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The protein–protein interaction (PPI) network is crucial for cellular
information processing and decision-making. With suitable inputs,
PPI networks drive the cells to diverse functional outcomes such as
cell proliferation or cell death. Here, we characterize the structural
controllability of a large directed human PPI network comprising
6,339 proteins and 34,813 interactions. This network allows us to
classify proteins as “indispensable,” “neutral,” or “dispensable,”
which correlates to increasing, no effect, or decreasing the number
of driver nodes in the network upon removal of that protein. We
find that 21% of the proteins in the PPI network are indispensable.
Interestingly, these indispensable proteins are the primary targets
of disease-causing mutations, human viruses, and drugs, suggest-
ing that altering a network’s control property is critical for the
transition between healthy and disease states. Furthermore, ana-
lyzing copy number alterations data from 1,547 cancer patients
reveals that 56 genes that are frequently amplified or deleted in
nine different cancers are indispensable. Among the 56 genes, 46
of them have not been previously associated with cancer. This
suggests that controllability analysis is very useful in identifying
novel disease genes and potential drug targets.
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The need to control engineered systems has resulted in a
mathematically rich set of tools that are widely applied in the

design of electric circuits, manufacturing processes, communi-
cation systems, aircraft, spacecraft, and robots (1–3). Control
theory deals with the design and stability analysis of dynamic
systems that receive information via inputs and have outputs
available for measurement. Issues of control and regulation are
central to the study of biological systems (4, 5), which sense and
process both external and internal cues using a network of
interacting molecules (6). The dynamic regulation of this mo-
lecular network in turn drives the system to various functional
states, such as triggering cell proliferation or inducing apoptosis.
This feature of specific input signals driving networks from an
initial state to a specific functional state suggests that the need to
control a biological system plays a potentially important role in
the evolution of molecular interaction networks. Note that the
term “state” is also used in a control context where the “state
space” of a control system is the space of values the “state var-
iables” can attain. For a protein–protein interaction (PPI) net-
work, the state variables are the specific protein concentrations
and the state space is all positive real numbers of dimension
equal to the total number of proteins in the PPI network.
According to control theory, a dynamic system is controllable

if, with a suitable choice of inputs, the system can be driven from
any initial state to any desired final state in finite time (2, 7).
Previous studies have shown that network components exhibit

properties of control systems such as proportional action, feed-
back control, and feed-forward control (8–12). However, the
main challenges that hinder systematic controllability analysis of
biological networks are the availability of large-scale biologically
relevant networks and efficient tools to analyze their controlla-
bility. To address these issues, two resources were integrated in
this work: (i) a directed human PPI network (13); and (ii) an
analytical framework to characterize the structural controllability
of directed weighted networks (14). The directed human PPI
network represents a global snapshot of the information flow in
cell signaling. For a given weighted and directed network associ-
ated with linear time-invariant dynamics, the analytical framework
identifies a minimum set of driver nodes, whose control is suffi-
cient to fully control the dynamics of the whole network (14, 15).
In this work, we classified the proteins (nodes) as “in-

dispensable,” “neutral,” or “dispensable,” based on the change
of the minimum number of driver nodes needed to control the
PPI network when a specific protein (node) is absent. In addi-
tion, we analyzed the role of different node types in the context
of human diseases. Using known examples of disease-causing
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mutations, virus targets, and drug targets, we identified in-
dispensable nodes that are key players in mediating the
transition between healthy and disease states. Our study illus-
trates the potential application of network controllability analysis
as a powerful tool to identify new disease genes.

Results
Characterizing the Controllability of the Directed PPI Network. We
applied linear control tools to access local controllability of PPI
networks whose dynamics are inherently nonlinear. The experi-
mentally obtained network, however, can be assumed to capture
linear affects around homeostasis. Furthermore, given that the
tools developed in ref. 14 are for linear dynamics, we are careful
to only assume that we can ascertain local controllability around
homeostasis. Controllability henceforth referred to local con-
trollability (see SI Text for details).
The directed human PPI network consists of 6,339 proteins

(nodes) and 34,813 directed edges, where the edge direction
corresponds to the hierarchy of signal flow between the inter-
acting proteins and the edge weight corresponds to the con-
fidence of the predicted direction. We applied structural
controllability theory to identify a minimum set of driver nodes
(i.e., nodes through which we can achieve control of the whole
network). Note that the identified minimum driver node set
(MDS) is not unique, but its size, denoted as ND, is uniquely
determined by the network topology. We found that the MDS of
the directed human PPI network contains 36% of nodes. We also
classified the nodes as indispensable, neutral, or dispensable,
based on the change of ND upon their removal. A node is
(i) indispensable if removing it increases ND (e.g., node 2 in Fig.
1A), (ii) neutral if its removal has no effect on ND (e.g., node 1 in
Fig. 1A), and (iii) dispensable if its removal reduces ND (e.g.,
nodes 3 and 4 in Fig. 1A). In the directed human PPI network,

