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Abstract—Fundamental properties such as learning and con-
sensus have been studied both in the adaptive control and
network control literature. The use of an error feedback is
essential for the realization of both properties. In adaptive
control, error feedback is used to update adaptive parameters
in an effort to accomplish learning and tracking. In network
control, error feedback is used to achieve consensus. The two
types of error feedback are seldom studied in concert without
a pinning trajectory. This paper explores the implications of
concomitantly achieving consensus and learning in adaptive and
networked systems. Conditions under which synchronous inputs
can enhance adaptation and learning are analyzed. The tradeoff
between synchronization and learning is explored both in the
context of two interacting dynamical systems and a network of
dynamical systems interacting over a graph.

I. INTRODUCTION

Error feedback between dynamical systems, often referred
to as agents, is the central dogma studied in synchronization,
flocking, and consensus [9, 12, 22, 27, 32, 38–40, 43, 46–48].
Error feedback is also the central theme in adaptive control
when it comes to updating the time-varying parameters
[2,20,34,44]. In this work we wish to illustrate how synchro-
nization impacts learning in adaptive control. Towards that
end we will not introduce a reference model or a pinning
node (trajectory). This allows us to directly illustrate the
impact of synchronization on learning. Let us now give
some motivation for why this is an important trade-off to
understand.

Adaptive systems inherently have the undesired trade-off
that higher learning rates, while resulting in better reference
model tracking, generate high frequency oscillations in the
adaptive parameter, which then propagate through to the
control input. So as to address this a class of Closed-

loop Reference Model (CRM) adaptive controllers have been
recently studied where by the model following error is
fed back into the reference model, see [28] and [15, and
references within]. In CRM adaptive controllers the error
fed back in the reference model acts to guide the reference
model toward the plant, alleviating some of the burden of
adaptation, which in turn leads to smoother transients. Under
this paradigm the reference model meets the plant “half-way”
and the reference model is more gentle in its demands. It was
found that while this method can be used to improve the
transient performance their is still a trade off to be made.
If the gain used to feedback the error into the reference
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model1 was too large in comparison to the learning gain2

then undesirable phenomenon such as peaking can occur
[14]. The fundamental trade off can be expressed as follows,
when the error which is fed back into the reference model
(consensus protocol) is dominating, then it is not possible
for learning to occur. That is, the adaptive controller needs
the errors to be present in the system to learn. Introducing
a consensus protocol, while improving the transients, can
retard the learning [24]. We note that similar phenomenon
can occur when consensus and adaptation are studied in
a network context. We now give a brief literature review
of related works in the area of networks, adaptation, and
consensus.

Decentralized Adaptive Control (DAC) was first studied
in the 80’s [13, 21, 23, 45]. In the DAC setting each node
has its own reference model and adaptation is carried out
in the presence of unknown neighbors. No notion of syn-
chronization is addressed in this body of work. Some of
the first work to analyze Distributed Adaptive Control with

Synchronization (DACS) can be found in [4, 54]. In the
DACS paradigm adaptation is incorporated so as to overcome
uncertainty in the local dynamics while a linear non-adaptive
synchronization input is given to each agent. In the specific
DACS strategies just referenced it is worth noting that a
pinning trajectory is used as a reference.

Moving the adaptation from the local controller to the
synchronization input Distributed Adaptive Synchronization
(DAS) algorithms have been proposed [6, 29, 55–58]. In
the DAS structure a weighted laplacian is used in the
synchronization protocol where the weights in the laplacian
are updated adaptively. In [5] DAS and DACS are combined,
resulting in Distributed Adaptive Control with Adaptive

Synchronization (DACAS). Note that in DACAS a pinning
strategy is deployed as well. For a recent review of adaptive
pinning control see [49]. We note that a related area of re-
search where parameter estimates amongst agents are shared
so as to learn has also recently been explored [17, 37, 41].
Our work is most closely related to DACS, however we do
not have a pinning trajectory in the construction of the error
signals. The trade off between synchronization and learning
is amplified when a pinning trajectory is not present.

The contribution of this work is thus an illustration of the
trade off between learning through a technical exposition of

1The gain that multiplies the error before it is fed back into the reference
model is like an observer gain and in the context of CRM is denoted as ℓ
or L [15].

