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1. INTRODUCTION

Combined direct and indirect adaptive control, denoted as CM-
RAC, were examined in depth a few decades ago (see for ex-
ample, Duarte and Narendra (1989); Slotine and Li (1989)). In
these investigations, in addition to proving that these methods
were stable, they also reported improved transient performance
in simulations. We focus on this class of adaptive systems in this
paper and introduce Closed-loop Reference Models (CRM)s
into the picture. We show that the resulting adaptive systems,
denoted as CMRAC-C, can be shown to have improved tran-
sients. For a class of plants where states are accessible, we show
that CMRAC–C are stable, that together with an observer, de-
noted as CMRAC–CO, enable the feedback of noise-free state
estimates while guaranteeing stability, and most importantly
possess guaranteed transient properties similar to CRM control.
These results are an extension of the results in Gibson et al.
(2012, 2013).

The paper is organized as follows. We begin, in Section II, with
CMRAC–C. In section III, the transient properties of CMRAC–
C are investigated. In Section IV an observer feedback based
CMRAC is introduced. Section V contains our concluding
remarks.

2. STABILITY OF THE CMRAC–C

2.1 The Problem Statement and the CMRAC–C

In this section, we introduce the CRM and necessary definitions
from Gibson et al. (2013). Consider the linear system dynamics
with scalar input

ẋ(t) = Apx(t) + bu(t) (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R is the control

input, Ap ∈ R
n×n is unknown and b ∈ R

n is known. Our
goal is to design the control input such that x(t) follows the

⋆ The work reported here was supported by the Boeing strategic university

initiative.

reference model state xm(t) ∈ R
n defined by the following

dynamics

ẋm(t) = Amxm(t) + br(t)− Lm(x(t) − xm(t)) (2)

where Am ∈ R
n×n is Hurwtitz and r(t) ∈ R is a bounded pos-

sibly time varying reference command. Lm ∈ R
n×n is denoted

as the Luenberger–gain, and is chosen such that

Ām , Am + Lm (3)

is Hurwitz. Equation (2) is referred to as a CRM, and when
L = 0 the classical ORM is recovered.

Assumption 1. A parameter vector θ∗ ∈ R
n exists that satisfies

the matching condition

Am = Ap + bθ∗T . (4)

Assumption 2. A known θ∗max exists such that ‖θ∗‖ ≤ θ∗max.

The control input is chosen in the form

u(t) = θT (t)x(t) + r(t) (5)

where θ(t) ∈ R
n is the adaptive control gain and signifies the

direct component of the controller. We now present the indirect
component. The identifier dynamics are given by

ẋi(t) = Li(xi(t)− x(t)) + (Am − bθ̂T (t))x(t) + bu(t) (6)

where Li is Hurwitz with θ̂(t) signifying the indirect compo-
nent of the controller. The error dynamics are now given by

ėm(t) =(Am + Lm)em + bθ̃T (t)x, em = x− xm

ėi(t) =Liei − bθ̄T (t)x, ei = xi − x
(7)

where θ̃(t) = θ(t)− θ∗ and θ̄(t) = θ̂(t)− θ∗. The update laws
for the two adaptive parameters is then

θ̇ = ProjΓ(θ(t),−xeTmPb, f)− ηIn×nǫθ
˙̂
θ = ProjΓ(θ̂(t), xe

T
i Pib, f) + ηIn×nǫθ

(8)

where ProjΓ is defined in (A.1), Γ = ΓT > 0, η > 0, P and Pi

are the solutions to

ĀT
mP + PĀm =− In×n (9)

LT
i Pi + PiLi =− In×n (10)
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and

f(θ;ϑ, ε) =
‖θ‖2 − ϑ2

2εϑ− ε2
(11)

where ϑ and ε are positive constants chosen as ϑ = θ∗max and
ε > 0.

2.2 Preliminaries

All norms unless otherwise noted are the Euclidean–norm and
the induced Euclidean–norm. The variable t ∈ R+ denotes

time throughout and for a differentiable function x(t), d
dt
x(t)

is equivalent to ẋ(t). Parameters explicit time dependence (t)
is used upon introduction and then omitted thereafter except
for emphasis. The other norms used in this work are the L2 and
truncated L2 norm defined below. Given a vector ν ∈ R

n and

finite p ∈ N>0 ‖ν(t)‖Lp
,

(∫∞

0 ‖ν(s)‖pds
)1/p

. The infinity

norm is then defined as ‖ν(t)‖L
∞

, sup‖ν(t)‖.