21% of nodes are indispensable, 42% are neutral, and the
remaining 37% are dispensable (Fig. 1B). Interestingly, we found
that all of the three node types have a heterogeneous degree
distribution, and indispensable nodes tend to have higher in- and
out-degrees compared with neutral and dispensable nodes (Fig. 1
B and C). Similarly, indispensable nodes are associated with
more PubMed records (www.ncbi.nlm.nih.gov/pubmed) and
Gene Ontology (16) term annotation than neutral and dispens-
able nodes (Fig. S1 A and B). However, the correlation between
the node-degree and the literature bias is weak (correlation co-
efficient of 0.37 and 0.41 for in- and out-degree, respectively),
suggesting that the higher degree of indispensable nodes is not
explained by the literature bias alone (Fig. S1 C and D).
We characterized indispensable, neutral, and dispensable

nodes in the context of essentiality, evolutionary conservation,
and regulation at the level of translational and posttranslational
modifications (PTMs). Our gene essentiality analysis indicated
that indispensable nodes are enriched in essential genes, whereas
essential genes are underrepresented among dispensable nodes
(Fig. 1E, Fig. S1E, and Dataset S1). Furthermore, indispensable
nodes are evolutionarily conserved from human to yeast com-
pared with the other two node types (Fig. 1E and Fig. S1F). Next,
we analyzed the different node types in the context of cell sig-
naling, which is at the core of cellular information processing. In
general, known signaling proteins are enriched as indispensable
nodes. However, dissecting different functional classes within
signaling proteins reveals that kinases are enriched as in-
dispensable nodes whereas membrane receptors and transcrip-
tion factors are enriched as neutral nodes (Fig. 1E and Fig. S2A).
Analysis of the protein steady-state abundance in cell lines, as a
measure of translational regulation, reveals that indispensable
nodes are enriched as high copy number proteins, whereas low-
copy number proteins show moderate enrichments for both
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Fig. 1. Characterizing the controllability of human directed PPI network. (A) Schematic representation of the node classification using controllability
framework. (B) Identification of indispensable, neutral, and dispensable nodes in human directed PPI network. (C) In-degree distribution and average in-
degree for three different node types. (D) Out-degree distribution and average out-degree for three different node types. (E) Distinct enrichment profiles of
indispensable, neutral, and dispensable nodes in the context of essential genes, evolutionary conservation, cell signaling, protein abundance, and PTMs.
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indispensable and dispensable nodes (Fig. 1E and Fig. S2B).
Similarly, indispensable nodes are highly regulated through
PTM, including acetylation, ubiquitination, and phosphorylation
(pS/pT and pY) (Fig. 1E and Fig. S2C). Altogether, our en-
richment analyses revealed distinct functional and regulatory
roles for indispensable, neutral, and dispensable nodes.

Understanding Healthy to Disease State Transition Using Network
Controllability. We analyzed the node classification in the con-
text of driving the system from healthy to disease condition and
vice versa. Specifically, we analyzed the impact of three different
transitions: (i) healthy to disease transition induced by mutations
or other genetic alterations; (ii) healthy to infectious transition
induced by human viruses; and (iii) disease to healthy transition
induced by drugs or small molecules. Note that our goal is to
determine whether specific node types (indispensable, neutral,
or dispensable) are enriched for (i) disease-causing mutations,
(ii) targets of human viruses, and (iii) drug targets.
First, we analyzed 445 genes annotated by the Sanger Center as

causally implicated in oncogenesis (Cancer Gene Census; cancer.
sanger.ac.uk/census) (17). Interestingly, we found that indispensable
nodes are highly enriched in cancer genes, whereas neutral nodes
showed no enrichment and dispensable nodes are underrepresented
(Fig. 2A, Cancer I; Fig. S3A; and Dataset S2). To ensure that the
observed enrichment of indispensable nodes is not attributable
to the literature and degree bias, we repeated our analysis using
literature- and degree-controlled random sets (SI Text). After
adjusting for literature and degree bias (Fig. 2A, PubMed and
Degree; and Dataset S2), indispensable nodes remain signifi-
cantly enriched as cancer genes. Note that for enrichment analysis
below, the degree- and literature-controlled enrichments results
were shown in Fig. S3B. To further substantiate that indispensable
nodes are enriched as cancer genes, we analyzed 3,164 genes
predicted as cancer related genes (18) and observed a similar en-
richment for indispensable nodes (Fig. 2B, Cancer II; and Fig. S3A).
Next, we analyzed 1,403 genes annotated by Online Mendelian

Inheritance in Man (OMIM) (omim.org) as causal genes for
various genetic diseases, aiming to test whether the perturbation
of indispensable nodes is a specific feature of cancer or a general
feature of human diseases. Our analysis showed that the per-
turbation of indispensable nodes is a common feature of human
diseases (Fig. 2B, OMIM; and Fig. S3A). Interestingly, however,
our analysis of disease genes identified from genome-wide as-
sociation studies (GWAS) (www.genome.gov/gwastudies) (19)
revealed poor enrichment for indispensable nodes (Fig. 2B,
GWAS; and Fig. S3A), most likely reflecting the fact that GWAS
identify genomic regions but not specific coding genes that cause
the disease (20). Because indispensable nodes are enriched for
causal mutations (Fig. 2 A and B), our resource could help
identify causal genes from GWAS.
We also characterized the network controllability in the context

of host–parasite interactions, specifically human–virus interactions.