2Usually in the context of adaptive control this term is γ or Γ and controls
the rate of adaptation [15].
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distributed adaptive control under different scenarios: with
a consensus protocol, without a consensus protocol, and
with a de-synchronous protocol, all without pinning. The
contribution is more than merely a superficial discussion as
the stability analysis is different from those given in the DAS,
DACS, and DACAS literature. Instead of analyzing stability
with a Lyapunov function we instead analyze the adaptive
gains directly and prove stability with a monotonicity argu-
ment, motivated by [36].

This paper is organized as follows. In section II two sys-
tems stabilizing each other through adaptation are studied, as
in [36], but with the added component of synchronous error
feedback. Section III discusses synchronization and learning
over a network. Section IV closes with final comments and
a disscusion regarding this work in the context of some
recent work by Jadbabaie and co-authors in the area of social
learning [33, 42]. Social learning was indeed the motivation
put forward by Narendra and Harshangi in [36].

II. SYNCHRONIZATION HURTS LEARNING

In this section we wish to illustrate how the use of
synchronous error feedback hurts learning in adaptive sys-
tems. We begin with a variation on a recent example from
[36] where two unstable dynamical systems stabilize each
other through adaptation. The example begins with the two
dynamical states x1 : R≥0 → R and x2 : R≥0 → R

Σ1 : ẋ1(t) = a1(t)x1(t) + u1(t),

Σ2 : ẋ2(t) = a2(t)x2(t) + u2(t),
(1)

where the parameters a1 : R≥0 → R and a2 : R≥0 → R are
adjusted adaptively according to

ȧ1(t) = −x1(t)e(t), a1(0) > 0,

ȧ2(t) = x2(t)e(t), a2(0) > 0,
(2)

with e = x1−x2. Before discussing the stability properties of
the above proposed system consider the following simulation
scenarios:

1. No input, u1 = u2 = 0 [36, §II.B].
2. Synchronizing input u1 = −e, u2 = e.
3. Desynchronizing input u1 = e, u2 = −e.

Simulation results for the above three scenarios are shown
in Figures 1-3 respectively. For each of the three scenarios
a1(0) ̸= a2(0). Figure 1 illustrates the two unstable systems
stabilizing each other through adaptation without any other
external inputs into the dynamics, just as in [36, §II.B]. When
synchronous inputs are used the systems Σ1 and Σ2 are
unstable with x1 and x2 growing without bound while a1 and
a2 converge to the same positive constant, see Figure 2. Thus
we begin to see how synchronization can degrade learning
in an adaptive system. When a desynchronizing input is used
as in Figure 3 the transients in both the state and adaptive
parameters is smoother as compared to either Scenario 1 or
2.

This result seems counterintuitive because synchronization
is often thought to improve transients. As eluded to ear-
lier, in CRM adaptive control, with an appropriately tuned
learning rate adaptive systems can be shown to have smooth

transients. In contrast to Σ1 and Σ2, in CRM adaptive
control one of the systems is a-priori stable, the reference

model. When both dynamic systems are initially unstable, as
in this section, it is imperative that the adaptation occurs
quickly, and therefore synchronization, by slowing down
the adaptation, has a destabilizing effect on Σ1 and Σ2.
More details on this slowing of convergence because of
synchronization can be found in [24–26]. A short discussion
on the stability analysis of these scenarios now follows.

A. Discussion on Stability

For Scenario 1, so long as a1(0) ̸= a2(0) it follows that e
asymptotically converges to zero and limt→∞ a1(t) < 0 and
limt→∞ a2(t) < 0 [36, §II.B]. Note that a1 and a2 need not
have the same limit. It was also shown in [36] that as the
difference between the initial conditions a1(0) and a2(0) is
reduced the frequency of the oscillations in the trajectories
of a1 and a2 increases.

We now give a brief analysis of the stability properties
of Scenario 2. Consider the following Lyapunov candi-
date V (e, a1, a2) = e2 + ã21 + ã22 where ã2 = a1 − a∗ and
ã2 = a2 − a∗ for a constant a∗ ∈ R. The error between the
plant dynamics in (1) with the input as in Scenario 2 can be
written as ė = −2e+ a∗e+ ã1x1 − ã2x2. Differentiating V
along the error dynamics in the previous sentence and the
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Fig. 1. Self stabilizing systems Scenario 1: u1 = u2 = 0.
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Fig. 2. Self stabilizing systems Scenario 2: u1 = −e, u2 = e.
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update law in (2) we have that V̇ = (−4 + 2a∗)e2. Thus for
Scenario 2 it is possible that e ∈ L2 ∩ L∞ while a∗ > 0.
Furthermore, if limt→∞ a1(t) = limt→∞ a2(t) then it fol-
lows that limt→∞ ė(t) is bounded and thus with Barbalăt
Lemma [3] it follows that e(t) can converge to zero while
the dynamics Σ1 and Σ2 can be unstable.

