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Abstract—Accurate time scale compensation is a problem
of significance for underwater acoustic channels. Using our
proposed partial FFT Demodulation technique, we consider two
algorithms for fast and accurate data detection over time scale
distorted channels. We present a theoretical analysis to charac-
terize the performance of these algorithms and determine the
optimal values of their key parameters. Our analysis supports
the observed performance trends and validates the performance
gains of partial FFT demodulation.

I. INTRODUCTION

High speed communications over an underwater acoustic
(UWA) channel have been considered challenging due to
the low speed of sound (c=1500m/sec), limited bandwidth
and time-varying multipath [1]. Acoustic propagation is best
supported at low frequencies where the available bandwidth is
comparable to the operating frequency and hence UWA sys-
tems are wideband by nature. Orthogonal Frequency Division
Multiplexing (OFDM) is now being strongly considered as
the modulation of choice for UWA communications [2]–[4].
Interest in OFDM stems from the fact that it decomposes a
static frequency selective channel into several flat channels,
enabling low complexity one-tap equalization and symbol-by-
symbol detection at the receiver. However, carrier orthogonal-
ity in wideband OFDM systems such as UWA communications
is highly sensitive to motion induced distortion, wherein the
Doppler causes time scaling of the signal, destroying orthog-
onality and resulting in inter-carrier interference (ICI).

In this paper, we consider a point to point UWA com-
munication link with motion induced Doppler distortion. In
UWA OFDM systems, the time scaling results in a different
frequency offset for each subcarrier and thus significant ICI
[3], [5], [6]. Several approaches have been proposed in the
literature to demonstrate the viability of OFDM systems in
UWA channels with time scaling. For mobile underwater
transceivers, the time scaling parameter (a = v/c, the ratio of
the relative transmitter/receiver velocity to the speed of sound)
is typically on the order of 10−3 [3], [7]. The received signal
is first resampled to compensate for the time scaling. How-
ever, errors in resampling or slowly drifting transmit/receieve
elements in stationary environments can result in significant
residual time scaling distortion on the order of a = 10−4.

The case of very small residual time scales, i.e., (a ≈
10−5) has been treated in [8]. By modeling the distortion
as a progressively increasing phase shift across subcarriers,

a decision directed block adaptive processing algorithm has
been proposed. A second proposed method employs partial
FFT demodulation in conjuction with differentially coherent
detection to eliminate the need to estimate the time scale
[9]. Adaptive equalizers which does not consider the signal
structure induced by the time scale are proposed in [10], [11].
However, for larger time scale estimation errors, the distortion
cannot be modeled as a phase rotation of the transmitted
symbols without a severe loss in performance and the use
of generic equalizers ignores the signal structure and could
significantly increase the computational cost.

In our earlier work [4], [6], we proposed a new technique
called partial FFT demodulation to provide a high perfor-
mance detection algorithm for time scale distorted OFDM
systems at moderate complexity. In the proposed scheme, the
OFDM symbol duration is divided into several intervals and
the time-varying channel in each such interval is modeled as a
piecewise constant using a midpoint approximation. An FFT is
performed by considering only the data in each partial interval
instead of a single full interval FFT. Weighted combining
of the partial FFT outputs leads to significantly reduced
distortion. Accurately determining the weights to combine the
partial FFT outputs from the distortion model is then key
to reducing the ICI. In [6], we proposed two algorithms to
compute the combiner weights: recursive weight estimation
and model based weight estimation.

In this paper, we present an analysis to characterize and
quantify the performance of the two proposed algorithms in [6]
as a function of key parameters of interest. We first determine
the optimal combiner weights in several scenarios. Exploiting
the idea that time scaling can be approximated as a local
carrier frequency offset (CFO) problem for each subcarrier, the
analysis is presented for an OFDM signal with CFO and the
results are then interpreted in the context of OFDM signal with
time scaling distortion. We first show that using model based
weight estimation monotonically increase the performance of
data detection with increasing number of intervals. Next, by
adapting an analysis technique proposed for blind and data
aided detection in CDMA systems [12], [13], we derive the
performance of the recursive estimation algorithm. Evaluating
the obtained expressions shows our analysis to be in strong
agreement with the numerical simulations in [6].

This paper is organized as follows. Section II presents the
OFDM signal model and briefly illustrates the concept of par-
tial FFT demodulation presented in [4]. The optimal combiner



weights for the several practical scenarios are determined in
Section III and Section IV presents an analysis of both the
algorithms. The paper concludes with remarks in Section V.