Upon infection, viruses control the host cellular network to use the
host resources to replicate and to evade the host immune response.
Here, we analyzed the node types targeted by human viruses to
drive the network from a healthy state to an infectious state. First,
we analyzed the targets of HIV, a member of the lentivirus family
that causes AIDS. Putative human genes, identified to have an
effect on HIV-1 replication from large-scale functional genomic
screens (data compiled from four RNAi datasets) (21–24) tend to
be indispensable nodes (Fig. 2C, RNAi; and Fig. S3C). However,
we did not detect a significant enrichment—most likely reflecting
the quality of the HIV RNAi screens (25). To analyze direct targets
of HIV, we compiled the HIV–human interactome (from recent
literature and PPI databases) (26, 27), finding that indispensable
nodes are enriched for physical interactions with HIV proteins
(Fig. 2C, PPIs; and Fig. S3C). Analysis of 208 different human–
virus networks (26–29) reveals that human viruses commonly target
indispensable nodes to control the host network (Fig. 2C, Virus
targets; and Fig. S3C). We noticed that after adjusting for literature
bias indispensable nodes remain as viral targets, whereas adjusting
for degree bias shows only weak enrichment (Fig. S3D). This
finding is in agreement with the previous observations that viruses
tend to target hubs (30).
Finally, we characterized the network controllability in the

context of driving the system from disease to healthy state. Spe-
cifically, we analyzed the node types that are targeted by the drugs/
small molecules (Fig. 2D). By analyzing the targets of drugs ap-
proved by the Food and Drug Administration (FDA) (31), we
found that indispensable nodes are enriched for drug targets (Fig.
2D, FDA targets; and Fig. S3 E and F). Extending the analysis to
the list of proteins that are annotated as druggable (32), i.e., a
presence of protein folds that favor interactions with drug-like
chemical compounds, showed that the druggable genome list is
not significantly enriched for indispensable nodes (Fig. 2D, D I;
and Fig. S3E). Interestingly, analyzing the druggable genome list by
excluding FDA-approved drug targets showed underrepresentation
of indispensable nodes (Fig. 2D, D I; and Fig. S3E). This finding
suggests a potential application of our analysis to redefine the
druggable genome based on the network controllability.
All of the above analyses of disease mutations, viruses, and

drugs consistently showed that indispensable nodes are preferred
targets. We also analyzed how often indispensable nodes act as
driver nodes by using a recently developed approach to identify
the role of each node as drivers in the MDSs (33). We found that
378 nodes appear in all MDSs (i.e., they play roles in all of the
control configurations), 3,330 nodes are in some but not all MDSs
(i.e., they play roles in some control configurations but the network
can still be controlled without directly controlling them), and 2,631
nodes do not belong to any MDS (i.e., they play no roles in control)
(Dataset S1) (33). Interestingly, we found that indispensable nodes
are never driver nodes in any MDS (Fig. S3G and Dataset S1).
This fact can actually be rigorously proven (SI Text). Moreover,
perturbing indispensable nodes increases the number of driver
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Fig. 2. Characterizing network controllability in transition from healthy to disease state. (A) Bar graph showing the enrichment results (z scores) of cancer genes
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nodes to control, suggesting that, from a controllability perspective,
these nodes are fragile points in the network.
We further analyzed indispensable nodes in specific signaling

pathways such as receptor tyrosine kinase (RTK) signaling
pathways, which are commonly perturbed in cancer (34). Strik-
ingly, 67 out of 170 RTK pathway members are indispensable
nodes (P < 0.0001), including 51 indispensable nodes targeted by
disease mutations, viruses, or drugs (Fig. S4A and Dataset S2).
Furthermore, we identified 21 indispensable nodes from differ-
ent signaling pathways that are shared targets of cancer muta-
tions, viruses, as well as drugs (Fig. S4B and Dataset S2).

Robustness of Indispensable Node Classification. The false-positive
and false-negative interactions are major concerns in PPI net-
works, especially the false negatives because the current net-
works are vastly incomplete (35). Hence, we systematically
analyzed the robustness of node classification with respect to
adding or removing interactions. Specifically, we analyzed the
indispensable node classification as a function of removing edges
(or network filtering). The network filtering is achieved by using
a confidence score assigned to edge directions, where the most
stringent filtering resulted in smaller high-confidence–directed
networks (20,151 edges and 5,317 nodes). We analyzed the
controllability of filtered networks and compared them to the
original network. The results show that 90% of the indispensable
nodes in the stringent filtered network are indispensable in the
original network (Fig. 3A, Fig. S5 A and B, and Dataset S3),
suggesting that the indispensable node classification is robust
with respect to adding or removing edges in the network.
Next, we analyzed the controllability of networks with per-

turbations (e.g., edge rewiring or edge-direction flipping). In the
case of random rewiring, up to 100% of the edges are rewired
(node degrees are preserved), and in the case of direction-flipped
networks, up to 100% of the edge directions are reversed. We
observed that up to 50% of indispensable nodes in the rewired or
direction-flipped network do not agree with the original annota-
tion, showing that indispensability is highly sensitive to the con-
nectivity pattern and edge direction (Fig. 3B, Fig. S5 C–F, and
Dataset S3). Comparing indispensable nodes of the real network
to that of the rewired (100% rewiring) and flipped (40% flipping)
networks revealed two subtypes (type-I and type-II) of in-
dispensable nodes (Fig. 3C and Dataset S3). If a node’s in-
dispensability is robust to rewiring or flipping, then we call it a
type-I node; if the node’s indispensability is sensitive to rewiring or
flipping, then we refer to them as type-II nodes. We found that
57% of indispensable nodes are type-I nodes and 43% are type-II.