A formal treatment is now given for the stability analysis
of Scenario 3.

Theorem 1. With the initial conditions of the adaptive

parameters such that a1(0) ̸= a2(0), and with the inputs

u1, u2 chosen as in Scenario 3, the dynamics in (1) and (2)
are uniformly stable and e(t) asymptotically converges to

zero.

Proof: First note that

a1(t) + a2(t) = −

∫ t

0
e2(τ) dτ + a1(0) + a2(0) (3)

is a non-increasing function. Therefore, a1(t) + a2(t) de-
creases until e(t) remains zero. Thus it is only necessary
to study the above dynamics under the assumption e = 0.
First consider the case that a1 = a2 = α. Under these
conditions it follows that ė = (2 + α)e, which is unstable
for α > −2, and therefore e(t) will remain non-zero
until α = 2. By monotonicity in the expression in (3) it
follows that if limt→∞ a1 = limt→∞ a2 it must be such that
limt→∞ a1 = limt→∞ a2 ≤ −2.

If a1 ̸= a2 and e = 0, then it follows that

ẋ1 = a1x1

ẋ2 = a2x2.
(4)

If a1 and a2 are positive, then e can not remain zero and thus
by monotonicity in (3) the expression a1 + a2 will decrease
until either a1 or a2 is negative. Without loss of generality
assume that a1 is negative and a2 is positive. Thus for the
dynamics in (4) x1 is stable while x2 is unstable and thus
e can not remain zero. Therefore it follows that a1 + a2
decreases until both a1 and a2 are negative. The proof is
complete, but it is worth mentioning that with the Lyapunov
function V (e, a1, a2) = e2 + ã21 + ã22 whose time derivative
is V̇ = (4 + 2a∗)e2, it follows that this method, when
combined with a persistence of excitation condition, will
give the same upperbound on limt→∞ a1, limt→∞ a2 as just
previously mentioned, limt→∞ a1 = limt→∞ a2 ≤ −2. Thus
e ∈ L2 ∩ L∞, and x1, x2, ã1, ã2 ∈ L∞ and thus ė ∈ L∞.
Thus e(t) converges to zero.

Remark 1. As previously mentioned in [36, §IV.D] the anal-
ysis of multidimensional adaptively stabilizing dynamics in
companion form is rather tricky. It is not clear how to choose
the SPR direction for updating the adaptive parameters. The
use of synchronous or desynchronous inputs may be useful
in overcoming this hurdle.

III. SYNCHRONIZATION AND LEARNING OVER

NETWORKS

The previous two sections have illustrated that the trade
offs between synchronization and adaptation are non-trivial

and can even lead to initially counter-intuitive results. The
purpose of this section is to study these two concepts in a
multi-agent context. Before that can be done, we first review
necessary tools and nomenclature from synchronization of
linear systems [40]. Adaptive stabilization over networks
is then addressed. Finally the two ideas are combined and
discussed as a hierarchical architecture.

A. Synchronization Over Networks: a Review

We begin with n scalar pure integrator dynamical agents,

Σi : ẋi(t) = ui(t). (5)

The ui are to be defined shortly. First we must define
the graph over which the agents can communicate. Let G
denote a directed graph consisting of n vertices with edges
going between the vertices if and only if communication
can travel between the agents at the vertices. Formally
the digraph is defined by the double G = (V , E) where
V = {v1, v2, . . . , vn} is the vertex set and the directed edges
are defined by the ordered pairs (vi, vj) ∈ E ⊂ V × V. An
element (vi, vj) ∈ E if and only if there is a directed edge
from vertex vi to vertex vj . A useful algebraic component
when discussing graphs is the adjacency matrix A(G), whose
components are defined as follows [A]ij = 1 if (vj , vi) ∈ E
and [A]ij = 0, otherwise. In this work all graphs are assumed
to be directed graphs and thus the term graph can be used
without ambiguity and the word digraph is only used for
emphasis.

A common synchronizing input studied in the literature is
the following

ui = −
∑

j∈N (i)

(xi − xj) (6)

where N (i) denotes the neighbors of agent i with in-links
pointing toward i. Letting x = [x1, x2, . . . , xn]T denote
the state vector the dynamics in (5) with the controller in (6)
can be compactly represented by the equation

Σ : ẋ = −Lx (7)

where
L(G) ! D(G) −A(G) (8)

is the in-degree laplacian of G, and D(G) a diagonal matrix
with each [D]ii equal to the in-degree of node i.