Definition 1. Given a Hurwtiz matrix Am ∈ R
n×n

σ , −max
i

(real(λi(Am)))

s , −min
i

(

λi

(

Am +AT
m

)

/2
)

a , ‖Am‖.

(12)

For ease of exposition, throughout the paper, we choose Lm, Li

and Γ in (A.1) as follows:

Lm = −ℓIn×n, Li , −(σ + ℓ)In×n (13)

Γ , γIn×n. (14)

2.3 The Stability Result

Lemma 1. The constants σ and s are strictly positive and satisfy
s ≥ σ > 0.

Lemma 2. With Lm chosen as in (13), Am Hurwitz with con-
stants σ and a as defined in (12), P in (9) satisfies

(i) ‖P‖ ≤
m2

σ + 2ℓ
(15)

(ii) min
i

λi(P ) ≥
1

2(s+ ℓ)
(16)

where m = (1 + 4κ)n−1 and κ ,
a
σ

, and Pi in (10) satisfies

Pi =
1

2(σ + ℓ)
In×n (17)

Proof. See (Gibson et al., 2012, Lemma 2).

Definition 2. Using the design parameters of the convex func-
tion f(θ;ϑ, ε) we introduce the following definitions

θmax , ϑ+ ε and

θ̃max , 2ϑ+ ε.
(18)

Theorem 1. Let Assumptions 1 and 2 hold. Consider the overall
CMRAC–C specified by (1), (2), (5), (6), (7) and (8). For any

initial condition em(0), ei(0) ∈ R
n, and θ(0) and θ̂(0) such

that ‖θ(0)‖ ≤ θmax and ‖θ̂(0)‖ ≤ θmax, it can be shown that

em(t), ei(t), θ(t) and θ̂(t) are uniformly bounded for all t ≥ 0
with em(t) and ei(t) asymptotically converging to zero. The
trajectories in the function

V = eTmPem + eTi Piei + θ̃TΓ−1θ̃ + θ̄TΓ−1θ̄ (19)

converge exponentially to a set E as

V̇ ≤ −α5V + α6 (20)

where

α5 ,
σ + 2l

m2
, α6 ,

2α5

γ
θ̃2max (21)

and

E ,

{

(em, ei, θ̃, θ̄)
∣

∣

∣
‖em‖2 ≤ β4θ̃

2
max, ‖ei‖

2 ≤ β5θ̃
2
max

‖θ̃‖ ≤ θ̃max, ‖θ̄‖ ≤ θ̃max

}

with

β4 ,
4(s+ l)

γ
and β5 ,

4(σ + ℓ)

γ
. (22)

Proof. see Appendix B.

3. TRANSIENT PROPERTIES OF CMRAC-C

In the following subsections we derive the transient properties
of the CMRAC–C adaptive system, similar to what was done in
Gibson et al. (2013). Two different subsections are presented,
the first of which quantifies the Euclidean and the L2–norm of
the tracking error e and the second subsection, where we define
our metric for transient performance in terms of a truncated L2

norm of the rate of control effort.

Let

ρ =
γ

σ + ℓ
. (23)

The results in the following subsections are presented in terms
of the two free design parameters ρ and ℓ, which is just a
reparameterization of γ and ℓ. Then it is assumed that ρ is
chosen independent of ℓ so that the product ΓP is of the same
size while ℓ is being adjusted, where we note that

‖Γ‖‖P‖ ≤ ρm2. (24)

This follows from the bound given in (15).

3.1 Bound on em(t) and ei(t)

Theorem 2. Let Assumptions 1 and 2 hold. Consider the overall
CMRAC–C specified by (1), (2), (5), (6), (7) and (8). For any

initial condition em(0), ei(0) ∈ R
n, and θ(0) and θ̂(0) such

that ‖θ(0)‖ ≤ θmax and ‖θ̂(0)‖ ≤ θmax.