II. SIGNAL MODEL AND PARTIAL FFT DEMODULATION

A. Signal Model

We recall partial FFT demodulation as presented in [4], [6]
and is briefly illustrated below. The transmitted OFDM signal
in passband is given by

s(t) =

√
1

T
Re

{
K∑
l=1

dle
j2πflt

}
, t ∈ [−Tg, T ] (1)

where the vector d = [d1, d2, · · · , dK ] of data symbols is
modulated onto K OFDM subcarriers and T , Tg denote the
duration of the OFDM symbol and the cyclic prefix, respec-
tively. The kth subcarrier frequency is at fk = f0+(k−1)∆f
and the signaling bandwidth is then B = K∆f . The time
varying channel is modeled as

h(τ, t) =
P∑

p=1

hp(t)δ(τ − τp(t)), (2)

where hp(t) and τp(t) are the time-varying gain and delay of
the pth path. In this paper, we consider the following cases.

1) Time invariant channels: hp(t) = hp and τp(t) = τp.
2) Carrier Frequency Offset: hp(t) = hpe

j2πfdt and τp(t) =
τp, where fd is the frequency offset.

3) Wideband channels with time scale: hp(t) = hp and
τp(t) = τp − at, where a is the time scaling parameter.

The partial FFT outputs for the given time-varying channel
are approximated as

yk(m) ≈
P∑

p=1

K∑
l=1

dlhp(m)e−j2πflτp(m)Il−k(m) + nk(m)

=
K∑
l=1

dlHl(m)Il−k(m) + nk(m), (3)

where hp(m) and τp(m) are the relevant mid-point val-
ues of the path gains and delays in the interval [(m −
1)T/M,mT/M ]. The effective channel gain as seen by the
kth subcarrier in the mth partial interval is Hk(m) =∑P

p=1 hp(m)e−j2πfkτp(m), and the function Ii(m) captures
the effect of partial integration:

Ii(m) =
ej2πi

2m−1
2M

M
sinc

(
πi

M

)
, |i| ≤ K − 1. (4)

Note that
∑

m Ii(m) = δi and I0(m) = 1/M, ∀m =

1, 2, ...,M . Let us define vk = [Ik(1), Ik(2), · · · , Ik(M)]
T

as the vector containing the partial interval integration coef-
ficients, Hk = diag [Hk(1),Hk(2), · · · ,Hk(M)] as the diag-
onal matrix containing the approximated frequency response
and yk = [yk(1), yk(2), · · · , yk(M)]

T as the vector containing
the partial FFT outputs for the kth subcarrier. In vector form,
the partial FFT outputs for the kth subcarrier can then be

written as

yk =

K∑
l=1

dlHlvl−k + nk, (5)

where nk is the noise vector. Note that v0 = 1
M [1, 1, · · · , 1]T .

It can easily be shown that vH
k v0 = 0,∀k ̸= 0, thus

compactly representing the fact that all the OFDM subcarriers
are orthogonal to each other.

B. Received signal for cases 2 and 3

Let us consider an OFDM system with a frequency offset
fd Hz. The normalized CFO is then ϵ = fdT . The partial FFT
outputs for such a scenario can be expressed as

yk = Dϵ

K∑
l=1

dlHlvl−k + nk, ϵ = fdT

Dϵ = diag
[
ej2πϵ

(2m−1)
2M

]
,m = 1, 2, · · · ,M. (6)

For OFDM signaling over a UWA channel with linearly
varying path delays, we get

yk =
K∑
l=1

dlHlDϵlvl−k + nk, ϵl = aflT

Dϵl = diag
[
ej2πϵl

(2m−1)
2M

]
,m = 1, 2, · · · ,M. (7)

We note that for UWA systems with time scaling, though the
frequency offset is different for each subcarrier, the difference
between the frequency offsets of several adjacent subcarriers
is negligible. This allows us to analyze the CFO scenario and
interpret the obtained results for an underwater OFDM signal
with time scaling.

C. Combining Partial FFT Outputs

If the partial FFT outputs are weighted before combining,
a judicious selection of weights enables partial compensa-
tion for the time-varying channel response. The weighted
combining is performed as follows. Let us define wk =
[wk(1), wk(2), · · · , wk(M)]

T as the vector of the combiner
weights for the kth subcarrier. The combining then yields a
signal xk = wH

k yk. If wk = [1, 1, · · · , 1]T ,∀k, the situation
is equivalent to performing a single, full-interval FFT. For
the ideal case of a time-invariant channel (case 1), using the
above weights yields xk = Hkdk+nk and symbol-by-symbol
detection is optimal. When the channel is time-varying, the
combiner weights are tailored to achieve the desired output
in this form. In the next section, we compute the optimal
combiner weights for the special cases of interest.