Before continuing a brief discussion regarding the spectral
properties of graph laplacians is in order. A quick notational
comment, throughout this section 1 ! [1, 1, . . . , 1]T

and similarly 0 ! [0, 0, . . . , 0]T. In the case that G is
a connected (i.e. no isolated nodes) undirected graph the
corresponding laplacian L is symmetric and the smallest
eigenvalue is zero with algebraic multiplicity one. This
implies that λ1(L) = 0 < λ2(L) ≤ λ3(L) ≤ · · · ≤ λn(L).
A similar result holds for directed graphs that are strongly

connected (there is a walk between any two nodes following
the edges in the directed graph). If G is strongly connected
then L is rank n−1. By construction L1 = 0. Given that the
zero eigenvalue has algebraic multiplicity one, there can be
only one right eigenvector associated with that eigenvalue.



Thus, 1 is the right eigenvector for the zero eigenvalue.
Furthermore, all the other n − 1 eigenvalues of L for a
directed strongly connected graph have positive real parts
[40, Theorem 1 and 2]. When each node of a digraph has the
same in-degree and out-degree, then the digraph is denoted as
balanced. Balanced digraphs satisfy the following property.

Lemma 1 ([40, Theorem 7]). If G is a balanced strongly

connected digraph then the symmetric component of the

laplacian is possitive semi-definite, i.e. L+LT ≽ 0 with the
smallest eigenvalue λ1(L+LT) = 0 of algebraic multiplicty

one.

We are now ready to present a classic result regarding
consensus of linear pure integrator dynamics.

Theorem 2 ([40, Corollary 1 and Theorem 4]). For the

dynamics in (7) with G strongly connected it follows that

limt→∞ x(t) = ζ1, for some finite ζ ∈ R. If G is also

balanced then ζ = 1
n

∑n
i=1 xi(0), i.e. average consensus is

reached.

B. Adaptive Stabilization over Networks

For this problem consider the following dynamics

Σi : ẋi(t) = aixi(t) + θi(t)xi(t) (9)

with the update law

θ̇i = −xi

∑
j∈N (i)

(xi − xj). (10)

Letting θ = [θ1, θ2, . . . , θn]T denote the parameter vector
and A ! diag([a1, a2, . . . , an]T), the dynamics in (9) and
update law in (10) can be compactly represented by the two
equations

Σ : ẋ = Ax+ diag(θ)x (11)

θ̇ = −x ◦ Lx (12)

Lemma 2. For the dynamics in (11) and (12) with G a
balanced strongly connected graph, and all the ai + θi(0)
not identical, it follows that limt→∞ x(t) = 0.

Proof: From (11) it follows that

n∑
i=1

θi(t) = −

∫ t

0
xTLxdt+

n∑
i=1

θi(0)

= −
1

2

∫ t

0
xT(L+ LT)xdt+

n∑
i=1

θi(0).

From the fact that G is balanced and strongly connected
it follows that κ ! λ2(L + LT)/2 > 0 (Lemma 1). Thus∑

i θi(t) ≤ −κ
∫
xTxdt +

∑
i θi(0) when xi ̸= xj for any

i, j ∈ {1, 2, . . . , n}. Thus
∑

i θi(t) is a non-increasing
monotonic function which will continue to decrease untill
all states are equal and furthermore all ai + θi(t) < 0.

The above theorem relied heavily on the notion that the
graph was balanced. The fundamental reason that balanced
graphs are so important in the larger body of literature sur-
rounding consensus is the fact that the symmetric component

of the laplacian is negative semidefinite. This makes them
readily suitable for the analysis of consensus over switching
topologies. If for example the dynamics in (11) and (12)
were switching between a finite set of k graphs so that
G(t) ∈ {G1, G2, . . . , Gk} and that each Gi is strongly
connected and balanced, then there exists a κ > 0 such that

xT(L(G(t)))x =
1

2
xT(L(t) + LT(t))x

≥ κxTx

when x /∈ span(1). The above discussion allows one to prove
the following theorem regarding switching topologies.

Lemma 3. For the dynamics in (11) and (12) with G a

time varying balanced strongly connected graph switching

between a finite collection of possible graphs, and all the

ai + θi(0) not identical, it follows that limt→∞ x(t) = 0.

