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GLOBAL STABILIZATION OF PARTIALLY LINEAR COMPOSITE
SYSTEMS*

A. SABERIt, P. V. KOKOTOVIC, AND H. J. SUSSMANN

Abstract. A linear stabilizable, nonlinear asymptotically stable, cascade system is globally stabilizable
by smooth dynamic state feedback if (a) the linear subsystem is right invertible and weakly minimum phase,
and, (b) the only linear variables entering the nonlinear subsystem are the output and the zero dynamics
corresponding to this output. Both of these conditions are coordinate-free and there is freedom of choice
for the linear output variable. This result generalizes several earlier sufficient conditions for stabilizability.
Moreover, the weak minimum-phase condition for the linear subsystem cannot be relaxed unless a growth
restriction is imposed on the nonlinear subsystem.
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1. Introduction. In this paper we propose new sufficient conditions for global
stabilization, by means of state feedback, of compositepartially linear systems in the form

(1.1a) 2 f(x, ), x R ’, R q,
(1.1b) =A+Bu,
where f(x, ) is a smooth (i.e., C) function and A and B are constant matrices.
Throughout the paper it is assumed that:

(HI) The pair (A, B) is stabilizable.

(H2) The equilibrium x 0 of 2 =f(x, 0) is globally asymptotically stable (GAS)
and a smooth Lyapunov function V(x)> O, x 0; V(0)=0, is known such
that V(x) as Ilxl[-,

and

(1.2) V V(x)f(x, 0) < 0 for all x 0.

As a class of nonlinear composite systems [13], [19], [26], the partially linear
systems (1.1) have become prominent because of recent results on partial feedback
linearization, where 2 =f(x, 0) is referred to as the "nonlinear zero dynamics" [2]-[4],
[9], 12]. It would appear that when x 0 is globally asymptotically stable as assumed
by (H2), then the global stabilization of the whole system should not be difficult.
Simple examples show that this is not so. Disturbed by an exponentially decaying
input :(t), the nonlinear system (1.1a) can become unstable, or even worse: its state
may escape to infinity in finite time! One way to circumvent this difficulty is to restrict
f(x, ) by a global linear growth condition and then to apply the classical "total
stability" theorems [7]. A criticism of the global linear growth assumption is that it
does not let nonlinear systems be "nonlinear enough." It excludes simple chemical
kinetics, mechanical phenomena such as Coriolis forces, etc.
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1492 A. SABERI, P. V. KOKOTOVIC AND H. J. SUSSMANN

This paper continues the efforts of several recent studies [5], 10], [25], [22], 11],
which do not make a linear growth assumption. Instead of constraining the nonlinear
nature of f(x, ), our approach characterizes its dependence on : by the expression

(1.3) f(x, )-f(x, 0)= G(x,

Since for a given f(x, ) the choice of G and C is not unique, we seek a smooth n x p
matrix function G(x, ) and a constant p x q matrix C to encompass the largest class
of linear systems

(1.4a) =A+Bu, Rq, uRm,
(1.4b) y= C, y Rp.

Our main result is a stable right invertibility (SRI) condition imposed on (1.4).
This condition encompasses a much broader class of systems than the feedback positive
real (FPR) condition of 11]. When the linear subsystem is not SRI, our second result
imposes a restriction on the nonlinear subsystem, which is less severe than the linear
growth condition.

The meaning of (HI) and (H2) is that each subsystem, taken isolated, is globally
stable (or stabilizable). This setting is suitable for the construction of composite
Lyapunov functions [13], 19], which we use to broaden the class of linear subsystems
(1.4). In 2 we start with a sum-composite Lyapunov function, leading to the class of
stable invertible systems of relative degree one (SI). This class includes the FPR
systems of 11 ], and is broadened by the assumption that the zero dynamics are stable
(’weak minimum phase"), rather than asymptotically stable ("minimum phase"). The
main result of 3, and of the whole paper, removes the relative degree assumption
and requires only that the linear subsystem (1.4) be stable right invertible. The analysis
leading to this result provides new insights into linear system properties, revealed by
the special coordinate basis (s.c.b.) of [17] and [23], which is our key analytical tool.
As shown in 4, the assumptions of the main theorem cannot be weakened unless
some additional restrictions are imposed on f(x, ). So, when the linear subsystem
(1.4) is not SRI and the results of 2 and 3 are not applicable, then 4 introduces
a constraint on the nonlinear subsystem.