Degree distribution of the subtypes shows that type-I nodes
tend to be hubs, whereas the average degree of type-II nodes is
similar to the average degree of the network (Fig. 3D). Indeed,
type-II nodes cannot be distinguished from the rest of the nodes
based on any other network properties analyzed (Fig. S5G).
Furthermore, type-I nodes show literature and annotation bias
compared with type-II nodes (Fig. 3 E and F). With respect to
diseases, both node types show similar enrichment for cancer
genes and other human diseases (Fig. 3G). In contrast to type-I
nodes that tend to be hubs and well-studied genes, type-II nodes
are poorly studied and show no special network feature except
indispensability, suggesting that control theory brings orthogonal
information to traditional network analysis.

Applying Network Controllability Analysis to Mine Cancer Genomic
Data.Our finding that indispensable nodes (both type-I and type-II)
are more likely to correspond to cancer genes prompted us to
systematically survey the perturbation of those genes in cancer.
We analyzed data from 1,547 patients obtained from The Cancer
Genome Atlas (TCGA) (cancergenome.nih.gov) and cBioPortal
for Cancer Genomics (36), representing nine different cancer
types (Dataset S4). Specifically, we analyzed the amplification or
deletion of type-II indispensable nodes in nine cancer types.
Note that the copy number alteration (CNA) data are normal-
ized to the expression levels to identify the amplification or de-
letion that results in expression level changes (SI Text). We
ranked all genes based on the number of patients where the gene
is amplified or deleted and selected the top 1% as frequently
amplified/deleted genes; 56 type-II genes were identified as part
of the top 1% of deleted/amplified genes in nine cancer types
(Fig. 4A and Dataset S4). Strikingly, 10 of 56 type-II genes are
known cancer genes, an overlap that is highly significant (P =
0.00002) (Fig. 4B and Fig. S6A). Interestingly, the frequency of
deletion and amplification of type-II indispensable nodes is not
significantly enriched compared with random sets, an observation
that was similar to cancer gene census gene list (Dataset S4).
Furthermore, we compared the type-II genes with results from a
cell proliferation screen (37) that identified a subset of genes that
regulate cell proliferation (“GO” genes induce the proliferation
and “STOP” genes suppress the proliferation); 17 of 56 genes
represent regulators of cell proliferation (11 GO genes, 8 STOP
genes, and 2 genes part of both GO and STOP genes) (Fig. 4C and
Fig. S6 B and C). The overlap between type-II genes and GO genes
are statistically significant (P = 0.0003). Of 56 genes, 10 genes are
frequently perturbed in multiple cancer types [e.g., proteasome 26S
subunit, non-ATPase, 4 (PSMD4) in four different cancers], and
all of them show similar deletion or amplification profile (e.g.,
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PSMD4 amplified in all four cancers) (Fig. 4D). Almost half of
the genes (23 genes) are poorly studied, with less than 50 asso-
ciated PubMed records; for instance, small G protein signaling
modulator 2 (SGSM2) is associated with only eight PubMed
records (Fig. 4D). These contextual evidences, along with the
indispensability, suggest that these 46 type-II nodes could be
potential cancer genes.

Database of Directed PPI Network with Predicted Controllability. We
created the DirectedPPI database (www.flyrnai.org/DirectedPPI)
to navigate the directed human PPI network with predicted
controllability. Users can enter a gene or upload a list of genes
and our tool generates a network with directed edges connecting
the input list. Our tool also accepts gene list with values (e.g.,
mutation frequency, P values from GWAS, or expression changes).
Three different node types (indispensable, neutral, and dispensable)
are distinguished with node shape and color and for these nodes all
of the properties analyzed in this article are displayed. This tool will
be useful to analyze disease datasets and other high-throughput
datasets to identify indispensable nodes and their interconnections.

Discussion
Studying the controllability of a complex biological network is
rather difficult, because of the fact that we typically do not know
the true functional form of the underlying dynamics. However,
most biological systems operate near homeostasis, so local
properties are indeed what we want to ascertain. Here, we
showed that application of linear control tools to study the local
structural controllability of inherent nonlinear biological net-
works provides meaningful predictions. Furthermore, we dem-
onstrated that local controllability tools help identifies known
human diseases genes and this can be used to identify novel
disease genes and drug targets.
Our analysis of directed human PPI network identifies 36% of

the nodes as driver nodes, which is similar to what has been ob-
served in metabolic networks (∼30%) (14). The node classification
based on network controllability shows distinct biological prop-
erties in the context of essentiality, conservation and regulation.
Specifically, we found that indispensable nodes are well conserved,
highly regulated at the level of translational and PTMs, and im-
portant for the transition between healthy and disease states. In-
terestingly, this enrichment pattern is partially shared by the nodes in
the minimum dominating sets that are located in strategically im-
portant positions in controlling the network (38–40). Furthermore,

