
LECTURE 4 SUPPLEMENTAL MATERIAL

TRAVIS E. GIBSON

1. Introduction

Due to the complexity of the analysis in class I have included these notes.

2. Direct Adaptive Control of Scalar Plant.

Let us begin with a simple scalar adaptive system,

ẋp(t) = apxp(t) + kpu(t) (1)

where xp(t) ∈ R is the plant state, u(t) ∈ R is the control input, ap ∈ R is an unknown
scalar and only the sign of kp ∈ R is known. For the direct adaptive controller we choose
a reference model as

ẋm(t) = amxm(t) + kmr(t)− ℓ(x(t)− xm(t)). (2)

All of the parameter above are known and scalar, xm(t) is the reference model state, r(t)
is a bounded reference input. We choose am, ℓ < 0 so that the reference model and the
subsequent error dynamics will be stable. Compared to the direct adaptive controller we
presented in Lecture 3, we now need to distinguish between Open-loop Reference Models

(ORM) and Closed-loop Reference Models (CRM):

ORM : ẋom(t) = amxm(t) + kmr(t) (3)

CRM : ẋm(t) = amxm(t) + kmr(t)− ℓ(x(t)− xm(t)). (4)

The control law is chosen as

u(t) =θ(t)xp(t) + k(t)r(t)

=θ̄T (t)φ(t)
(5)

where we have defined

θ̄(t) =

[

θ(t)
k(t)

]

and φ(t) =

[

xp(t)
r(t)

]

.

From this point forward we will suppress the explicit time dependance of parameters accept
for emphasis.

We now define the two errors in the system, the model following error

e(t) = xp(t)− xm(t) (6)
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and the parameter errors
˜̄θ(t) = θ̄(t)− θ̄∗.

The term θ̄∗ ∈ R
2 is a constant matched term which satisfies

θ̄∗ =

[

am−ap
kp
km
kp

]

. (7)

This allows us to rewrite the plant dynamics as

ẋp(t) = amxp(t) + kp(θ(t)xp + k(t)r)− kp(θ
∗xp + k∗r)

= amxp(t) + kp(
˜̄θT (t)φ)

(8)

Using the definition of the error term in (6), the error dynamics are now of the following
form:

ė(t) = (am + ℓ)e+ kp
˜̄θTφ. (9)

The error dynamics above suggest an adaptive update law of the form

˙̄̃
θ = ˙̄θ =

[

θ̇

k̇

]

= −γsgn(kp)eφ =

[

−γsgn(kp)exp
−γsgn(kp)er

]

(10)

where γ > 0 is a free design parameter commonly referred to as the adaptive tuning gain.

Theorem 1. The plant in (1), with the controller defined by (5), the update law in (10)
with the reference model as in (2), has the following properties

(a) e, xp,
˜̄θ, θ̄ are all bounded.

(b) e ∈ L2

(c) limt→∞ e(t) = 0

Proof. Consider the lyapunov candidate function

V (e(t), θ̃(t)) =
1

2
e2 +

1

2γ
|kp|

˜̄θT ˜̄θ

Taking the time derivative of V along the system directions we have

V̇ = (am + ℓ)e2 ≤ 0.

Given that V is positive definite and V̇ is negative semi-definite we have that

V (e(t), θ̃(t) ≤ V (e(0), θ̃(0)) < ∞. (11)

Thus V is bounded and this means in tern that e and ˜̄θ are bounded. For an explicit bound
on e we expand (11) giving us

1

2
e(t)2 +

1

2γ
|kp|

˜̄θT (t)˜̄θ(t) ≤
1

2
e(0)2 +

1

2γ
|kp|

˜̄θT (0)˜̄θ(0)

Given that 1

2γ
|kp|

˜̄θT (t)˜̄θ(t) ≥ 0 the following also holds

1

2
e(t)2 ≤

1

2
e(0)2 +

1

2γ
|kp|

˜̄θT (0)˜̄θ(0) ∀t ≥ 0
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or in compact form

‖e(t)‖2L∞

≤ 2V (0). (12)