2. The stabilization procedure in the case SI. The problem is to find a smooth
feedback control

(2.1) u K+ v(x, ),

which guarantees the GAS property for the equilibrium (x, ) (0, 0) of the feedback
system

(2.2a) : f(x, O)+ G(x, )C,

(2.2b) =(A+BK)+Bv(x,).

This system is obtained by applying the control (2.1) to the system (1.1) and taking
into account the representation (1.2) of f(x, ). The two subsystems clearly displayed
in (2.2) are

(2.3a) =f(x, 0),

(2.3b) (A + BK)& A,:.
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GLOBAL STABILIZATION OF COMPOSITE SYSTEMS 1493

By (H2) a Lyapunov function for the nonlinear subsystem (2.3a) is V(x), while (HI)
assures the existence of K such that Re 1(Ak)< 0. Hence, a Lyapunov function for
the linear subsystem (2.3b) can be chosen as scrP(, where P pr> 0 is such that

(2.4a) PAK +AP -Q <= O,

(2.4b) Q1/, An detectable.

Our approach is to use V(x) and scrPsc to form a composite Lyapunov function W(x,
for the whole system (2.2). The simplest choice is

(2.5) W(x, )= V(x) + Tp.

Its derivative for (2.2) is

(2.6) IiV(x, ,) V V(x)[T(x, O) + G(x, )C] -[rQ-2TpBv(x, )].

This expression is not informative because it contains the interconnection terms which
are sign indefinite. However, if G(x, ), C, P, and v(x, ) can be found such that the
interconnection terms in (2.6) are cancelled, then

(2.7) t/(x, sc) V V(x)f(x, O)- (TQ.

A sufficient condition for being able to achieve the cancellation is

(2.8) BrP=C.

Under this condition, the explicit form of v resulting in (2.7) is

(2.9) v(x, )=-1/217 V(x)G(x, so)] r.
Remark 1. Assuming, without loss of generality, that B and C are of full rank,

(2.8) implies the same number of inputs and outputs p m. This restriction will be
removed in 3.

PROPOSITION 1. Suppose there exists a K such that (2.4) and (2.8) are satisfied.
Then the equilibrium (x, )= (0, O) of the system (2.2) with this K and (2.9) is GAS.

Proof It is clear from (2.7) that 9(x, :) _-< 0 for all (x, ) and 9(x, sc) < 0 if x 0.
Moreover, W(x, )>= 0 for all x and : and equality holds if and only if (x, :)= (0, 0).
This establishes global stability of (x, sc) (0, 0), since W(x, ) oe as I[(x, sc)ll oe. To
establish the GAS of the (x, sc) (0, 0) it suffices to show that, if y: (x(t), :(t)) is
a complete trajectory of (2.2) along which I/’=0, then it follows that x(t)=-O and
(t) 0. To begin with, x(t) must be zero for all t, because "v;C(x, so) < 0 unless x 0.
Moreover, x(t) - 0 implies that v defined by (2.9) vanishes along 3’. Therefore, :(t)
is a solution of A/ and ff’(x, sc) =-(t)Q(t)=O for all t. By the detectability
assumption (2.4b) this implies so(t)----0 and, hence, (x, sc) (0, 0) is GAS.

The above construction is a variant of the cancellation procedure used in the
model reference adaptive control and goes back to [16] and [15].

With Proposition 1 the stabilization problem is reduced to that of the existence
of a K satisfying (2.4) and (2.8). In [11] this issue was addressed indirectly, via a
positive real property of (C, A:, B). Here we will deal directly with the properties of
the linear subsystem (1.4) induced by (2.4) and (2.8), such as invertibility, relative
degree, and zero dynamics. Let us recall their definitions.

Invertibility. The linear system (1.4) is said to be invertible if, for any Cq function
Yref(t), where q is an integer, there exist u(t) and (0) such that y(t)= Yref(t) for all
te [0, ).
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1494 A. SABERI, P. V. KOKOTOVIC AND H. J. SUSSMANN

Relative degree. When (1.4) is "square," p m, it is said to have scalar relative
degree r if its first r- 1 Markov parameters are zero, CAiB 0 for 0, 1,. ., r-2,
and CAr-IB is nonsingular. Equivalently, the system (1.4) has relative degree r if it
is invertible and all of its infinite zeros are of order r.

