n] =
λ−1R[n− 1]g̃M [n− 1]

1 + λ−1g̃H
M [n− 1]R[n− 1]g̃M [n− 1]

(22)

ĝ[n] = W[n− 1]g̃M [n− 1] (23)

e[n] = g̃[n]− ĝ[n] (24)

W[n] = W[n− 1] + kH [n]e[n] (25)

R[n] = λ
−1(1− k[n]g̃H

M [n− 1])R[n− 1] (26)



39

TABLE II
MODULATION LEVEL ALLOCATION

Initialization (for k = 0, . . . ,K − 1):

Ck,0 =
Cn

K
; Mk,0 = 1; (27)

Iterative algorithm (for n = 1, 2, . . .):
Step 1 (for k = 0, . . . ,K − 1):

Mk,n = Mk,n−1;Ck,n=
Cn

K
; (28)

Pe =
1

K

K−1∑

k=0

Pe,k(Mk,n); (29)

s0 = sign(Pb − Pe); s = s0; s1 = 0; (30)
Step 2 (for k = 0, . . . ,K − 1):

if (s = −1 & Mk,n = 1) ∆Pe,k = 1; (31)
elseif (s = 1 & Mk,n = 16) ∆Pe,k = 1; (32)
else ∆Pe,k = Pe,k(2

sMk,n)−Pe,k(Mk,n); (33)
Step 3:
k
∗
s = min

k
arg {∆Pe,k} ; (34)

if (s1 = 1 & ∆Pe,k∗

s

= 1) end; (35)
elseif (∆Pe,k∗

s

= 1) go to Step 4; (36)

Pe = Pe +
1

K
∆Pe,k∗

s

; Mk∗

s
,n = 2sMk∗

s
,n; (37)

if (s1 = 0) s = −s; (38)
if (s1 = 0 & s 6= s0) go to Step 2; (39)
if (s1 = 0 & k

∗
s 6= k

∗
−s) go to Step 2; (40)

Step 4:
if (s1 = 0) (41)

s0 = sign(Pb − Pe); s = s0; s1 = 1;

if (sign(Pe − Pb) = s0) end; (42)
go to Step 2; (43)
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TABLE III
MODULATION AND POWER LEVEL ALLOCATION

Initialization (for k = 0, . . . ,K − 1):
Ck,0 = 0;Mk,0 = 1; (44)

Iterative algorithm (for n = 1, 2, . . .):
Step 1 (for k = 0, . . . ,K − 1):

Mk,n=Mk,n−1;Ck,n=C
∗
k,n(Mk,n); (45)

Call,n=
∑

k

Ck,n; (46)

s0 = sign(Cn − Call,n); s = s0; s1 = 0; (47)
Step 2 (for k = 0, . . . ,K − 1):

if (s = −1 & Mk,n = 1) ∆Ck = ∞; (48)
elseif (s = 1 & Mk,n = 16) ∆Ck = ∞; (49)
else ∆Ck = C

∗
k,n(2

sMk,n)− Ck,n; (50)
Step 3:
k
∗
s = min

k
arg {∆Gk} ; (51)

if (s1 = 1 & ∆Ck∗

s

= ∞) end; (52)
elseif (∆Ck∗

s

= ∞) go to Step 4; (53)
Call,n = Call,n +∆Ck∗

s

; (54)
Ck∗

s
,n = Ck∗

s
,n +∆Ck∗

s

;Mk∗

s
,n = 2sMk∗

s
,n; (55)

if (s1 = 0) s = −s; (56)
if (s1 = 0 & s 6= s0) go to Step 2; (57)
if (s1 = 0 & k

∗
s 6= k

∗
−s) go to Step 2; (58)

Step 4:
if (s1 = 0) (59)

s0 = sign(Cn − Call,n); s = s0; s1 = 1;

if (sign(Call,n − Cn) = s0) end; (60)
go to Step 2; (61)