Given that r and e are bounded and the fact that am < 0, the reference model is stable.
Therefore, we can conclude xm is bounded and along with the boundedness of e we can
conclude that xp is bounded. Given that θ̄∗ is a constant we can conclude that θ̄ is bounded

from the boundedness of ˜̄θ. This can be compactly stated as e, xp,
˜̄θ, θ̄ ∈ L∞, and we have

proved (a).
In order to prove (b) we note that

−

∫ t

0

V̇ = V (e(0), θ̃(0))− V (e(t), θ̃(t)) ≤ V (e(0), θ̃(0))

Substitution of V̇ and V (e(0), θ̃(0)) we have

|am + ℓ|

∫ t

0

e(t)2 ≤
1

2
e(0)2 +

1

2γ
|kp|

˜̄θT (0)˜̄θ(0) ∀ t ≥ 0

Dividing by |am + ℓ| and taking the limit as t → ∞ we have

‖e‖2L2
≤

1

|am + ℓ|

(

1

2
e(0)2 +

1

2γ
|kp|

˜̄θT (0)˜̄θ(0)

)

< ∞ (13)

or equivalently

‖e‖2L2
≤

V (0)

|am + ℓ|
< ∞ (14)

Thus we have proved (b).
In order to prove (c) we will use Barbalat Lemma as presented in Corollary 4. e is

bounded from (a) and from (b) e is also in L2. Therefore, e ∈ L2 ∩ L∞. We also have
that ė is bounded because all of the terms on the right hand side of (9) are bounded as
given in (a). This allows us to conclude that e is uniformly continuous and thus all of the
conditions of Corollary 4 are satisfied. �

2.1. L-2 norm of k̇. From (9) we can deduce that

‖k̇(t)‖2 = γ2e(t)2r(t)2 (15)

Inetgrating both sides we have
∫ t

0

‖k̇(τ)‖2dτ = γ2
∫ t

0

e(τ)2r(τ)2dτ

≤ γ2
∫ t

0

‖r(τ)‖2L∞

e(τ)2dτ

= γ2‖r(τ)‖2L∞

∫ t

0

e(τ)2dτ

≤ γ2‖r(t)‖2L∞

‖e(t)‖2L2

(16)
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Using the definition of ‖e‖L2
from (14) we have that

‖k̇(t)‖2L2
≤

2γ2‖r(t)‖2L∞

V (0)

|am + ℓ|
(17)

2.2. L-2 norm of θ̇. Before beginning directly with the norm of θ̇ we first find the upper
bound on xm(t).

2.2.1. L-∞ norm of xm. The solution to the ODE in (4) is

xm(t) = exp (amt)xm(0) +

∫ t

0

exp (am(t− τ))r(τ)dτ − ℓ

∫ t

0

exp (am(t− τ))e(τ)dτ (18)

The solution to the ODE in (3) is

xom(t) = exp (amt)xom(0) +

∫ t

0

exp (am(t− τ))r(τ)dτ (19)

Also, noting that regardless of whether we use the ORM or CRM, they will both have the
same initial conditions, we have that xm(0) = xom(0) and thus

‖exp (amt)xm(0) +

∫ t

0

exp (am(t− τ))r(τ)dτ‖ ≤ ‖xom(t)‖L∞
(20)

We note that ‖xom(t)‖L∞
is only a function of the reference model and the initial condition

of the reference model, and is not affected by γ or ℓ. Using (20), (18) can be bounded as

‖xm(t)‖ ≤ ‖xom(t)‖L∞
+ |ℓ|

∫ t

0

exp (am(t− τ))‖e(τ)‖dτ (21)

Using Cauchy Schwartz Ineqality on
∫ t

0
exp (am(t− τ))‖e(τ)‖dτ we have that

∫ t

0

exp (am(t− τ))‖e(τ)‖dτ ≤

√

∫ t

0

(exp (am(t− τ)))2dτ

√

∫ t

0

‖e(τ)‖2dτ (22)

Noting the rule for the powers of exponents, we have
√

∫ t

0

(exp (am(t− τ)))2dτ =

√

∫ t

0

(exp (2am(t− τ)))dτ

=

√

−
1

2am
[1− exp(2am(t))]