identification of the indispensable nodes as primary targets of
diseases causing mutations, viruses, and drugs revealed a potential
application of this framework to identify novel disease genes and
potential drug targets.
Interestingly, disease-causing mutations, viruses, and drugs target

fragile points (indispensable nodes) that determine the number of
driver nodes rather than the driver nodes themselves, suggesting
that network controllability is crucial in transitioning between
healthy and disease states. Although network topology-based prop-
erties such as hubs and modules are commonly used to identify
disease genes (41–44), the controllability perspective provides a
complementary network analysis framework for network medicine.
In particular, type-II nodes that are not distinguishable from existing
network properties and without publications bias were still identi-
fied by our controllability framework as nodes of special interest.
We envision that in the future, improving the quality and the com-
pleteness of interactome maps and integrating dynamics of
network components would hugely impact our understanding
of biological networks both in the context of biological function
and human disease.

Methods
Datasets and Enrichment Analysis. All of the datasets used for the enrichment
analysis in this study are listed in Dataset S2. Details on the directed human
PPI network, random networks, and datasets used for enrichment analysis
can be found in SI Text.

Controllability Analysis and Node Classification. To identify MDS, with size
denoted as ND, whose control is sufficient to ensure the structural controlla-
bility of linear dynamics (14) and local structural controllability for nonlinear
dynamics (SI Text) on any directed weighted network, we can map the struc-
tural controllability problem in control theory to the maximum matching
problem in graph theory, which can be solved in polynomial time (15).

After a node is removed, denote the minimum number of driver nodes of
the damaged network as ND′. We can classify nodes into three categories:
(i) a node is indispensable if in its absence we have to control more driver
nodes (i.e., ND′ > ND); (ii) a node is dispensable if in its absence we have ND′ <
ND); and (iii ) a node is neutral if in its absence ND′ = ND. Note that in-
dispensable nodes are never driver nodes in any control configurations or
MDSs, which can be proven by contradiction (SI Text). More information
on node classification and local structural controllability can be found in
SI Text.

Random Networks. To compare the real network with its randomized
counterparts, we performed two types of randomization: (i) edge rewiring:
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we randomly choose a p fraction of edges to rewire, using the degree-
preserving random rewiring algorithm (45); and (ii) edge flipping: we ran-
domly choose a p fraction of edges to flip their directions. We tune p from
0 up to 1, resulting in a series of randomized networks.

Analysis of Cancer Genomic Datasets. Copy number alteration data for nine
cancer types were downloaded from the cBioPortal for Cancer Genomics
(www.cbioportal.org). Gene expression data for each cancer type were
downloaded from TCGA (https://tcga-data.nci.nih.gov/tcga). Next, we filtered
for patients with both CNA and expression data available (details are available
in Dataset S4). We computed a z score for each gene in a patient to identify

whether the amplification or deletion results in expression change for the
corresponding gene. A gene is defined as amplified if the Genomic Identifi-
cation of Significant Targets in Cancer (GISTIC) score is ≥1 and the z score is ≥1.5
and deleted if the GISTIC score (46) is ≤−1 and the z score is ≤−1.5 (SI Text).
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Directed Human PPI Network. The directed human PPI network was
compiled from our previous study (13). Briefly, a Naïve Bayesian
classifier was applied to predict potential direction of signal flow
between the ith and jth interacting proteins pi and pj as pi → pj, pj →
pi or both. The classifier uses features derived from the shortest
PPI paths between membrane receptors and transcription factors
and assigns confidence for each predicted edge directions ranging
from 0.5 to 1. The weighted and directed edges are then encoded
in an N × N matrix, and A is denoted as the weighted adjacency
matrix of the directed graph for the PPI network. The element of
A in the ith row and jth column is denoted as aij and is defined as
follows: aij is in the range [0.5,1] if there is signal flow from
protein pj to pi otherwise aij = 0.

Controllability Analysis and Node Classification. Recently, we de-
veloped amathematical framework and analytical tools to identify
MDS, with size denoted as ND, whose control is sufficient to
ensure the structural controllability of linear dynamics (14) and
local structural controllability for nonlinear dynamics (SI Text,
Local Structural Controllability) on any directed weighted net-
work. This is achieved by mapping the structural controllability
problem in control theory to the maximum matching problem in
graph theory, which can be solved in polynomial time (15). Here,
an edge subset M in a directed network or digraph is called a
“matching” if no two edges in M share a common starting node
or a common ending node. A node is “matched” if it is an ending
node of an edge in the matching. Otherwise, it is “unmatched.”
A matching of maximum cardinality is called a “maximum
matching.” (In general, there could be many different maximum
matchings for a given digraph.) We proved that the unmatched
nodes that correspond to any maximum matching can be chosen
as driver nodes to control the whole network. Identifying a
minimum set of driver nodes is equivalent to choosing an input
matrix (often denoted as B) with the minimum number of col-
umns (see SI Text, Local Structural Controllability and ref. 14 for
more details). The detailed construction of the input matrix B is
not necessary for the identification of driver nodes. This is only
mentioned to connect the notion of a driver node to the theo-
retical discussions in SI Text, Local Structural Controllability.
After a node is removed, denote theminimum number of driver