‖em(t)‖2 ≤κ1

(

‖em(0)‖2 + ‖ei(0)‖
2
)

exp (−α5t)

+
κ2

ρ
θ̃2max

(25)

‖ei(t)‖
2 ≤‖em(t)‖2 (26)

‖em(t)‖2L2
≤

1

σ + ℓ

(

m2‖em(0)‖2 + ‖ei(0)‖
2
)

+
1

σ + ℓ

(

1

ρ
‖θ̃(0)‖

2
+

1

ρ
‖θ̄(0)‖

2
) (27)

‖ei(t)‖
2
L2

≤‖em(t)‖2L2
(28)

where κi, i = 1, 2 are independent of ρ and ℓ.

Proof. see Appendix C.

3.2 Bound on u̇(t)

Definition 3. The following definitions will be useful when
analyzing the transients of the CMRAC–C system:

τ3(ℓ) ,
2m2

σ + 2ℓ

τ2 ,
2

σ
δ2(ℓ,N) = exp (aθNτ3(ℓ))− 1

(29)
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where aθ , a+ ‖b‖θ̃max. The time constant τ3 will define the
time constant for which we can upper bound the decay of the
model following error and identification error. Similar to δ1
in Gibson et al. (2013), δ2 allows us to define the time scale
separation condition for CMRAC–C which is defined in the
following Lemma.

Lemma 3. Given an N > 0. An ℓ′ > 0 exists such that

(i) δ2(ℓ
′, N) < δ where 0 < δ ≤ 1.

(ii) τ3(ℓ
′) ≤ τ2.

Remark 1. Just as with the CRM adaptive system Gibson et al.
(2013), N defines the number of time constants for which the
error dynamics will decay, and thus in tern defines the ℓ′ for
which time scale separation holds.

Definition 4. The following three time intervals are used when
exploring the transients of CMRAC–C

T
′′

1 = [0, Nτ3)

T
′′

2 = [Nτ ′3, T
′′

1 )

T
′′

3 = [T ′′

1 ,∞)

(30)

where T ′′
1 = max{Nτ2, T (ǫ,−ℓIn×n)}, with T (ǫ,−ℓIn×n)

existing for any ǫ > 0, this follows from the application of
Barbalat Lemma to the adaptive system defined in Thereom 1
(identical to Corollary 2 in Gibson et al. (2013)).

Theorem 3. Let Assumptions 1–4 hold. Given arbitrary initial
conditions in x(0) ∈ R

n and ‖θ(0)‖ ≤ θmax, if ℓ ≥ ℓ′ the
derivative u̇ satisfies the following two inequalities:

sup
t∈T ′′

i

|u̇(t)| ≤

(

m2γ

σ + 2ℓ
‖b‖G′′

e,iG
′′

x,i + 8ηθ2max

)

G′′

x,i

+ θmax

(

aθG
′′

x,i + r0
)

+ r1

(31)

where

G′′

x,1 ,(1 + δ2)‖e(0)‖+
δ2‖b‖

aθ
r0

G′′

e,1 ,
√
κ1 (‖em(0)‖+ ‖ei(0)‖) +

√

κ2

ρ
θ̃max

G′′

x,2 ,κ3 (‖em(0)‖+ ‖ei(0)‖) + (2 + κ4ℓ)

√

κ2

ρ
θ̃max

+ κ5r0

G′′

e,2 ,
√
κ1 (‖em(0)‖+ ‖ei(0)‖) ǫ1 +

√

κ2

ρ
θ̃max

G′′

x,3 ,κ6 (‖em(0)‖+ ‖ei(0)‖) + ǫ

+ (2 + κ4ℓ)

√

κ2

ρ
θ̃max + κ5r0

G′′

e,3 ,ǫ.

(32)

with ǫ1 = exp(−N)

Proof. The finite time stability result used in (Gibson et al.,
2013, Appendix B) still holds for the MMRAC–C. Therefore
G′′

x,1 in (32) is identical to Gx,1 in (Gibson et al., 2013, (36))
with δ2 replacing δ1. The Lyapunov function in (19) has two
additional terms in ei and θ̄ as compared to the Lyapunov
equation in (Gibson et al., 2013, (9)). Therefore, G′′

e,1 now

includes the initial conditions of the estimation error ei(0).
G′′

x,2 and G′′

e,2 are similarly affected. Barbalat Lemma can be

used for G′′
e,3, and G′′

x,3 follows from the same analysis in
Gibson et al. (2013). The η terms arise from the righthand side
the update law in (8).

