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Abstract - Recent information-theoretic work has shown modes of excitation or eigenchannels [4].

the potential capacity increase of Multiple-input Multiple-

output (MIMO) systems compared to Single-input Single- Uty = UHAVx 4+ Ufn = Ix + Ufn 2)
output (SISO) systems [1] [2]. The Singular Value Decom-
position (SVD) has proven very useful in MIMO communi- .
cation systems but its performance depends on the accurac
of the Channel State Information (CSI) at both sides of the

link. This paper presents a study on the influence of channel A .
paper p y error can be the result of both quantization error and time

estimation errors and noise on the probability of error of the o . .
P y variation of the channel. We want the influence of this error

system when no error correction mechanisms are provided. . .
matrix to be low enough not to change the decisions of the

decoder. To this end, we will consider an 8-PSK constellation
and we will ignore the influence of coding. In this situation,

X =2"'"UHAX +N), X=VX (3)

Let us suppose that the estimate of the channel matrix
slightly different from the actual channel matrix by an
mount defined as an additive perturbation mdiijxhat is,
the estimated channel matrix & = A +E. This estimation

Keywords - MIMO, SVD, Singular Value Decomposition,
Wireless Communication Systems.

|. INTRODUCTION AND NOTATION Therefore, the error function for each componéht=
A linear Multiple-input Multiple-output (MIMO) system  ; — x;, can be expressed as

with N; inputs (transmitters)x = (x1...zx,)T, and N, 1 1 1 1
outputs (receiversy = (y; ...y, )T, can be characterized T — lu.H e en v1 vn | x + @ 4)
by the following expression o; | lt | lt o

o . m wheren = UHn has the same statistic propertiesmagor

=Al |+t : (1) U being a unitary matrix. Let us defing = u®E. Then
YN, TN, NN,

1 ~
T . T = f(EiVX —+ n”)
wheren = (n;...ny, )" are noise samples and the channel o;
matrix A can be either constant, in the case of a frequency e will not have a decoding error if the error component
non-selective channel, or a function in the frequency T makesz; remain in the region assigned to by the
domain, in the case of a frequency-selective channel. decoder (see Figure 1). Without loss of generality we can

assume thatr; = 1. Then, we can express this condition
In the following analysis, we will consider that the mathematically in the following way

number of receive antennas is at least the number of

transmit antennas, so that, in the case where the channel { §T751§ < S%n(g) (5)
matrix is full rank, all the eigenmodes can be decoded. T, S) <sin(g)
om, . ,om . T T
The Singular Value Decomposition (SVD) of a rank- S1 = (COS(§)7SIH(§)) = (—Sln(g),cos(g))

r matrix A is A = UXVH where U and V are —5r.  —Br o T
unitary matrices, ()" denotes conjugate transpose and 52 = (cos(—=),sin(—=)) = (=sin(g), — cos(g))
¥ = diag(oy...0.), Whereo; > ... > o, > 0 are the . . )

channel singular values [3]. In the case of a frequencyWhere the functions -,- > is the usuaR 'Scal".” product,
selective channel, they would be defined for every frequency. < % ? >= >_a;b;. If a or b are complex variables, they
The importance of SVD in MIMO communication systems will be. sub_stltuted by their image in the real space, via the
relies on the fact that the presteering matik at the canonical isometry.

transmitter and the steering matrig” at the receiver

decompose the MIMO channel inte SISO orthogonal
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Fig. 2
It is not possible to decouple the influence of channel
variation and that of the noise nor treat them jointly unless
we do some assumptions or assign values to the parameters

Table 1
Required values ob N R; for some error probabilities.

in the system. Therefore, a study of the two extreme cases, [P [ SNRy(dB) |

i.e., the case when the influence of the noise term is dominant 101 9.0341
and the case when its influence is negligible, will be carried 1072 14.928
i ; ; 10-3 17.504
out. Later on, a joint study will be done under certain 1o-4 19188
assumptions. 10-5 20.509
10-6 21.428

-7
Il. THE NOISE TERM IS DOMINANT 1072 22.051
. 10 22.692
In this case N 10~° 23.242

- Ny -10
Y=7 -z = 2= (6) 10 23.723

oj

and we must guarantee Equation (5). If we define the signal

to noise ratio of théth channel aS NR; = E g—j = 7,
the performance of the channel will be good if

1 T
\/ﬁ max <<a, Sl>, <a, Sg>) < sin(g) @

wherea = ag+iag is a sample from a circularly symmetric
complex Gaussian random variable with variance 1. The
above inequality can be rewritten as

@z—aR—FmaX(:I:oqcot(g)) <+/SNR; (8)

By means of simulation, the distribution & has been
found. The probability of symbol error is the probability
that© < Z-. Figure 2 shows the probability of error as a
function of Z- in semilogarithmic axis.