III. OPTIMAL COMBINING

We first focus on deriving the minimum mean squared
error (MMSE) optimal weights wopt

k for combining the partial
FFT outputs assuming perfect knowledge of the time-varying
channel. As we are interested in one-tap equalization of time-
varying signals, it is assumed that only the partial FFT outputs
for the kth subcarrier are used to determine the symbol
transmitted on this subcarrier. This assumption is qualified



subsequently by showing that optimal combining significantly
reduces the interference from adjacent carriers for several
scenarios of interest. The optimal combiner weights are the
solution to the MMSE optimization problem:

wopt
k = min

wk

E
[∣∣dk − pH

k yk

∣∣2] , (8)

and can be evaluated as E
[
yky

H
k

]
wopt

k = E [ykd
∗
k]. Substi-

tuting for yk from (5) and evaluating the cross-correlation
term, we get Rykdk

= E [ykd
∗
k] = Hkv0. The auto-

correlation matrix of yk, Ryk
, can be derived as

Ryk
=

K∑
l=1

Hlvl−kv
H
l−kH

H
l +

N0

M
IM . (9)

The optimal combiner weights can then be evaluated by sub-
stituting the cross-correlation vector and the auto-correlation
matrix in the above MMSE solution in (8).

1) Time Invariant Channel: When the subcarrier frequency
response coefficients Hk(m) are independent of m, the chan-
nel is time invariant and the auto-correlation matrix can be
simplified using Hl = Hldiag([1, 1, . . . , 1]). For a time in-
variant channel, it can be clearly seen that the auto-correlation
matrix Ryk

is a circulant matrix. Exploiting the fact that any
circulant matrix is diagonalized by a DFT matrix, we get
Ryk

= FΛkF
H , where F is an M ×M unitary DFT matrix

and Λk is a diagonal matrix of the eigen values of Ryk
. The

optimal combiner coefficients are then

wopt
k =

Hk

M
FΛ−1

k FHv0 =
Hk

λk(1)
v0, (10)

where, the equation is simplified by noting that v0 is also the
first eigen vector of the DFT matrix and λk(1) is the first
diagonal element of Λk and is given as

λk(1) =
M∑

m2=1

Ryk
(1,m2) =

1

M
(|Hk|2 +N0), (11)

and the MMSE optimal combiner weights are then

wopt
k =

Hk

|Hk|2 +N0
Mv0 =

Hk

|Hk|2 +N0
[1, 1, . . . , 1] . (12)

Thus, the optimal processing for a time-invariant channel
would be to add all the partial FFT outputs to get a full
FFT output and then equalize the computed data which is the
standard OFDM processing for this scenario.

2) System with Carrier Frequency Offset: For an OFDM
system with a normalized CFO ϵ = fdT , the partial FFT
outputs are given from (6) as

yk = Dϵ

K∑
l=1

dlHlvl−k + nk. (13)

Evaluating the auto-correlation and cross-correlation, we get

Ryk
= Dϵ

K∑
l=1

|Hl|2vl−kv
H
l−kD

H
ϵ +

N0

M
IM

Rykdk
= DϵHkv0. (14)

Noting the fact that DϵD
H
ϵ = IM and simplifying as done

in the case of a time-invariant channel, the optimal combiner
weights in this scenario are derived as

wopt
k = Dϵ

Hk

|Hk|2 +N0
Mv0. (15)

The structure of the optimal combiner coefficients suggests
that the optimal receiver first compensates for the approxi-
mated phase distortion due to the frequency offset and perform
the same processing as in the time-invariant case.

3) Wideband system with time scaling due to Doppler
distortion: As mentioned earlier, for OFDM signaling on
channels with time scaling, we observe that each subcarrier is
shifted by a slightly different frequency and thus this scenario
can be considered as a generalization of OFDM with frequency
offset. The outputs of the partial FFT blocks are given from
(7) as

yk =
K∑
l=1

dlHlDϵlvl−k + nk, ϵl = aflT (16)

Evaluating the auto-correlation and the cross-correlation terms
as in the previous case, we get

Ryk
=

K∑
l=1

|Hl|2Dϵlvl−kv
H
l−kD

H
ϵl
+

N0

M
IM

Rykdk
= DϵkHkv0. (17)

Evaluating the terms in the auto-correlation matrix, we get

Ryk
(m1,m2) =

1

M2

K∑
l=1

|Hl|2ej2π(l−k+ϵl)
(m1−m2)