The structure of the bounds in (32) is identical to that in (Gibson
et al., 2013, (36)). Therefore this CMRAC–C will have the
same“water–bed” effect as in direct CRM adaptive control case.
This allows us to also conclude that an optimal selection of ρ
and ℓ exists that minimizes the following cost function:

Theorem 4.

(ρopt, ℓopt) = argmin
ρ>0

ℓ≥ℓ′

‖u̇(ρ, ℓ)‖L2,τ (33)

for any 0 < τ < T ′′

1 .

4. CMRAC–CO

When measurement noise is present, it is often useful to use a
state observer for feedback rather than the plant state. However,
the use of such an observer in adaptive systems has proved to
be quite difficult due to the inapplicability of the separation
principle. In this section, we show how the CRM can be used to
avoid this difficult for a class of plants. We denote the resulting
adaptive system as CMRAC–CO.

We assume that the plant and reference model dynamics are
given by Equations (1) and (2) with Am and Lm satisfying
Equations (4) and (3). The control input is now chosen as

u = θT (t)xo + r (34)

and xo is the state of the observer dynamics, given by

ẋo(t) = Lo(xo(t)−x(t))+(Am−bθ̂T (t))xo(t)+bu(t). (35)

Defining em(t) = x(t) − xm(t) and eo(t) = xo − x(t), the
error dynamics are now given by

ėm(t) =(Am + Lm)em + bθ̃T (t)xo + bθ∗eo

ėo(t) =(Am + Lo − bθ∗)eo − bθ̄T (t)xo

(36)

For ease of exposition we choose

Lm = Lo = −ℓIn×n. (37)

The update laws for the adaptive parameters are then defined
with the update law

θ̇ = ProjΓ(θ(t),−xoe
T
mPb, f)− ηIn×nǫθ

˙̂
θ = ProjΓ(θ̂(t), xoe

T
o Pb, f) + ηIn×nǫθ

(38)

with Γ chosen as in (14), η > 0, with P from (9) and ǫθ = θ−θ̂.

Lemma 4. Let

∆(ℓ) ,
4m2‖b‖θ∗max

σ + 2ℓ
. (39)

Then, there exists an ℓ′′ such that 0 < ∆(ℓ′′) < 1.

Theorem 5. Let Assumptions 1 and 2 hold with ℓ chosen such
that ℓ ≥ ℓ′′. Consider the overall CMRAC–CO specified by
(1), (2), (34), (35), (36) and (38). For any initial condition

em(0), eo(0) ∈ R
n, and θ(0) and θ̂(0) such that ‖θ(0)‖ ≤ θmax

and ‖θ̂(0)‖ ≤ θmax, it can be shown that em(t), eo(t), θ(t) and

θ̂(t) are uniformly bounded for all t ≥ 0 and the trajectories in
the function

V = eTmPem + eTo Poeo + θ̃TΓ−1θ̃ + θ̄TΓ−1θ̄ (40)

converge exponentially to a set E as

V̇ ≤ −α7V + α8 (41)

where

α7 ,
(1−∆(ℓ)) (σ + 2ℓ)

m2
,

α8 ,
2 (1−∆(ℓ)) (σ + 2ℓ)

γm2
θ̃2max

(42)
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and

E ,

{

(em, eo, θ̃, θ̄)
∣

∣

∣
‖em‖2 ≤ β6θ̃

2
max, ‖eo‖

2 ≤ β6θ̃
2
max

‖θ̃‖ ≤ θ̃max, ‖θ̄‖ ≤ θ̃max

}

with

β6 ,
4(s+ l)

γ
. (43)

Proof. see Appendix D.

4.1 Robustness of CMRAC–CO to Noise

As mentioned earlier, the benefits of the CMRAC–CO is the
use of the observer state xo rather than the actual plant state x.
Suppose that the actual plant dynamics is modified from (1) as

ẋa(t) = Apxa(t) + bu(t), x(t) = xa(t) + n(t) (44)

where n(t) represents measurement noise. For ease of exposi-
tion, we assume that n(t) is a bounded, deterministic and time
varying.

