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Graph Notation and Consensus

Graph : G(V, E)

Vertex Set : V = {1, 2, . . . , n}
Edge Set : (i, j) ∈ E ⊂ V × V
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Adjacency Matrix : [A]ij =

{
1 if (j, i) ∈ E
0 otherwise

In-degree Laplacian : L(G) = D(G)−A(G)

In-degree of Node i : [D]ii

Consensus Problem

Σi : ẋi = −
∑

j∈Nin(i)

(xi − xj)

Using Graph Notation

Σ : ẋ = −Lx, x = [x1, x2, . . . , xn]T
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Graph Balancing (Output Balancing)
Strongly Connected (SC) there is a walk between any two vertices in G.

• λ1(L(G)) = 0 > λ2(L(G)) ≥ · · · ≥ λn(L(G))
Balanced in-degree = out-degree.
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• Output Balancing: diagonal matrix D � 0 s.t. weighted graph
G̃(V, E , DA) is balanced.

• Example: D = diag([1, 1, 2, 1]T)

• G SC =⇒ L(G)1 = 0 (. . . holds for any G not just SC G)

• G̃ SC & balanced =⇒ 1TL̃(G̃) = 0T

G strongly connected ∃ balancing D =⇒ 1TDL(G) = 0T
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Incomplete Literature on Balancing and Consensus

[Tsitsiklis, Phd Thesis ’84] [Jadbabaie, Lin & Morse, TAC ’03]
• Focused on discrete time consensus

[Olfati-Saber & Murray TAC ’04]
• Focussed on balanced graphs

3 Papers by Chai Wah Wu all in 2005 (IBM Research NY)
• Focussed on directed graphs that were not balanced
• Synchronization of nonlinear systems
• Used the graph balancing matrix in his proofs

[Makhdoumi & Ozdaglar CDC ’15]
• A graph balancing itself through neighbor consensus (distributed

subgradient method)

There are lots and lots of papers on this topic, however the
existence of graph balancing matrices has not been fully exploited
in the adaptive consensus literature.
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Problem at Hand

Scalar dynamics on a graph G(V, E)

ẋi(t) = ai︸︷︷︸
unknown

xi(t) + ui(t), i ∈ V

Control ui(t) = k̂i(t)︸︷︷︸
adaptive

xi(t) + r̂i(t)︸︷︷︸
adaptive

Scalar reference model

ẋm(t) = amxm(t) + r

Communication Topology

target node
xm

G
Target set T ⊂ V, nodes that
receive information from the
reference model.

Goal: Design adaptive laws so that xi → xm while only communicating over G
• But wait ... don’t we need to add consensus and pinning to the input

ui = k̂i(t)︸︷︷︸
adaptive

xi + r̂i(t)︸︷︷︸
adaptive

−
∑

j∈Nin(i)

(xi − xj)︸ ︷︷ ︸
consensus

−
∑
i∈T

(xi − xm)︸ ︷︷ ︸
pinning

• ... NOT necessarily

6 / 16



Compact Representation of Dynamics

Error ei = xi − xm

ė = Am︸︷︷︸
diag(1am)

e + K̃︸︷︷︸
diag(k̃)

x + r̃

Locally computable errors

local error =
∑

j∈Nin(i)

(xi − xj)︸ ︷︷ ︸
consensus

−
∑
i∈T

(xi − xm)︸ ︷︷ ︸
pinning

eβ = (L+M)︸ ︷︷ ︸
=:B

e

[M]ii =

{
1 if i ∈ T
0 otherwise

NOTE: B is full rank & if D is a balancing of the
graph, then BTD +DB � 0

target node
xm

G
Target set T ⊂ V

Model
ẋi = aixi + ui

ui = k̂i(t)xi + r̂i(t)

ẋm = amxm + r

Global Parameters
x = [x1, x2, . . . , xn]T

k̂ = [k̂1, k̂2, . . . k̂n]T, r̂ . . .

k̃ = k̂− k∗, r̃ . . .

xm = 1xm
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Symmetric Graph G
Error Dynamics & Local Error

ė = Ame + K̃x + r̃

eβ = (L+M)︸ ︷︷ ︸
=:B

e

Target set T + Target matrixM

[M]ii =

{
1 if i ∈ T
0 otherwise

Adaptive Updates

˙̂
k = −diag(x)eβ

˙̂r = −eβ

Theorem

For the error dynamics and update laws above, if G is a strongly
connected symmetric graph and there is at least one target node,
then all signals are uniformly bounded and e(t)→ 0 as t→∞

V (eβ , k̃, r̃) = eTβB−1eβ + k̃Tk̃ + r̃Tr̃

...

V̇ = 2ame
T
βB−1eβ . NOTE: am < 0
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General Graphs

• For a generic graph L is not symmetric =⇒ analysis harder.