M ×

sinc2
(
π(l − k)

M

)
+N0/M (18)

From the above equation, we observe that the auto-correlation
matrix is no longer a circulant matrix and hence a simple
and intuitive solution to the optimal weights wopt

k may be
intractable. However, Ryk

is Toeplitz Hermitian matrix and
can be approximated with a circulant matrix for large M [14].
Using the circulant approximation for the auto-correlation
matrix of the data, we get

wopt
k ≈ Dϵk

Hk

λk(1)
Mv0, (19)

where λk(1) is the first eigen value of the approximated
circulant matrix. The value of λk(1) is dominated by the term
|Hk|2 +N0 but includes several other terms corresponding to
the channel gains of other subcarriers. We note that for large
values of M , the optimal strategy reduces to compensating the
phase distortion on each partial interval and then equalizing
the received data as in the case with CFO. However, we note
that the matrix Dϵk is now dependent on the subcarrier.

IV. ANALYSIS OF ESTIMATION ALGORITHMS

We now analyze the performance of the proposed weight
estimation algorithms proposed in [6] for the CFO scenario.
The analysis for this scenario gives valuable insight into the



effectiveness of partial FFT demodulation for compensating
time scaling distortion.

Let us first consider model based estimation assuming that
the model parameters are estimated correctly. Assuming that
the channel parameters are deterministic, the signal at the kth

subcarrier is
[∑M

m=1 e
−j2πϵ 2m−1

2M yk(m)
]
. Substituting for the

exact expression for yk(m) from (6), we get the signal power
SPk = |Hk|2sinc2

(
πϵ
M

)
. The total power of the noise and

interference for the kth subcarrier can be similarly calculated
as

IPk = N0 +

K∑
l=1,l̸=k

|Hl|2sinc2
(
π(l − k + ϵ)

M

)
× Cl−k(M), (20)

where the interference term Cl−k(M) =∣∣∣∑M
m=1

1
M ej2π(l−k)

(2m−1)
2M

∣∣∣2 is non-zero only for subcarriers
for which (l−k) is a multiple of M . Thus, for a time-invariant
channel with frequency offset, the partial FFT followed by
optimal combining fully eliminates the interference from all
the subcarriers which are not at multiples of M away from
the subcarrier of interest. Thus, even for moderate values of
M , there is no interference from adjacent subcarriers and thus
results in a significant improvement in signal to interference
ratio (SIR). The SIR given by SPk/IPk is then

SIR∗
k(M) =

|Hk|2sinc2
(
πϵ
M

)
N0 +

∑K
l=1,l ̸=k,l−k=pM |Hl|2sinc2

(
π(pM+ϵ)

M

) .
(21)

Clearly, the signal power is monotonically increasing in M
and the number of zero terms in the interference expression
increase for increasing M . Thus, for a fixed channel frequency
response, the SIR is an increasing function of M . However,
as M increases, the number of partial FFT’s to be performed
also increases. The practical value of M to be used is then
only limited by the computational cost of the partial FFT.

A. Analysis of Recursive Weight Estimation

The recursive weight estimation algorithm runs adaptively
over the subcarriers and its performance is a function of
the rate of variation of the channel frequency response and
the number of intervals into which the OFDM symbol is
divided. Intuitively, when M increases from a very small
value the performance of recursive estimation would improve
as the distortion process is better modeled for larger M .
However, upon increasing M further, the number of weights
to be estimated increases and the accuracy of estimating
the RLS covariance matrix decreases and thus we observe
a performance degradation for larger values of M [6]. To
quantify the tradeoff between better modeling the distortion
and the accuracy of the RLS parameters, we consider the
analysis of the RLS algorithm under steady state conditions.

Due to the finite number of observations and the frequency
selectiveness of the time-varying channel, the estimated input
covariance matrix R̂yk

is highly time-varying and the analysis
of the general problem may not be very tractable. To provide
us intuition into the trade-off and to determine an optimal M∗

for practical implementations, we consider the analysis under
several simplifying assumptions. Since the observed trade-off

is due to the adaptive RLS algorithm, we focus our analysis on
the performance of RLS by assuming a flat fading channel with
gain h0 and that the transmitted symbols are accurately known
at the receiver. This assumption allows us to approximate
the data covariance matrix Ryk

as subcarrier-invariant. An
analysis of the expression

R = Ed|h0|2
[

K∑
l=1

vl−kv
H
l−k

]
+

N0

M
IM ,

shows that the approximation is accurate for most of the
subcarriers except for the ones at the edges of the OFDM
symbol. The parameter Ed is the average energy of the trans-
mitted constellation and is modeled explicitly in this section.
Considering separately the signal and interference, we can
write R = Ed|h0|2v0v