This leads to a set of modified error equations

ėm(t) =(Am + Lm)em + bθ̃T (t)xo + bθ∗eo + Lmn(t)

ėo(t) =(Am + Lo − bθ∗)eo − bθ̄T (t)xo − Lon(t)
(45)

Theorem 6. Let Assumptions 1 and 2 hold with ℓ chosen such
that ℓ ≥ ℓ′′. Consider the overall CMRAC–CO specified by
(44), (2), (34), (35), (45) and (38). For any initial condition

em(0), eo(0) ∈ R
n, and θ(0) and θ̂(0) such that ‖θ(0)‖ ≤ θmax

and ‖θ̂(0)‖ ≤ θmax, it can be shown that em(t), eo(t), θ(t) and

θ̂(t) are uniformly bounded for all t ≥ 0 and the trajectories in
the function V from (40) converge exponentially to a set E as

V̇ ≤ −α9V + α10 (46)

where

α9 ,
(1−∆(ℓ)) (σ + 2ℓ)

2m2
,

α10 ,
(1−∆(ℓ)) (σ + 2ℓ)

γm2
θ̃2max

+
16

(1−∆(ℓ))2

(

m2

σ + 2ℓ

)2

‖n(t)‖2

(47)

and

E ,

{

(em, eo, θ̃, θ̄)
∣

∣

∣
‖em‖2 ≤ β6θ̃

2
max + β7‖n(t)‖

2,

‖eo‖
2 ≤ β6θ̃

2
max + β7‖n(t)‖

2,

‖θ̃‖ ≤ θ̃max, ‖θ̄‖ ≤ θ̃max

}

with β6 defined in (43) and β7 defined as

β7 ,
64m2s

σ(1 −∆(ℓ))3
(48)

Proof. see Appendix E

4.2 Simulation Study

For this study CMRAC-CO is compared to CMRAC in the
presence of noise. The plant dynamics under study are the
linear short-period dynamics of an F-16 Aircraft derived from
(Stevens and Lewis, 2003, Table 3.4-3, Example 5.5-3 Ap-
pendix A). For this example the states of the plant are the
angle of attack α [rad], and pitch rate q [rad/s]. The control
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CMRAC-CO

Fig. 1. Reference model, state and error for the simulation
study.

input u is the elevator deflection in [deg]. We note that the
angles are mixed between radians and degrees, but that is the
convention used in Stevens and Lewis (2003). The reference
model Jacobian is taken directly from the text and the plant Ja-
cobian is modified so that the open–loop plant is unstable. The
CMRAC controller is defined by (44), (2), (5), (6), (7) and (8)
where Lm = 0, denoting an open–loop reference model. The
CMRAC-CO is defined by (44), (2), (34), (35), (45) and (38).
In the following simulations the aircraft is given a square wave
reference input to the elevators and the pitch rate is initialized
at 0.3 [rad/s]. The noise affects both the pitch rate measure-
ment and angle of attack measurement independently and is
generated from a Gausian distribution with standard deviation
0.1, deterministically sampled using a fixed seed at 100 Hz. All
plant parameters and control parameters are given in Table 1.
We also note that for the linear short period dynamics of an
aircraft the angle of attack mimics the behavior of the pitch
rate, and thus the angle of attack trajectories are not included as
they do not give any further insight into the performance of the
adaptive systems.

The simulation results are contained in Figures 1 and 2. Figure 1
contains the pitch rate reference, the measured pitch rate of the
plant and the pitch rate error, denoted as qm, q, qe respectively.