nodes of the damaged network as ND′. In this work, we classified
nodes into three categories. (i) A node is indispensable if in its
absence we have to control more driver nodes (i.e., ND′ > ND).
For example, removal of any node in the middle of a directed
path will break the path and cause the ND increase. Hence, all
but the start and end nodes of a directed path are indispensable.
(ii) A node is dispensable if in its absence we have ND′ < ND. For
example, removal of one leaf node in a star will decrease ND by
1. (iii) A node is neutral if in its absence ND′ = ND. For example,
removal of the central hub in a star will not change ND at all.
Note that a driver node in any MDS can never be an in-

dispensable node. This can be proven by contradiction. Assume
a driver node i is indispensable. According to the minimum
input theorem (9), driver nodes are just unmatched nodes with
respect to a particular maximum matching. There are two ca-
ses; case 1: the driver node i has no downstream neighbors [i.e.,
kout(i) = 0], then in its absence, ND′ = ND − 1; and case 2: the
driver node i has at least one downstream neighbors [i.e.,
kout(i) > 0]. There are two subcases; case 2.1: if in the maxi-
mum matching, one of node i’s downstream neighbors (node j)
is matched by node i, then in the absence of node i, node j will

become unmatched (i.e., a new driver node), rendering ND′ = ND;
case 2.2: if none of node i’s downstream neighbors are matched by
node i, then in the absence of node i, ND′ = ND − 1. In all of the
cases, we do not have ND′ > ND, which is in contrast to the defi-
nition of indispensable nodes. Hence, driver nodes cannot be in-
dispensable.

Enrichment Analysis. To estimate the significance of overlap be-
tween a given node type S and given dataset D, we compute an
enrichment z score as

z  score=
ðSD −mean  of   RDÞ

SD  of   RD
,

where SD is number of proteins from dataset D overlapping with
node type S and RD is the number of proteins from dataset D
overlapping with random set of proteins of same size as N. Mean
and SD of RD is computed from 1,000 simulations of random sets.
Note that the entire network with 6,339 proteins is used as the
background for random sampling. In addition to the z score, we
also computed the P value (two-tailed) by comparing the SD with
RD distribution (modeled as Gaussian distribution). In the case of
degree- or literature-controlled random sets, the random sets are
sampled such that the average degree or average PubMed records
of random sets matches the average of node type S.

Datasets Used for Enrichment Analysis. All of the datasets used for
the enrichment analysis in this study are listed in Dataset S2.
This includes the source of the data, reference, number of
proteins compiled, and overlap with human directed PPI net-
work. The datasets were downloaded from respective databases
or publications as mentioned in Dataset S2. The gene or pro-
tein IDs from various resources were mapped to Entrez gene
IDs. All compiled datasets are available as an integrated table
that shows the nodes and the overlap with respective datasets
(Dataset S1).

Analysis of Cancer Genomic Datasets. Copy number alteration data
for nine cancer types were downloaded from the cBioPortal for
Cancer Genomics (version corresponds to April 2013; www.
cbioportal.org). Using the GISTIC algorithm (46), the cBio-
Portal provides putative values of copy number alterations for
each cancer patient. The GISTIC score −2, −1, 0, 1, 2 corre-
sponds to deep loss (possibly a homozygous deletion), single-
copy loss (heterozygous deletion), diploid, low-level gain, and
high-amplification, respectively. The gene expression data for
each cancer type were downloaded from the TCGA (version
corresponds to April 2013; https://tcga-data.nci.nih.gov/tcga).
The tumor-matched datasets (for each participant have been
analyzed and compared with normal tissue on the CNA and gene
expression level) were used in the analysis. Level 3 TGCA data
(expression calls for genes, per sample) was used in our study.
The TCGA data were downloaded by using TCGA web interface
with filters set as “Data Type: Expression-Genes”; “Data Level:
Level 3”; “Tumor/Normal: Tumor-matched.”
Next, we filtered for patients with both CNA and expression

data available (details are available in Dataset S4). We computed
a z score for each gene in a patient to identify whether the
amplification or deletion results in expression change for the
corresponding gene. Briefly, for each gene the diploid mean and
SD of expression values were calculated using the data from
patients without any copy number alteration (GISTIC score, 0;
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diploid). Using the diploid mean and SD, we computed z score
for each gene in a given patient. A gene is defined as amplified if
the GISTIC score is ≥1 and the z score is ≥1.5 and deleted if the
GISTIC score is ≤−1 and the z score is ≤−1.5. All of the data
preprocessing and normalization were performed using Perl and
Java scripts developed in house.

