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Abstract—Doppler distortion causes inter-carrier interference

which prevents the use of differentially coherent detection in
OFDM systems. To recover this efficient detection method, we

propose to use several FFT demodulators operating in parallel
over non-overlapping time segments, and to combine their

outputs prior to detection. This technique aims for efficient imple-
mentation of front-end matched filtering, followed by differential

MMSE combining. A low complexity algorithm is proposed for
recursive computation of combiner weights, and its gain over the

conventional detector is quantified through numerical examples
of an underwater acoustic channel with severe Doppler distortion.

I. INTRODUCTION

Motivated by application to underwater acoustic (UWA)

communications, we investigate the use of differentially co-

herent detection in conjunction with orthogonal frequency

division multiplexing (OFDM). OFDM is used in a variety

of radio systems (wireless LAN, DAB/DVB, LTE), but has

only recently been considered for UWA systems (see e.g. [1]

and references therein). OFDM offers simplicity in dealing

with the frequency selectivity, which can be fairly severe in

an acoustic channel (a multipath spread Tm ∼ 10 ms is

commonly observed in shallow water systems operating within

bandwidths B ∼ 10 kHz).

Differentially coherent detection eliminates the need for

channel estimation, relying instead on the assumption that

the channel response changes slowly, either between carri-

ers (differential encoding/detection in frequency) or between

blocks (differential encoding/detection in time). If the channel

is perfectly known at the receiver, differential detection incurs

a penalty (the exact amount depends on the fading); however,

channel estimation errors degrade the performance of coherent

detection, rendering it equal or even inferior when the channel

variation is non-negligible [2]. Moreover, differential detection

eliminates the overhead of pilot-assisted channel estimation.

We consider here differential encoding/detection in fre-

quency, as it plays hand-in-hand with the system design that

targets efficient use of bandwidth. Bandwidth efficiency is

given by the ratio of the symbol rate to bandwidth, R/B ∼
1/(1 + TmB/K), where K is the number of carriers. Hence,

to maximize the bandwidth efficiency, the greatest possible

number of carriers should be used. Increasing the number of

carriers in a fixed bandwidth (presumably limited for an acous-

tic system) will result in narrowing the subband width ∆f =
B/K, favoring the use of differential encoding/detection in

frequency, as it simultaneously supports increased coherence

between adjacent carriers and increased bandwidth efficiency.

The number of carrier, however, cannot grow beyond the

time-coherence limit of an OFDM system. As the block

duration T = 1/∆f increases, motion-induced frequency

offset as well as inherent variation in the path gains can no

longer be ignored, and the channel no longer appears fixed

over one block. Orthogonality of the received carriers is thus

lost, and inter-carrier interference (ICI) arises. Simple differen-

tially coherent detection is no longer justified, while coherent

detection has to resort to ICI equalization. ICI equalization

techniques include basic methods (see e.g. [3]) as well as those

based on explicit modeling of the channel’s time-variation as

piece-wise linear (e.g. [4]). ICI equalization in UWA systems

has been addressed in [5].

The use of differentially coherent OFDM over channels with

non-negligible time-variation was addressed in [2], where ICI

self-cancellation [6] was coupled with differential encoding

in frequency. Self-cancellation is a form of transmitter pre-

coding, developed for channels whose time variability comes

from carrier frequency offset. ICI on such channels exhibits

symmetry, which is exploited by arranging the data symbols

onto carriers so that the resulting interference cancels itself.

Specifically, the same data symbol can be used to modulate a

pair of adjacent carriers (with opposite sign) [6], or a pair

of non-adjacent carriers [7]. However, ICI self-cancellation

comes at the price of reduced data rate.

While the various approaches considered in the literature

focus on post-FFT signal processing, in this paper we take

a different approach which aims to exploit the information

about the channel’s time-variation before it has been lost

in the process of demodulation. The proposed demodulator

operates on partial, non-overlapping segments of an OFDM

block, which are later combined. Effectively, it aims to perform

adaptive matched filtering, i.e. to implement the receiver front-

end in an optimal manner [8]. Several FFTs are now needed

instead of one, but this is a small increase in computational

complexity.

After combining the partial FFT demodulator outputs, the

residual ICI is not eliminated, but it is expected to be suf-

ficiently reduced so that differentially coherent detection can

follow. The receiver’s only non-trivial task is to determine

the combiner weights. We propose an efficient algorithm that

computes the combiner weights recursively across the carriers.

The algorithm is based on minimizing the mean squared

error (MSE) in the estimated data sequence after differential

combining, and it uses some of the ideas presented in [9].



The paper is organized as follows. In Sec.II we outline

the principle of partial FFT demodulation. Sec.III presents

the algorithm for determining the combiner weights. System

performance is illustrated in Sec.IV using a simulated example

of an underwater acoustic channel. Finally, conclusions are

summarized in Sec.V.