Table 1. Test case free design parameters

Paramater Value

x(0)T
[

0 0.3
]

Ap

[

−1.0 0.9
0.8 −1.1

]

Am

[

−1.0 0.9
1 0.6

]

b
T

[

0 −0.2
]

θ∗T
[

1 3
]

Lm −10In×n

Li,o −10In×n

η 1
γ 100In×n

11th IFAC ALCOSP
July 3-5, 2013. Caen, France

443



0 10 20 30 40 50 60
−4

−2

0

2

4

 

 

0 10 20 30 40 50 60

−20

0

20

0 10 20 30 40 50 60

0

2

4

 

 

0 10 20 30 40 50 60

0

2

4

u
[d

eg
]

∆
u

∆
t

[d
eg

/s
]

t

θ 2
θ̂ 2

CMRAC

θ∗2

CMRAC-CO

Fig. 2. Control input, discrete rate of control input and the
adaptive parameters for the simulation study.

Figure 2 contains the the control input, the discrete difference
of control input, the second element in θ(t) and the second

element in θ̂(t). The first thing to note is the difference in
the behavior of the reference signal qm for the CMRAC and
CMRAC-CO systems. CMRAC uses an open–loop reference
model, and therefore the trajectory of qm is independent from
the plant and results in a low pass filtered step response. The ref-
erence qm for the CMRAC-CO however, immediately increases
to approximately 0.3 [rad/s], the initial condition of q, and then
asymptotically converges to its open-loop counterpart. This is
the major trade off that one must realize when using CRM
adaptive systems. The reference models are no longer a-priori
known for a given r. The affect of filtering the regressor and
using observer state feedback is readily visible when comparing
the control input and ∆u/∆t for the two controllers. Much less
of the measurement noise is passed onto the control input in the
CMRAC-CO system. The large jumps in ∆u/∆t are from the
steps in the square wave command r. For the design parameters
in this system the CMRAC adaptive parameters are on the verge
of departing to their projection limits. The full departure was
observed when either the noise level was increased or the tuning
gain Γ was increased.

5. CONCLUSIONS

As discussed in the Introduction, combining indirect and direct
adaptive control has always been observed to produce desirable
transient response in adaptive control. While the above analysis
does not directly support the observed transient improvements
with CMRAC, we provide a few speculations below: The free
design parameter Li in the identifier is typically chosen to
have eigenvalues faster than the plant that is being controlled.
Therefore the identification model following error ei converges

rapidly and θ̂(t) will have smooth transients. It can be argued
that the desirable transient properties of the identifier pass on to
the direct component through the tuning law, and in particular
ǫθ.

The CMRAC–C differs from classical CMRAC only due to the
feedback gain Lm in the reference model. Given the contribu-
tions of Gibson et al. (2013) which show that the CRM can
result in satisfactory transients without the indirect component
raises the question if the added complexity of a CMRAC–C
is justified. One answer to this question is in the form of the
CMRAC–CO, where it is shown that one can design stable
observer–based feedback in a CMRAC, allowing noise-free
estimation and control.
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Appendix A. PROJECTION OPERATOR

The Γ–Projection Operator for two vectors θ, y ∈ R
k, a convex

function f(θ) ∈ R and with symmetric positive definite tuning
gain Γ ∈ R

k×k is defined as

ProjΓ(θ, y, f) =















Γy − Γ
∇f(θ)(∇f(θ))T

(∇f(θ))TΓ∇f(θ)
Γyf(θ)

if f(θ) > 0 ∧ yTΓ∇f(θ) > 0

Γy otherwise

(A.1)

where ∇f(θ) =
(

∂f(θ)
∂θ1

· · · ∂f(θ)
∂θk

)T

. The projection operator

was first introduced in Pomet and Praly (1992) with extensions
in Ioannou and Sun (1996) and for a detailed analysis of Γ–
projection see Lavretsky and Gibson (2011).

Appendix B. PROOF OF THEOREM 1

Proof. Taking the time derivative of V in (19) results in

V̇ ≤ −‖em‖2 − ‖ei‖
2 − 2

η

γ
ǫ2θ. (B.1)

Substitution of V in (19) results in

V̇ ≤ −α5V + α6 (B.2)

whereα5 andα6 are defined in (21). Using the bound in Lemma
2–(ii) we have that

eTmPmem ≥
1

2(s+ ℓ)
‖em‖2 and eTi Piei ≥

1

2(σ + ℓ)
‖ei‖

2
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then we can conclude that limt→∞‖em(t)‖2 ≤ β4θ̃
2
max and

limt→∞‖ei(t)‖
2 ≤ β5θ̃

2
max where β4 and β5 are defined in (48).