Local Structural Controllability. A dynamic system is controllable
if, with a suitable choice of inputs, it can be driven from any
initial state to any final state in finite time (2). Most complex
biological systems are characterized by nonlinear interactions
between the components, and often only local properties can
be verified. Similarly, it is often easier to obtain local analytical
results for controllability of nonlinear systems. Here, we review
a sufficient condition for “local controllability” of a nonlinear
system about a trim point. A system is “locally controllable” if
there exists a neighborhood in the state space such that all
initial conditions in that neighborhood are controllable to all
other elements in the neighborhood with locally bounded
trajectories (47). This definition of controllability can be
verified by checking the well-known “Kalman rank condition”
used in the controllability analysis of linear systems. The rest
of the section is tutorial in fashion so as to illustrate how the
adjacency matrix can be used to analyze the local controlla-
bility of a PPI network.
Consider a dynamic system governed by a set of ordinary

differential equations

dx
dt

= f ðxðtÞÞ,

where x= ½x1   x2⋯  xn�T is the state vector and t is time. We are
interested in determining an n×m matrix B such that the con-
trolled system

dx
dt

= f ðxðtÞÞ+Bu [1]

is locally controllable through the input u= ½u1   u2 . . .   um�T  .
Let zp be defined as f ðzpÞ= 0, AðzpÞ= ∂f

∂x ðzpÞ, and GðzpÞ=
½B AB⋯  An−1B�.The matrix G(z*) is referred to as the Kalman
controllability matrix. The dynamics in Eq. 1 are locally con-
trollable around zp if GðzpÞ is rank n (Theorem 7 in ref. 47;
Proposition 11.2 in ref. 48). The local controllability analysis
of Eq. 1 about a trim point therefore reduces to the classic
Kalman controllability analysis (2) of the linear dynamics

dðzðtÞ− zpÞ
dt

=AðzðtÞ− zpÞ+Bu. [2]

Recall that the dynamics in Eq. 2 are deemed “structurally con-
trollable” if there exists another pair (A0,B0) with the same struc-
ture as the pair (A,B) (49). That is, we are not concerned about
the particular values in (A,B), just the pattern of the nonzero
entries in (A,B). The dynamics in Eq. 1 are deemed “locally
structurally controllable” if the linearized dynamics in Eq. 2
are structurally controllable.
For the purposes of this work, the adjacency matrix of the

experimentally determined PPI network is used to find the
structure of A in ref. 2, then the nodes are classified based upon
their impact on the structural controllability (Methods).
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Fig. S1. (A and B) Literature and annotation bias for the three node types. Bar plots show average PubMed records associated (A) and Gene Ontology terms
annotated (B) for each node type. (C and D) Correlation of node degree vs. literature bias. The plots show the correlation of in-degree (C) and out-degree (D) to
the number of PubMed records associated with each node in the entire network. (E) Enrichment analysis of essential genes. Numbers of essential genes
overlapping with dispensable, neutral, and indispensable nodes are shown in red arrows. The essential genes are compiled from the Database of Essential
Genes (DEG) (tubic.tju.edu.cn/deg) (50) and Online GEne Essentiality database (OGEE) (ogeedb.embl.de) (51). Numbers of essential genes overlapping with size-
controlled random sets are shown in gray bars. (F) Enrichment analysis of conserved genes. Numbers of genes conserved in Mus musculus (mouse), Danio rerio
(fish), Drosophila melanogaster (fly), Caenorhabditis elegans (worm), and Saccharomyces cerevisiae (yeast) are shown in red arrows, and their respective size-
controlled random set distributions are shown in gray bars. The ortholog mapping was performed using the Drosophila RNAi Screening Center (DRSC) In-
tegrative Ortholog Prediction Tool (DIOPT) (www.flyrnai.org/DIOPT) (52).
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Fig. S2. (A) Enrichment analysis of signaling proteins. Numbers of nodes overlapping with signaling proteins (annotated with signaling pathways in Cell
Signaling Technology database www.cellsignal.com/common/content/content.jsp?id=science-pathways) (53), receptors (54), protein kinases (55, 56) (kinase.
com/kinbase/index.html), and transcription factors (57) are shown in red arrows and, their respective size-controlled random set distributions in gray bars. (B)
Enrichment analysis of protein abundance. Numbers of nodes overlapping with high copy numbers (>100,000 copies) (A), moderate copy numbers (5000–
100,000 copies), low copy numbers (500–5,000 copies) (C), and very low copy numbers (<500 copies) are shown in red arrows, and their respective size-con-
trolled random set distributions in gray bars. The copy number dataset was obtained from Beck et el. (58). (C) Enrichment analysis of protein PTMs. Numbers of
nodes overlapping with any PTM [Acetylation, Tyrosine Phosphorylation (Phosphorylation Y), Serine/Threonine Phosphorylation (S/T), or Ubiquitination],
Acetylation, Tyrosine Phosphorylation, Serine/Threonine Phosphorylation, and Ubiquitination datasets are shown in red arrows and their respective size-
controlled random set distributions in gray bars. The PTM dataset was obtained from Woodsmith et al. (59).
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notated as disease genes in the OMIM database (omim.org) and associated with disease in GWAS (www.genome.gov/gwastudies), are shown in red arrows,
and their respective size-controlled random set distributions in gray bars. (B) Enrichment analysis of disease genes using literature- and degree-controlled
random sets. In the case of degree- or literature-controlled random sets, the random sets are sampled such that the average degree or average PubMed records
of random sets matches the average of node type N. (C) Enrichment analysis of virus targets. Numbers of nodes overlapping with genes identified to have an
adverse effect on HIV-1 replication when knocked down (RNAi screens) (21–24), human proteins that directly interact with HIV proteins (HIV targets PPI) (26,
27), and human proteins that are known to physically interact with proteins from 208 viruses (common virus targets) (26–29) are shown in red arrows, and their
respective size-controlled random set distributions in gray bars. (D) Enrichment analysis of virus targets using literature- and degree-controlled random sets.
Random sets are generated as explained in B. (E) Enrichment analysis of drug targets. Numbers of nodes overlapping with proteins that are targeted by
FDA-approved drugs (31), proteins with domains or folds that could bind to drug-like molecules (druggable genome I) (32), and a subset of druggable genome I
excluding the FDA-approved drug targets (druggable genome II) are shown in red arrows, and their respective size-controlled random set distributions in gray
bars. (F) Enrichment analysis of drug targets using literature- and degree-controlled random sets. Random sets are generated as explained in B. (G) Charac-
terizing indispensable, neutral, and dispensable nodes based on their roles as driver nodes. The recently developed approach is used to classify a node as
critical, intermittent, or redundant if it acts as a driver node in all, some, or none of the control configurations, respectively (33). The bar graph compares the
indispensable, neutral, and dispensable nodes against the critical, intermittent, and redundant node classification.
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Fig. S4. (A) Members of receptor tyrosine signaling pathways that are predicted as indispensable nodes and targeted by cancer mutations, OMIM disease,
viruses, or FDA-approved drugs. RTK pathway members are as defined by the SignaLink database (60). (B) Indispensable nodes that are targeted by all three
inputs (cancer mutation, viruses, and drugs). The labels of FDA drug nodes correspond to DrugBank IDs. The network was generated using Cytoscape (61).
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Fig. S5. (A and B) Robustness of node classification. (A) The fraction of indispensable, neutral, and dispensable nodes is plotted as a function of edge filtering
(filtering using edge score). (B) The fraction of nodes in the filtered network sharing the same node classification as the real network (unchanged annotation) is
plotted as a function of edge filtering. (C–F) Analysis of node classification in perturbed networks. (C) The fraction of indispensable, neutral, and dispensable
nodes is plotted as a function of fraction of edges rewired. (D) The fraction of nodes in the rewired network sharing the same node classification as the real
network (unchanged annotation) is plotted as a function of edge rewired. (E) Same as C, but the x axis corresponds to a fraction of flipped-edge directions.
(F) Same as D, but the x axis corresponds to a fraction of flipped-edge directions. (G) Comparison of network properties of type-I and type-II indispensable
nodes. The network betweenness centrality, closeness centrality, clustering coefficient, and neighborhood connectivity values are calculated using the
NetworkAnalyzer Cytoscape plugin (62). The gray dotted line shows the average value of the network.
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Fig. S6. Enrichment analysis of type-II indispensable nodes frequently amplified/deleted in cancer. Numbers of type-II indispensable nodes (frequently am-
plified/deleted in cancer) overlapping with genes causally associated with cancer (Cancer Gene Census) (17) (A), negative regulators of cell proliferation (STOP
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distributions in gray bars.
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Dataset S1. Node classification and datasets used in this study