In Table 1, the necessary signal to noise ratios for
probabilities of error comprised in(=%, 10~!] are given.
Besides, a third order interpolating polynomial has been
used to extrapolate the values that would be needed fo
higher reliability.

Ill. THE ESTIMATION ERROR IS DOMINANT

In this case, )
T = f(GIVX)

T4

C)

r

Since VH is a unitary matrix, its columns form a basis
of CNt so we can writer; = 10’ + 60§’ + ... + oy, vk .

1 1
Y= —bx=—(6121 +... +On,2N,) (10)

oF} oF}

A. General approach

Let us study necessary conditions for the first inequality
in Equation (5) to hold. Since:;,j # 4 are independent
from z; and the elements, are also out of our control,
one possible approach is to find an upper bound over all the
possible combinations of those parameters for a given length
lleill = [|6]] = K of the vectore;.

max <T,Sl>= max <i(5X,Sl> = (11)

llesll=K llesll=K "0y

™

™)

By using Lagrange multipliers it is easy to show that
the result of this maximization problem igx/Nt. So, a

K
max —

~ . T
fe X o (0%, (— sm(g), cos(

sufficient condition for the first inequality in (5) to hold is

Nolleill 5
M < sin T = ||EZH < 7802’ = Vo0 (12)
o 8 VN

If we perform the same analysis for the second inequality
in (5), the above condition on the perturbation matrix is
again obtained.



Table 2

Let us recall the definition of; -
' Values of K;,' andG' for some error probabilities.

€ = lliHE = —1
. o . ) N | PO [ Kp' [ Gpl ]
SinceU is unitary, we can write; = e;u;+...+¢; "un, 5 [ 028715 1.23717
ande; = (ej, €5, ..., ey, ). Therefore, if we take the square 2.5 || 0.26143| 1.08520
; 1 || 0.23982| 0.94784
of (12), we obtain 0.5 || 0.22885| 0.87250
N, 0.1 || 0.21293| 0.74961
iN2 2 2 0.05 || 0.20856 | 0.71108
Z(eﬂ‘) < (13) 0.01 || 0.20171 | 0.63955
j=1 0.001 || 0.19651| 0.56913
; 0.0001 || 0.19376| 0.51951
terlrr]11t2e above expression, we can upper bound the left hand 0.00001 || 019252 | 0.47995
S
N, N, N, 0.000001 || 0.19185| 0.46249
1\ 2 1\ 2 2
D E <D D ()’ =|ElR (14)
J=1 J=1i=1 means to overcome a certalf), the restrictions oveE can

where ||-||» is the Fibbenius norm of the error matrix. be substantially loosened.
Taking into account that, if the channel matrix is full-rank,

the smallest nonzero singular valueds;, and using this At this point we could proceed as in equation (15) and
expression in (13) we conclude that a sufficient condition write o
for the error matrix is |E|lp < — (18)
Kp,
IE||r < voon, (15)

Another option, however, is to extend the previous steps
Note that the process we have followed so far is only to include the random behavior dff;|| in the empirical

slightly dependent on the constellation. In fact, for any distribution and express the result as a function||Bf| .

other constellation, we could do the same analysis, theRecall that our goal is that with high probability;||© =

only difference being the value of the constamf. A IE|rll&Gll© < o;, whereé§ is restricted to the matrices
straightforward result of the previous procedure is that  with Frobenius norm equal to unity. As before, we can use
for an N-PSK constellation |§1\‘%T%) the empirical distribution of|&||/© to express a restriction

' depending on the mean probability of error. This dependency
B. Probabilistic approach is represented in the functiotrp., whose definition is