The boundedness of θ(t) and θ̂(t) follows from the use of a
projection algorithm. The asymptotic limit to zero comes from
the application of Barbalat Lemma.

Appendix C. PROOF OF THEOREM 2

The bounds in (25) and (26) follow from the application of
Gronwall–Bellman to the result in (20) with the lower bound
for min λi(P ) in (16) and the change of parameters from (23)
being used.

Beginning with

‖em(t)‖2L2
≤

∫

∞

0

−V̇ (e(t), θ̃(t)) ≤ V (e(0), θ̃(0))

≤
m2

σ + 2ℓ
‖em(0)‖2 +

1

2(σ + ℓ)
‖ei(0)‖

2

+
2

γ
‖θ̃(0)‖

2
,

(C.1)

using the definitions of ρ from (23), the fact that 1
σ+2ℓ ≤ 1

σ+ℓ

the bound in (27) holds. This same approach can be used to
obtain the bound in (28).

Appendix D. PROOF OF THEOREM 5

Proof. Taking the time derivative of V in (40) results in

V̇ ≤ − (1−∆(ℓ))
(

‖em‖2 + ‖eo‖
2
)

− 2
η

γ
ǫ2θ. (D.1)

where ∆(l) is defined in (39). Substitution of V in (40) results
in

V̇ ≤ −α7V + α8 (D.2)

whereα7 andα8 are defined in (42). Using the bound in Lemma
2–(ii) we have that

eTmPem ≥
1

2(s+ ℓ)
‖em‖2 and eTo Peo ≥

1

2(s+ ℓ)
‖eo‖

2

then we can conclude that limt→∞‖em(t)‖2 ≤ β6θ̃
2
max and

limt→∞‖eo(t)‖
2 ≤ β6θ̃

2
max where β6 is defined in (43). The

boundedness of θ(t) and θ̂(t) follows from the use of a pro-
jection algorithm.

Appendix E. PROOF OF THEOREM 6

Proof. Taking the time derivative of V in (40) results in

V̇ ≤− (1−∆(ℓ))
(

‖em‖2 + ‖eo‖
2
)

− 2
η

γ
ǫ2θ

+ 2‖P‖‖n(t)‖‖em(t)‖ + 2‖P‖‖n(t)‖‖eo(t)‖
. (E.1)

completing the square in ‖em‖‖n‖ and ‖eo‖‖n‖

V̇ ≤−
(1−∆(ℓ))

2

(

‖em‖2 + ‖eo‖
2
)

− 2
η

γ
ǫ2θ

−
(1−∆(ℓ))

2

(

‖em‖ −
4

(1−∆(ℓ))
‖P‖‖n(t)‖

)2

−
(1−∆(ℓ))

2

(

‖eo‖ −
4

(1−∆(ℓ))
‖P‖‖n(t)‖

)2

+
16

(1−∆(ℓ))2
‖P‖2‖n(t)‖2.

(E.2)

Neglecting the negative terms in lines 2 and 3 from the equation
above and substitution of the norm for P we have that

V̇ ≤ −
(1−∆(ℓ))

2

(

‖em‖2 + ‖eo‖
2
)

− 2
η

γ
ǫ2θ

+
16

(1−∆(ℓ))
2 ‖P‖2‖n(t)‖2.

(E.3)

which in terms of V is identical to

V̇ ≤−
(1−∆(ℓ)) (σ + 2ℓ)

2m2
V +

(1−∆(ℓ)) (σ + 2ℓ)

γm2
θ̃2max

+
16

(1−∆(ℓ))
2

(

m2

σ + 2ℓ

)2

‖n(t)‖2.

(E.4)

V̇ ≤ −α9V + α10 (E.5)

where α9 and α10 are defined in (47). Using the bound in
Lemma 2–(ii) we can conclude that

lim
t→∞

‖em(t)‖2 ≤ β6θ̃
2
max + β7‖n(t)‖

2

and
lim
t→∞

‖eo(t)‖
2 ≤ β6θ̃

2
max + β7‖n(t)‖

2

where β7 is defined in (48). The boundedness of θ(t) and θ̂(t)
follows from the use of a projection algorithm.
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