II. SYSTEM MODEL AND PARTIAL FFT DEMODULATION

The received signal is modeled as

r(t) =

P−1∑
p=0

hp(t)s(t − τp(t)) + n(t) (1)

where hp(t) is the (real-valued) path gain corresponding to the

p-th (physical) propagation path, τp(t) is the path delay whose

time-variation we will model as τp(t) = τp − apt, where ap

can be positive or negative (compression or dilation); n(t) is

the noise, and

s(t) = Re{

K−1∑
k=0

dkej2πfkt}, t ∈ (−Tgl, T + Tgr] (2)

is the transmitted signal containing K data symbols dk modu-

lated onto the carriers of frequency fk = f0 +k∆f . The basic

OFDM block duration T = 1/∆f is extended by the cyclic

prefix of length Tg = Tgl + Tgr , long enough to capture the

effects of multipath and Doppler spreading. The data symbols

dk are obtained by differential encoding of the original i.i.d.

symbols bk, i.e. dk = dk−1bk, where bk and dk assume values

from the same PSK alphabet, with d0 = 1. The symbol rate

is R = K/(T + Tg) = B/(1 + TgB/K).
The principle of partial FFT demodulation is illustrated

in Fig.1. The input signal v(t) is the received signal r(t)
down-converted by the lowest carrier frequency f0. While the

conventional demodulator produces one output yk per carrier,

partial demodulator yields M outputs per carrier,

yk,m =

∫ mT/M

(m−1)T/M

v(t)e−j2πk∆ftdt, m = 1, . . .M (3)

The M outputs are then combined to yield

yk =
M∑

m=1

p∗k,myk,m = p
′

kyk (4)

where the prime denotes conjugate transpose. Conventional

demodulation can thus be regarded as a special case of partial

demodulation in which pk,m = 1. This choice provides ideal

(orthogonal) detection variables on a time-invariant channel.

When the channel is time-varying, a judicious selection of

the combiner weights p
′

k for each carrier allows additional

freedom in suppressing the ICI. We note a resemblance to

array processing.

In practice, OFDM demodulation is performed using FFT

instead of continuous-time integration. FFT can also be used

to perform partial demodulation, as illustrated in Fig.2. Each

FFT block is of the same size as the one used at the transmitter

(or in a conventional demodulator), but it operates on a vector

of windowed signal samples. For example, the second FFT in

Fig.2 operates on the received signal vector in which only the

samples corresponding to (T/4, T/2) are kept, while all the

others are set to zero.
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Fig. 1. Demodulation on the k-th carrier: Conventional (top) and partial
demodulation with M = 4 intervals (bottom). Partial demodulation allows

each time segment to be weighted before combining.

III. DIFFERENTIALLY COHERENT DETECTION

Differentially coherent detection is based on the assumption

that the demodulator output can be modeled as

yk = Hkdk + zk (5)

where Hk represents the channel distortion which changes

slowly across the carriers, and zk contains the noise (and small

amounts of noise-like residual ICI). Differential combining

then yields the decision variable b̂k = yk/yk−1, which can be

used to make decisions b̃k on the transmitted data symbols.

Using the expression (4), we have that

b̂k =
p
′

kyk

p
′

k−1yk−1
(6)

We now want to determine the combiner weights so as to

minimize the MSE, E{|ek|
2}, where

ek = b̂k − bk (7)

Minimization is complicated by the fact that pk and pk−1 are

not independent. The problem is similar in structure to that of

differentially coherent equalization, where it is usually avoided

by ignoring the dependence to arrive at the Wiener solution [9].

An alternative approach, and one that is better justified in the
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Fig. 2. Differentially coherent detection with partial FFT demodulation. FFT1

operates on the first partial interval (0, T/4), FFT2 on the second, etc. After
combining, the signals are passed to the differential detector. The combiner
weights p

∗

k
are computed recursively across the carriers to minimize the MSE

in the estimated data symbols b̂k .

present case, is to do precisely the opposite. Namely, since

the carriers are assumed to be very closely spaced, we assume

that the optimal values of pk and pk−1 are close too, i.e. that

p
′

k−1yk−1 ≈ p
′

kyk−1. With this assumption, the squared error

gradient is found to be

gk =
∂{|ek|

2}

∂p
∗

k

=
1

y2
k−1

[yk · yk−1 − yk · yk−1]e
∗

k (8)

A stochastic gradient algorithm with a step size µ can now be

applied to solve for the MMSE combiner weights recursively:

pk+1 = pk + µgk (9)

The algorithm operates in a decision-directed manner, using

b̃k instead of the true values bk to compute the error needed

for the gradient (8). Since the combiner vectors are short (e.g.

M=2 or 4) the training overhead is small. Additional pilots can

be inserted periodically, to guard against error propagation.

IV. NUMERICAL EXAMPLES

In this section, we illustrate the algorithm performance using

a numerical example. Fig.3 shows the nominal characteristics

of our test channel. The path gains are calculated from

the channel geometry, using the acoustic propagation loss

for the given frequency range,1 and assuming ideal plane

wave propagation with surface reflection coefficient -1, and

each bottom reflection coefficient calculated according to the

1The acoustic path loss over distance lp is modeled as A(lp, f) =
A0lκpa(f)lp , where A0 is a constant, κ is the spreading factor, and a(f)
is the frequency-dependent absorption coefficient [10].

incident angle [11]. The frequency response is highly selective,

with coherence frequency 1/Tm ∼ 400 Hz.