Certainly, extremely pessimistic and possibly unnecessaryanalogous to the one given fakp.. Therefore, a new

bounds have been used to provide us with condition (15),Condltlon can be expressed as

which is valid over all the possible realizations of the error |E|r < Gploi = vp.o; (19)

matrix. Another approach which provides less stringent con- ‘

ditions is the probabilistic one. In other words, we will find Some values ofp, can be found in Table 2. Note that

the necessary conditions so that optimal performance—i.e.we obtain an even further loosening in the conditions to

condition (5)—is not achieved only with a small probability be satisfied. Nevertheless, the result #r = 0—recall

P., which can be written as that there is no noise—would still bEE||r < vyo; since

.o o7 there exist realizations of the channel for which all the

7)[<T’ S1) < sin 3’ (T, 82) < sin g‘E} >1—-F. (16) inequalities involved in this analysis become equalities.

A Matlab routine has been deve|oped in order to com- It should be noted that the conditions obtained herein
pute the empiric distribution of the functio®(x,d) = can be considered from twp different standpoints. Indeed,
max <5x’ (—1,cot %»7 <5X’ (71’ — cot %» for the case if we know the typ(_a of estimation errors for the chaqnel

matrix, we can decide how many eigenmodes are suitable

for transmitting information along the channel—those

for which |E||r < vp o;. On the other hand, if we are
Sk 17 restricted to maintain a fixed number of eigenmodes active,
Kp, we must monitoiE so that the condition in (19) is valid for
where Kp_is the value of® such that onlyP. of the all of them and adjust accordingly the design parameters
realizations ofE can produce higher values 6f. Some of involved such as, for instance, the elapsed time between
the values ofK'p, are listed in Table 2. two consecutive channel estimations.

N; = 4, N, = 20. Using this distribution we can express
the restriction forl¢;|| as

llell <

As it may be expectedK;: — 1 = 0.19134. Another To continue this analysis we need to suppose a model
important conclusion of this analysis is that if we have for the error matrix. Let us assume that we can express the



temporal channel matrix behavior a&s(n) = B(n) + M, Note that this distribution is directly related to the
where the entries ofB(n) are zero mean circularly probability of error of the system since if we guarantee
symmetric complex Gaussian variables with variance F;”g”@(l —p) < =, then the probability of error is less

and thatB(n + 1) = aB(n) + W(n + 1), wherea is @ than p. Taking into account the fact thaf, . (1 — p)
constant modelling the resemblance of the channel matricess a strictly decreasing function gf we can conclude that

in two consecutive symbol times arW (n) is a matrix of  the probability of errorp of the ith channel can be upper-
zero mean circularly symmetric complex Gaussian randompounded as

variables with variancer?. The matrix M is introduced (1—p)> F<I>H€-H®(&) (26)
to account for the fact that, although we assume that the Y oE

channel matrix elements have zero mean, in a short-term

analysis they would have nonzero mean and would be <1 — F<I>\|e1\|®(2) —1—Fpjejo %
conditioned by the previous temporal evolution. o 2(1 —a®)oz

whereo; is the singular value associated to thté eigen-
mode,o,, is the variance of the elements in the mattixn)
and s is the number of symbol intervals elapsed since the
last estimation of the channel matrix. The next figure shows

Under these assumptions, let us define the error matrix
E(n,s) = A(n + s) — A(n). It can be easily proven by
induction that

. 51 . . the dependence of the bound for the probability of error as
E(n,s)=(a* —1)B(®n)+ Y a'W(n+s—i) (20)  a function of & for the case of four transmit antennas and
=0 twenty receive antennas.

Given the fact that the random variables in the sum in
the definition ofE(n, s) are zero mean circularly symmetric
complex normal random variables, the element&im, s)
are random variables of the same type with variance

s—1 2s
0% = (a® —1)%0} +Z o?io? = (1—a®)%ol + 711 _(zz o2
=0 (21)
Furthermore, sincdI is constant, and (n) = B(n)+M,
o, = o, and

oo = E{bi;(n)]*} = E{bi;(n+ )]’} = (22)
E{(ab;;j(n) + wij(n + 1))(ab;j(n) +wi;(n +1))*} %o .
02 =a%02 +02 & (1-a?)o? =02 Fig. 3

0% =(1- as)Qog +(1- a25)03 =2(1- as)og (23)