The assumption that the underlying graphs are balanced
is rather restrictive. It just so happens that any strongly
connected graph can be balanced through a weighting of the
links however [7, 8, 19, 30, 31, 51–53]. While the existence
of a balanced realization for every strongly connected graph
could be used to give a more general solution to the average
consensus problem, one is still left with the burden of finding
that weighted digraph realization. In the following theorem
we will show that for the adaptive stabilization problem the
graph need not be balanced. The result will depend on the
following property for a class of matrices called Metzler
matrices.

Definition 1. An n× n real square matrix is Metzler if all
the off diagonal elements are non-negative.

Theorem 3 ([18, Proposition 3.1]). If A ∈ Rn×n is:

irreducible, semi-stable (all eigenvalues in the closed left-

half plane), Metzler, and [A]ii ≤ 0, then there exists a

diagonal positive matrix D such that ATD +DA ≼ 0.

Theorem 4. For the dynamics in (11) and (12), with G
a strongly connected digraph, and all the ai + θi(0) not

identical it follows that limt→∞ x(t) = 0.

Proof: The graph is strongly connected and thus L
has all its eigenvalues in the closed right-half plane and
is irredducible. Also, −L is Metzler with negative diagonal
elements. Therefore, by applying Theorem 3 there exists a
positive diagonal matrix D such that −LTD − DL ≼ 0.
The weighted sum of the adaptive parameters satisfies the
following

n∑
i=1

[D]iiθi(t) = −

∫ t

0
xTDLxdt+

n∑
i=1

[D]iiθi(0)

= −
1

2

∫ t

0
xT(DL+ LTD)xdt +

n∑
i=1

[D]iiθi(0).

Given that L is strongly connected it follows that L is rank
n− 1 and by definition L1 = 0. From the fact that D is full
rank it follows that the product DL is rank n−1. Therefore,



G GSCC

Fig. 4. Condensation of G to GSCC with the condensed SCCs shown in
red and the root circled in gray.

1T(DL+LTD)1 = 0. Therefore there exists κ ! λ2(DL+
LTD)/2 > 0 and thus

∑
i

[D]iiθi(t) ≤ −κ

∫
xTxdt+

∑
i

[D]iiθi(0)

when x /∈ span(1).

Remark 2. The D in the above theorem can actually be
chosen to be an output balancing of the graph, that is it can
be chosen such that 1TDL = 0T in addition to simply being
such that −LTD −DL ≼ 0 [51–53].

The same technique used in the analysis of strongly
connected but not necessarily balanced digraphs can be used
to analyze tuning laws of the form

θ̇ = −Γx ◦ Lx

where Γ is a diagonal positive matrix of free design pa-
rameters that control the adaptation rate. Stability of the
underlying adaptive system then follows by showing that∑

i[Γ
−1]ii[D]iiθi(t) is a non-increasing function. So far we

have only discussed the stabilizability of strongly connected
graphs. We have shown that if a graph is strongly connected
then after a finite time t1 all the state jacobians become
stable, i.e. ai + θi(t) < 0 for all t ≥ t1. Next we will
exploit this fact to prove stabilizability of a broader class of
networks. Before moving on we need a few more definitions.

A subgraph G1 ⊆ G is maximal with respect to some
property P (G1) so long as there does not exist a proper
supergraph G2 of G1 such that G1 ⊂ G2 ⊆ G and P (G2)
holds as well. Any connected digraph can be partitioned
into disjoint subsets called Strongly Connected Components

(SCCs) where each subset is a maximal strongly connected
subgraph. A graph is called acyclic if for any directed
path from node vi to node vj there is no directed path
from vj to vi. The condensation of an unweighted digraph
G is an unweighted digraph GSCC where each node in
GSCC corresponds to an SCC in G. A node in GSCC that
corresponds to an SCC in G with more than one node is
referred to as a condensed node in GSCC. If there is a directed
edge between two SCCs in G then there is also a directed
edge between the corresponding nodes in GSCC. For any
connected G the corresponding GSCC is a Directed Acyclic

Graph (DAG). If G is a connected DAG then there exists a
root node r ∈ V , not necessarily unique, such that there is
a directed path from r to any v ∈ V . This condensation and
labeling of the corresponding root in the resulting DAG is
shown in Figure 4.

Assumption 1. The graph G is connected and a root can be
chosen in GSCC that is a condensed node. Furthermore, for
the nodes in G associated with the condensed SCC that is
the root, all of the ai + θi(0) are not equal.