Zero dynamics. Let V* be the supremal (A, B)-invariant subspace in Ker C, and
let R* be the supremal (A, B)-controllability subspace in Ker C. The solutions (t)
of (1.4) restricted for all [0, c] to V*/R* are called the zero dynamics of (1.4).
When (1.4) is invertible its zero dynamics are equivalently defined as the solutions
(t) satisfying y(t) 0 for all t.

Weak minimumphase. An invertible linear system (1.4) is said to be weak minimum
phase, or, equivalently, stable invertible (SI), if its zero dynamics are stable in the
sense of Lyapunov.

We are now in the position to completely characterize the class of linear systems
(1.4) specified by (2.4) and (2.8).

PROPOSITION 2. The following two statements are equivalent:
(a) For the system (1.4) there exists K satisfying (2.4) and (2.8).
(b) The system (1.4) is stabilizable, stable invertible and, moreover, its leading

Markov parameter CB is symmetric positive definite.
Proof (a)(b). We postmultiply (2.8) by B and verify that CB=BC>O.

Hence, (1.4) is invertible and has relative degree one. To prove the stable invertiblity
(weak minimum phase) property of (1.4) we assume, without loss of generality, that
(1.4) is in the special coordinate basis (s.c.b.)

(2.10a) o Ao:o + Al:l,

(2.10b) Do:o-k-O -at- CBu,

(2.10c) Y 1.
This s.c.b, has evolved from early works [20], [14], and [6] and its general form is
given in [17] and [23]. Noting that CB is nonsingular, the choice of u to achieve =0
for all is obvious from (2.10b). With this choice, :(0) 0 implies y(t) :l(t) -= 0 for
all [0, ), so that the zero dynamics of (2.10) are the solutions of

(2.11) o= aoo.
Hence, the eigenvalues of Ao are the invariant zeros of (2.10). A simple calculation
reveals an important property induced by the cancellation condition (2.8). Under this
condition, P for the system (2.10) is block diagonal, P =diag (Po, P1), where Po and
P are positive-definite matrices of dimensions (q- rn) x (q- rn) and rn m, respec-
tively. Because of this property and using any K (Ko, K) appropriately partitioned,
the Q matrix in (2.4) is of the form

(2.12) Q (PoA+ :).
By assumption (a) this matrix is positive semidefinite, which implies (see [1]) that

(2.13) PoAo+ A Po <= O.

Thus the zero dynamics are stable, which completes the proof of (a) (b).
(b) (a) Since the system is invertible and has relative degree one, we can represent

it by (2.10). Moreover, the stable-invertibility assumption implies that the zero dynamics
system (2.11) is stable. Without loss of generality we now let Ao diag (Ao, Ao2), where

(2.14) Re A (A0) < 0, Re A (Ao2) 0, and Ao2 + A2 O.
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GLOBAL STABILIZATION OF COMPOSITE SYSTEMS 1495

Then the system (2.10) is rewritten as

(2.15a) Ol-- AolOl q-

(2.15b o2 Ao2:o2 + A1_:1,

(2.15c) 1 Dol ScOl + Do2:o2 % D11 + CBu,

(2.15d) Y :1.
The Hurwitz property of Aol allows us to define Pol PI > 0 as the solution of

(2.16) PolAol + A’I Pol -L

To prove the existence of K satisfying (2.4) and (2.8) we make a particular choice of
K (Kol Ko2, K1)."

(2.17) T -1K =-[(CB)-IDol +AllPol, (CB) Do+A, (CB)-ID1 +1/2I].
For this choice of K, the matrix An ,for (2.15) is

(2.18)
Aol 0 All

At( 0 Ao2 A12 /"
-(CB A Pol -( CB A -1/2CB]

The substitution of this A/ and P diag [Pol,/, (CB)-1] into (2.4a) and (2.8) proves
that they satisfy (2.4a) and (2.8) with Q=diag (/, 0, I). To prove that (2.4b) is also
satisfied we use Q1/2= (d o ) and test the observability of the pair (Q1/2, Au,). The
stabilizability of (A, B), assumption (HI), implies the controllability of (Ao2, A12),
and, hence, the matrix [sI-Ao2, A12] is full rank for all complex s. It follows that

[ 0 ](2.19) rank
I_sI AI

q for all complex s.