IV. JOINT STUDY

Note also that if X is a circularly symmetric normal Let us expand completely the expression in Equation (4)
complex random variable, thefX|? is the sum of the

squares of two normal random variables with the same mean ~ 1 [ ot & Lk BN
and variance. Therefore i = {Z_g kZ_l ; U €V T + ”iz} (27)
N: N, 2NN, ” I__ - . .
IEm, )3 = " led? =02 Y (Xp)? = o0%0? If we assume as in the previous section that

the error matrix can be modelled a¥(n,s) =
(24)  (a* — 1)B(n) + X520 a'W(n + s — i), being B and
where X, are independent identically distributed normal W Gaussian matrices, then all the entriels are also
random variables with zero mean and unity variance. Hence,samples from a circularly symmetric complex Gaussian
o2 follows a chi-squared distribution withN, N, degrees  distribution with variancerz. Hence, the expression above
of freedom,®* ~ x3y, . - consists of the sum oW, V,. zero mean circularly symmetric
complex Gaussian random variables whose variance has not
Recall that to ensure the proper performance of the de-been yet determined plus one random variable of the same
coder we need condition (15) to be satisfied. If we introduce kind with varianceo,,.
the model for the error matrix, that amounts to

j=11i=1 k=1

Since the term accompanying each of th& is

~ ~ 0i
IE(n, s)liFll&l© < o= 2l&ale < on (25) Yo, @julvk and all these random variables are independent



and zero mean normal-distributed, the overall variance of the
N; N, variables is

52 =o% E |ul E xjvf2
k,l j

If we take the expectation of the expression above with
respect to the constellation, keeping in mind that the symbols
are assumed independent in this analysis, then

<o’ >=op Y [ul?D Y E{aal ok (k)
k.l i j

oy luif?
l

Finally, if we include the effect of the noise in this
analysis, we obtain

(28)

(29)

3P = ol V]3 = Mo
k,j

B — @y = ¢ (30)
gi
where¢ = £i + i€ is a zero mean circularly symmetric

complex random variable with unity variance and
o =+/Niogp(a,s)? +02 =/2N,(1—a%)o2+ 02 (31)

Recall that this is the same formulation as that of Section
II. In that section, the conditions for correct performance
were found to be

o
max —
g;

(32)

(<§,Sl>, (e 52>> <sin(7)

If we define SNR; =
be rewritten as

0 =—-¢g —&-max(:l:&cot(g)) < \/m

Let us define the signal-to-noise ratio at the receiver as

E{y —n)f(y —n)} E{(AVx)"(AVx)}
E{nfn} E{nfn}

£}

, then the above inequality can

[N

g

(33)

SNR =

(34)
Taking into account

E{(AVx)” (AVx)} = N,N,02 + [M|%
E{nfln} = N,o?

and also, that if we consider the original channel matrix,

Ny
E{(AVx)"(AVx)} =) o}
k=1

we can express the signal-to-noise ratio in the following way

2
N2 + Hl\]/lv\lp Ne 2
SNR = — r = =kslok 35
o2 N,o? (35)
Defining p; = ,é';'z =
k=1%%
SN D 0; N;p;
SNR; =
2N (1 = a®)o2 +02 ~ 2(1 — a®) + 53

(36)

If we assume that the matrix is full rank and we are using
all the eigenmodes, then
N,FE,
37
N (37

In the case of 8-PSK and 4 transmit anten$d$R =
1242 so, finally,

SNR =

an D Nyp;
SNR; > LU
2(1 - ) + 1305, 780)
In Figure 4, the probability of error fgy; = z% andN, =
20, with o® = 0.9,0.95,0.97,0.98, 0.99,1 as a function of
Ey/N,(dB) is shown.

(38)

a°=0.9

Probability of Error

Fig. 4
V. CONCLUSION

A study of the impact of channel estimation errors on the
performance of SVD-based systems is performed. Bounds
relating the Fobenius norm of the difference between the
channel matrix considered and the actual channel matrix with
the active eigenmodes’ singular values are obtained both
from a strict and from a probabilistic viewpoint. For a given
estimation error model, those bounds can be used to find
the maximum number of active eigenmodes or to determine
the maximum elapsed time between two consecutive channel
estimations to maintain a certain probability of error.
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