H
0 +RI , where RI is the covariance

matrix of just the interfering terms with the subcarrier of
interest. Using the matrix-inversion lemma it can be shown
that the covariance matrix of the data and the interference are
related as

1

vH
0 R−1v0

= Ed|h0|2 +
1

vH
0 R−1

I v0

. (22)

As we consider an exponentially weighted RLS algorithm [6],
the optimization function for the combiner weights is given as

n∑
i=1

λn−i
∣∣∣√Eddi −wH(n)yi

∣∣∣2 , (23)

The RLS adaptation rule in this case is given as

ek =
√
Eddk −wH

k−1yk, wH
k = wH

k−1 + ekgk, (24)

where ek is the prediction error at subcarrier k and gk is the
gain vector from the RLS update. Using results from RLS
convergence theory, the mean weight vector wH

k converges to
the optimal linear MMSE solution wopt = Ed|h0|2R−1v0.
It can be shown that the mean squared error (MSE) of the
estimation error converges to |ek|2 → e∗ + eex(∞), where e∗

is the mean-square error of the optimum filter wopt, given by

e∗ = E

[∣∣∣√Eddk −wHopt
yk

∣∣∣2]
= Ed|h0|2(1− Ed|h0|2vH

0 R−1v0)

=
Ed|h0|2

1 + Ed|h0|2vH
0 R−1

I v0

=
Ed|h0|2

1 + SIR∗ , (25)

where SIR∗ = Ed|h0|2vH
0 R−1

I v0 [12]. The steady-state ex-
cess mean-square error is given by eex(∞) = 1−λ

1+λMe∗ = ηe∗

[13]. Now, under the assumption of known data symbols, the
steady-state SIR output of the RLS update is computed. The
second moment and the mean of the output at steady state are

E
[∣∣wH

k−1yk

∣∣2] = ek + 2
√
EddkE

[
wH

k−1yk

]
− Ed|h0|2

→ eex(∞)− Ed|h0|2(1− 2(wopt)Hv0). (26)

and

E
[
wH

k−1yk

]
→

√
Eddk(w

opt)Hv0 =
√
Edh0dk

SIR∗

1 + SIR∗ .
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Fig. 1. Optimal SIR as a function of M averaged over a Rayleigh fading
channel, SNR = 20dB

From the mean and the second moment of the output, the
variance of the estimates can be computed as

var
[
wH

k−1yk

]
→ (1 + η)SIR∗ + η

(1 + SIR∗)2
Ed. (27)

The steady-state SIR can then be derived as

SIR∞ = lim
n→∞

∣∣E [
wH

k−1yk

]∣∣2
var

[
wH

k−1yk

] =
SIR∗

(1 + η) + η/(SIR∗)
. (28)

The above equation gives the steady-state SIR for the recursive
estimation algorithm to characterize the performance tradeoff
due to the RLS algorithm. We plot the steady state SIR
under the flat fading channel and constant data covariance
matrix assumptions for both the recursive and the model based
weight estimation algorithms. Figs. 1 and 2 show the plots of
SIR (averaged over the Rayleigh fading channel gain) as a
function of the number of partial FFT intervals respectively.
As predicted by the analysis in this paper and as seen in the
numerical simulations in [6], the model based estimator has
monotonically improving performance as a function of M . For
recursive weight estimation, the SIR curve peaks at a certain
value of M depending on the normalized CFO due to better
distortion modeling and degrades later due to the adaptation
inaccuracies of the RLS parameters.

V. CONCLUSIONS

Time scaling due to Doppler distortion in underwater acous-
tic communications using OFDM signaling causes different
frequency offsets for each subcarrier and results in significant
inter-carrier interference if not compensated for. We proposed
a new technique partial FFT demodulation in [6] and presented
two algorithms for time scale compensation: model based
weight estimation and recursive weight estimation,. In this
paper, we presented an analysis of the performance of the
two algorithms and showed that the performance of model
based estimation increases monotonically with the number of
partial FFT intervals M . For recursive weight estimation, using
an approximated analysis, the trade-off between modeling
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Fig. 2. Steady state SIR after RLS convergence as a function of M averaged
over a Rayleigh fading channel, SNR = 20dB.

and estimation errors is characterized and it is shown that
performance improves initially with increasing M due to better
distortion modeling and then decreases as M increases further
due to inaccurate estimation of key parameters.
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