≤

√

1

|2am|

(23)
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where the last step arises do to the fact that am < 0. Using the bound on
√

∫ t

0
(exp (am(t− τ)))2dτ

from (23) and the bound for ‖e(t)‖L2
from (14), (22) can be bounded as

∫ t

0

exp (am(t− τ))‖e(τ)‖dτ ≤

√

1

|2am|

√

V (0)

|am + ℓ|
(24)

Using the above inequality in (21) we finally have that

‖xm(t)‖ ≤ ‖xom(t)‖L∞
+ |ℓ|

√

1

|2am|

√

V (0)

|am + ℓ|
(25)

Finally, using the fact that (x+ y)2 ≤ 2x2 + 2y2, and the fact that the above inequality is
true for all time, the above inequality can be expressed in terms of ‖xm(t)‖2L∞

as

‖xm(t)‖2L∞

≤ 2‖xom(t)‖2L∞

+
|ℓ|2

|am|

V (0)

|am + ℓ|
(26)

2.2.2. L-2 norm of θ̇. From the update law in (10) we have that

‖θ̇‖2 = γ2e2x2p.

Using the fact that e = xp − xm we have

‖θ̇‖2 = γ2e2(e+ xm)2.

Using the the same inequality that (x+ y)2 ≤ 2x2 + 2y2 , we have

‖θ̇‖2 ≤ 2γ2e2e2 + 2γ2e2x2m.

Integrating we have
∫ t

0

‖θ̇(τ)‖2dτ ≤ 2γ2
∫ t

0

e(τ)2e(τ)2dτ + 2γ2
∫ t

0

e(τ)2xm(τ)2dτ.

Taking out the supremum norms for one of the e2 terms in the first integral and the
supremum norm of x2m in the second integral we have

∫ t

0

‖θ̇(τ)‖2dτ ≤ 2γ2‖e(t)‖2L∞

∫ t

0

e(τ)2dτ + 2γ2‖xm(τ)‖2L∞

∫ t

0

e(τ)2dτ. (27)

Using the bounds for ‖e(t)‖L∞
in (12), the bounded for ‖e(t)‖L2

in (14) and the bound for
‖xom(t)‖L∞

in (26), the bound in (27) can be simplified as

‖θ̇(t)‖2L2
≤ 4γ2

V (0)‖xom(t)‖2L∞

|am + ℓ|
+ 4γ2

V (0)2

|am + ℓ|
+ 2γ2

|ℓ|2

|am|

V (0)2

|am + ℓ|2
(28)
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3. Discussion

This analysis shows how we can rigorously prove that the use of a CRM can reduce the
amount of chattering in the adaptive parameters k and θ. This is realized through the
feedback gain ℓ in the CRM. For the L-2 norm of k̇ in (17) we see that increasing |ℓ| will

decrease the norm to be as small as one would like. For the L-2 norm of θ̇ we do not have
the same uniform decrease in the norm. While the middle term in (28) can be arbitrarily
decreased the last term has ℓ2 in both the numerator and the denominator. Therefore
the affect of the initial condition of the Lyapunov function V (0) can not be completely
removed. We can however decrease the affect of excitation due to the reference input r(t)
which is realized through the first expression which is proportional to ‖xom(t)‖L∞

. Without
the ℓ we can not decrease the chattering that arises from the excitation from the reference
model input. If you look back at the ppt file with the simulation results, we see that the
step command is the point of excitation in the system.
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Appendix A. barbalat

Lemma 2 (Gronwall-Bellman Lemma 2.1 in [1]). If u, v ≥ 0, c1 is a positive constant and

if

u ≤ c1 +

∫ t

0

uvdτ

then

u ≤ c1 exp

(
∫ t

0

vdτ

)

.

Lemma 3 (Barbalat in pure analysis context, Lemma 2.12 in [1]). If f : R+ → R is uni-

formly continuous for t ≥ 0 and if

lim
t→∞

∫ t

0

|f(τ)| dτ < ∞

thus f(t) ∈ L1, then

lim
t→∞

f(t) = 0.

Corollary 4 (Corollary 2.9 in [1]). If g ∈ L2∩L∞ and ġ is bounded, then limt→∞ g(t) = 0.
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