Dataset S1

Node classification: Node classification based on network controllability. The table includes node classifications (indispensable, neutral, or dispensable), their
role as a driver node (critical, intermittent, or redundant), in-degree, out-degree, and all other node properties analyzed in this study. Datasets: datasets used in
this study for enrichment analysis. Name, source, reference, number of genes/proteins compiled from the dataset, and overlap with the human-directed PPI
network are listed.

Dataset S2. Enrichment analysis results and dataset overlaps

Dataset S2

Enrichment: results of enrichment analysis corresponding to Figs. 1E and 2 A–D. The table includes the number of overlapping genes, random mean, random
SD, z score, and P value for indispensable, neutral, and dispensable nodes. Enrichment-controlled: results of degree- and literature-controlled enrichment
analysis, corresponding to Figs. 1E and 2 A–D. The table is similar to Enrichment but uses degree- and literature-controlled random sets. Dataset Overlap:
indispensable nodes in RTK signaling pathways and the nodes’ overlap with cancer mutations, OMIM disease, virus targets, and drug targets (corresponding to
Fig. S4A). Indispensable Targets: indispensable nodes targeted by all three inputs of cancer mutations, virus targets, and drug targets (corresponds to Fig. S4B).

Dataset S3. Results from the analysis of edge-filtered network and subtype of indispensable nodes

Dataset S3

Edge filtering: results from the analysis of edge-filtered network. Edge rewiring: results from the analysis of rewired and direction-flipped networks.
Subtypes: list of indispensable nodes with subtype classification (type-I and type-II). The table incudes Entrez gene ID; gene symbol; subtype annotation;
results from edge-filtered, rewired, and direction-flipped networks; and overlap with the regulators of cell proliferation.

Dataset S4. Perturbed indispensable nodes in cancer genomic data

Dataset S4

TCGA dataset: the gene expression and CNAs from cancer genomic studies. Gene expression data (level 3 expression calls for genes, per sample) from TCGA
and copy number alteration from cBioPortal. The overlapping samples refer to patient samples with both level 3 gene expression and CNA data available. Type-
II nodes: most frequently amplified or deleted (top 1%) type-II indispensable nodes in nine different cancer types (corresponds to Fig. 4E). Enrichment:
enrichment analysis of Cancer Gene Census, type-I and type-II indispensable nodes in human cancer.
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