• Analysis will now require the input to use consensus & pinning

u = diag(k̂(t))x + r̂(t) + cBe, B = L︸︷︷︸
consensus

+ M︸︷︷︸
pinning

, c < 0

• Most of the literature in this area has focussed on symmetric graph
• Lots of work by Mario di Bernardo is related to this work

A. Das and Frank L. Lewis, Automatica 46 (2010), no. 12,
• An a-priori bound on the regressor is assumed (x is a-priori bounded)
• Does not exploit the fact that D is not only s.t. LTD +DL � 0 but

is also a graph balancing as well
• Error e converges to compact set proportional to ‖k∗‖
• Adaptive laws use D explicitly (thus all agents must know graph

structure or learn D).

• Main contribution: a different way of proving stability
• e(t)→ 0
• Projection is used ([Das and Lewis] use sigma modification)
• We exploit the graph balancing condition
• If time remains I will show the [Das and Lewis] proof.
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General Graphs, Theorem Statement
Slightly easier problem for space reasons

u = diag(k̂(t))x + r︸︷︷︸
known

+cBe

ė = Ame + K̃x + cBe
˙̂
k = proj∞(−diag(x)Be, k̂, kmax)

Theorem

For the error dynamics and update laws above, with G a strongly
connected graph with there being at least one target node, and
with c sufficiently negative, then all signals are uniformly bounded
and e(t)→ 0 as t→∞

V = eTDe D is a graph balancing 1TDL = 0T

V̇ = 2ame
TDe + eTDK̃x + xTK̃De + ceT((LT +M)D +D(L+M))e

V̇ = 2ame
TDe + eTDK̃x + xTK̃De + c eT((LT +M)D +D(L+M))e︸ ︷︷ ︸

NOTE: D is a graph balancing
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General Graphs, Proof continued

V = eTDe D is a graph balancing 1TDL = 0T

V̇ = 2ame
TDe + eTDK̃x + xTK̃De + c eT((LT +M)D +D(L+M))e︸ ︷︷ ︸

NOTE: D is a graph balancing

.

Recall e = x− 1xm
(x− 1xm︸ ︷︷ ︸

e

)TDL = xTDL

c eT((LT +M)D +D(L+M))e︸ ︷︷ ︸
separate into two halves

V̇ =
[
eT xT

] 
2amD + c

2 Q1︸︷︷︸
�0

D K̃︸︷︷︸
bdd by Proj

K̃︸︷︷︸
bdd by Proj

D c
2 (LTD +DL)

[ex
]

• For c sufficiently negative matrix becomes ≺ 0.
• Analyze in two scenarios x /∈ Rn1 \ 0 and x ∈ Rn1 \ 0
• x can never be in Rn1 \ 0 for any finite amount of time.
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Compare and Contrast with [Das and Lewis]

Our Result
˙̂
k = proj∞(−diag(x)Be, k̂, kmax)

V̇ =
[
eT xT

] 
2amD + c

2 Q1︸︷︷︸
�0

D K̃︸︷︷︸
bdd by Proj

K̃︸︷︷︸
bdd by Proj

D c
2 (LTD +DL)

[ex
]

[Das and Lewis]
˙̂
k = −Ddiag(x)Be− σk̂︸︷︷︸

Sigma mod

V̇ =
[
eT k̃T

] [cq11 q12
q21 −σ

] [
e

k̃

]
+
[
q4 −σ

] [e
k̃

]
• Different structure, x replaced by k̃ (given by sigma mod)

• For c negative, signals converges to a compact set
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General Graphs the Complete Problem

Now r is unknown
u = diag(k̂(t))x + r̂(t)︸︷︷︸

adaptive

+ cBe

ė = Ame + K̃x + r̃ + cBe
˙̂
k = proj∞(−diag(x)Be, k̂, kmax)

˙̂r= −Be− Lr̂︸︷︷︸
sharing estimates

Theorem

For the error dynamics and update laws above, with G a strongly
connected graph with there being at least one target node, and
with c sufficiently negative, then all signals are uniformly bounded
and e(t)→ 0 as t→∞

V = eTDe + r̃TDr̃.
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Simulations
Graph is Directed Cycle of 10 nodes

u = diag(k̂(t))x + r̂(t)− 5Be u = diag(k̂(t))x + r̂(t)
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Simulations Cont.

What about desynchronous inputs?

u = diag(k̂(t))x + r̂(t)− 5Be u = diag(k̂(t))x + 5Be + r̂(t)
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Summary

• For symmetric graphs consensus can be achieved with only local
adaptive control

• For the directed case we proved asymptotic convergence e→ 0

• Conjecture: for digraphs consensus can be achieved with only local
adaptive control

• If you are interested in understanding the desynchronous case come
to my second talk in this same session

Funding provided by DARPA and Gerber Lab (Georg Gerber) we are part
of HMS, BWH, & Harvard-MIT HST
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