Theorem 5. For the dynamics in (11) and (12) with the

adaptation occurring over a graph satisfying Assumption 1

it follows that limt→∞ x(t) = 0

Proof: Let the SCC corresponding to the root in GSCC

be denoted as G′. Given that G′ has no incoming links it
follows that the stability of nodes in G′ can be analyzed
independently from the rest of the graph. By definition G′

is strongly connected. Therefore by applying Theorem 4
it follows that all the state trajectories associated with the
nodes in G′ are stable. Thus all information flowing over
G decimates from a stable SCC. Thus stability of each
SCC then follows from the hierarchical structure of the
DAG determined by GSCC. A more formal treatment of the
stability analysis will be given elsewhere.

The graph in Figure 4 satisfies the conditions of the above
theorem. This is an example of a graph that is not stabilizable

.

While one of the SCCs does contain three nodes, when
condensed in the condensation graph it can not be the root.
Thus far we have studied synchronization and adaptation
over networks separately. In the next section we study them
jointly.

C. Layered Architectures: Adaptation and Synchronization

In this section we will take the point of view that complex
networks should be studied as layered architectures [1, 11].
Thus we will consider the problem of synchronization and
learning in a layered fashion as shown in Figure 5. The top
layer is the graph G which shows all possible communication
directions over the network. The second layer shows how
information will flow in updating the adaptive parameters.
The next layer denotes how state information will flow in
performing error feedback into the state dynamics. We will
refer to the second layer as the adaptation graph and the last
layer as the synchronization graph.

G

Ga

Gs

Fig. 5. Synchronization and learning as a layered architecture.



With this problem posed as a layered architecture the
possible research directions far outnumber our current un-
derstanding of what would be practical to study. Based on
the insight gained in §II we will give simulation results for
the following adaptive desynchronous stabilizing dynamics

Σ : ẋ = Ax + Lsx+ diag(θ)x (13)

θ̇ = −Γx ◦ Lax (14)

where A is a diagonal matrix as defined just after (10), Γ
is a diagonal and positive free design parameter, and Ls

and La are the laplacians of Gs and Ga respectively. The
plus sign in front of the term Lsx in (13) lets us know that
the error feedback is non-synchronizing. The dynamics were
then simulated for the case that Gs = Ga = G where

Ga = Gs = (15)

and for the case when Gs = ∅. The results for these two
scenarios are shown in Figures 6 and 7. For both scenarios

A = diag([1.11, 1.1, 1.2, 1.1, 1.1, 1.1]T),

Γ = 10I6×6, the initial conditions for the states xi(0)
were drawn from a normal distribution with mean zero and
variance one, and the adaptive parameters were initialized
to θ(0) = 0. The trends observed in Figures 6 and 7
are similar to those observed in §II. Desynchronous inputs
improve learning and remove the oscillations that can occur
when adaptive stabilization is performed. The oscillations
that occur in Figure 7 arise from the nodes contained in the
SCC highlighted in red

. (16)

In order to illustrate this point more clearly the trajectories
of the states and adaptive parameters for the red nodes in
(16) are highlighted in red in Figure 8 as well.

The dynamics in (13) and (14) are stable with
limt→∞ x(t) = 0 if Ga satisfies the conditions of Theorem 5
and the linear error feedback in (13) is desynchronous. This
type of layered architecture for synchronization and learning
really is just the tip of the iceberg. Several natural extensions
should and we assume will be studied. For instance we
did not address even indirectly the sharing of parameter
estimates, which is common in multiple model adaptive
control [35] and second level learning adaptive control [17].
What is needed now are some real world examples for this
direction of research.

IV. CONCLUSIONS

One would assume that the addition of a consensus pro-
tocol to an adaptive system would only improve the perfor-
mance of the adaptive system. This however is not the case.
It can be shown that an otherwise stable adaptive protocol
can be destabilized by the very act of synchronous inputs.
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(desynchronous) defined in (15).
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Fig. 7. Trajectories of self stabilizing systems with Ga = G as defined in
(15) and Gs = ∅.
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Fig. 8. Identical to Figure 7 with the states and adaptive parameters
highlighted that pertain to the SCC highlighted in Equation (16).

The results of this paper can be viewed as a few fundamental
properties of synchronization and learning systems, but are
reminded by [10] and [50] that context is always important.

It would be interesting to combine ideas from adaptive
control with the more statistically driven approaches, see for
instance the following paper [42] studying bayesian learning
without recall and the following paper on non-bayesian social
learning [33]. Does synchronization also retard learning in
other settings?
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