Time variation is modeled through the Doppler factor a,

taken equal for all the propagation paths. This simple model is

used for purposes of illustration, while more elaborate models

are left for a later study.
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Fig. 3. Underwater acoustic test channel: nominal characteristics for 2 km

distance, 15 m water depth, transmitter and receiver in mid-water, soft bottom
(sound speed 1400 m/s, density 1800 g/m3) and spreading factor κ=1.5.

The algorithm performance is summarized in Fig.4. This

figure shows the MSE (average over carriers, simulation runs)

as a function of the Doppler factor, which ranges between

10−6 and 10−4. These values of the Doppler factor should

be thought of as residuals after initial re-sampling. The actual

time scaling can occur at an even higher rate in a mobile

acoustic channel, but this is normally controlled by (coarse)

initial synchronization. The noise n(t) is modeled as zero-

mean white Gaussian,2 with power spectral density N0/2.

The MSE is used as a figure of merit for the performance

of signal processing (the ultimate BER will also depend on

the channel code). The results of Fig.4 were obtained for an

uncoded system, with the bit SNR set to Eb/N0=30 dB. The

results scale for different values of the SNR, but the general

trends remain the same.

Fig.4 clearly demonstrates the gain obtained by differen-

tially coherent combining of partial FFT demodulator outputs.

The MSE increases with the Doppler factor, eventually lim-

iting the system performance, but it does so more slowly for

the partial FFT combiner than for the conventional receiver.

At a = 10−4, the M=4 scheme with K=512 carriers gains

10 dB over the conventional detector. A Doppler factor of

10−4 is extreme compared to what is typically found in radio

systems, but it can easily occur in an UWA system, where

relative motion on the order of a few m/s is leveraged against

the low speed of propagation (1500 m/s).

The slower increase of MSE effectively results in extending

the range of tolerable Doppler distortion. Namely, if the MSE

has to be kept below a certain threshold, say -5 dB, in order

to satisfy a BER requirement, this threshold translates into a

maximum tolerable value of a, which is greater for M=2 and 4

2AWGN model is only an approximation for the acoustic noise, whose

power spectral density decays with frequency (approximately linearly on the
logarithmic scale) [10].
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Fig. 4. Performance of differentially coherent detection with conventional
demodulation (M=1) and partial FFT demodulation (M=2, 4; µ = 0.01).
Two cases are compared, OFDM with K=512 carriers (top) and K=1024

carriers (bottom).

than for the conventional system. Interesting implications arise

when this fact is viewed in light of choosing the number of

carriers. Fig.4 compares two choices of K, 512 and 1024. In

a conventional system with 1024 carriers, the MSE increases

rapidly, exceeding the -5 dB threshold at a > 5 · 10−5.

This is not surprising if one considers the underlying time-

variation: at a = 10−4, the phase change experienced on

the k-th carrier over the block duration (2πafkT ) amounts

to 2π/3 at the high band edge (2π/5 at the low band edge).

If such values of the Doppler factor are to be expected, the

conventional system has to be designed with fewer carriers.

With K=512 (Fig.4, top) the M=1 MSE is kept below -5

dB for all a < 10−4. The price for reducing the number of

carriers is not only in decreased bandwidth efficiency, but also

in decreased performance at lower values of a. (The system is

designed to tolerate some maximal Doppler distortion, but the

actual value changes slowly with motion and can be lower.)

Since the carriers are farther apart (∆f ≈ 1/16Tm at K=512

as opposed to 1/32Tm at K=1024) differentially coherent

detection is more challenging. Instead of reducing the number

of carriers, the situation can easily be remedied by using partial

FFT combining: with 1024 carriers and either 2 or 4 FFT

demodulators, the MSE is kept below -5 dB for all a < 10−4.

The combiner achieves this similarly as a phased array would–

by aligning the carrier phase on each partial segment before

addition. Note, however, that the gradient algorithm is not

constrained, but can be used to compensate for an arbitrary

time-variation of the channel, including that of the path gains.

V. CONCLUSIONS

To enable differentially coherent detection on time-varying

channels, a method was proposed in which several FFT

demodulators operate over non-overlapping segments of an

OFDM block to provide outputs which are then combined

prior to differential detection. The combiner weights are

designed to minimize the post-detection MSE, and are com-

puted recursively (across the carriers for differential encod-

ing/detection in frequency) using a stochastic gradient algo-

rithm of linear complexity. System performance is illustrated

through a numerical example of a shallow water channel

with (non-uniform) Doppler distortion. The results clearly

show the gain obtained by using only a few FFTs (2 or 4)

with the matching number of combiner weights per carrier.

Compared to conventional detection, this type of processing

can simultaneously achieve improved performance and higher

bandwidth efficiency. Future work will include addition of

multiple receiving elements and experimentation with real

acoustic data, as well as investigation of alternative algorithms

for computing the combiner weights.
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