Thus (Q1/2, AK) is observable and (2.4b) is satisfied.
Applying Propositions 1 and 2 to our stabilization problem we summarize the

results of this section as follows.
THEOREM 1. Suppose thatfor the composite system (1.1), withfrepresented by (1.2),

(HI) and (H2) hold, and the linear subsystem (1.4) is invertible with relative degree one
and weakly minimum phase (SI1). Then there exists a feedback law such that the
equilibrium (x, )= (0, O) of the closed-loop system (2.2) is GAS. A particular form of
this feedback law is (2.1) with v(x, ) given by (2.9) and K given by (2.17).

Proof In the (SI1) systems the matrix CB is nonsingular, while in Proposition 2
it is assumed that CB is symmetric positive definite. However, it follows from (2.10b)
that, with a static precompensator fi CB)-I u, both Propositions 1 and 2 are applicable
to any (SI1) system. Alternatively, the same effect can be achieved with the postcom-
pensator .9 (CB)-ly.

A question raised by the following example is whether the weak minimum-phase
condition required in Theorem 1 is in some sense necessary.

Example 1. For c2 > 0 the linear subsystem in

(2.20a) 2-- --X3- x3y, ’1 2, ’2
(2.20b) y Cl ’- C22

is invertible with relative degree one, and (H1), (H2) are satisfied. For cl _-> 0 the weak
minimum-phase assumption is satisfied and, by Theorem 1, the system (2.20) is globally
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1496 A. SABERI, P. V. KOKOTOVIC AND H. J. SUSSMANN

asymptotically stabilizable. What if the weak minimum-phase condition of Theorem
1 is not satisfied, that is, cl < 0? Then, as shown in [11], for all initial states (Xo, sol0, :2o)
such that

C1(2.21) (1 c:ao)X>
2C2

the system (2.19) fails to be asymptotically controllable to zero and therefore fails to
be smoothly stabilizable.

We will return to this issue in 4 and show that the weak minimum-phase condition
is necessary in the sense that, in general, it cannot be weakened without a further
restriction on f(x, ).

3. The stabilization procedure in the case SRI. The first generalization of Theorem
1 and, at the same time, a step toward our main result, is a global stabilization condition
for the system

(3.1a) f(x, O)+ G(x, o, ), x

(3.1b) o Aoo+AI, o Rq,

(3.1C) 1-" 2, i 6 R", i= 1," ", r,

(3.1d) r- :r, : Rq, q qo+ rm,

(3.1e) r=ur, y=, urRn, yR".

The linear part of this system is in the form to which every invertible relative degree
r (Sir) system (1.4) can be transformed using first the s.c.b, of [17], [23], and [24] and
then a feedback transformation u =(CA-B)-(Fx +u), with an appropriate F. The
zero dynamics of this linear system are defined by (3.1b) with :1 =0, and the weak
minimum phase property (Sir) implies that they are stable. To simplify notation, we
assume that Ao does not have an asymptotically stable part, i.e., we let

(3.2) aor+Ao=0.
There is no loss of generality here because if some of the linear zero dynamics are
asymptotically stable, we simply incorporate them in the nonlinear subsystem (3.1a)
with an obvious redefinition of x, f, and (3. However, our-next assumption, already
satisfied by the special form of (3.1a), is essential.
(H3) In (1.1) the dependence off(x, sc) on sc is such that (1.3) has the form

(3.3) f(x, )-f(x, O)= (3(x, o, ),
that is, G is allowed to depend only on the output y : and the linear zero
dynamics sCo induced by this output.

This assumption is a structural characterization of the linear/nonlinear intercon-
nection (1.3). A choice of y Cx 1 uniquely specifies sCo via its s.c.b. Then (3.3) may
or may not be satisfied even when (1.3) is satisfied. Let us illustrate this point.

Example 2. For the system

(3.4)

the choice of G and C in (3.3) depends on c. If a =>0, then the choice y= ascl + so2
results in a linear stable invertible system with r 1 so that Theorem 1 applies. If c < 0

D
ow

nl
oa

de
d 

05
/0

3/
13

 to
 1

8.
11

1.
11

3.
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



GLOBAL STABILIZATION OF COMPOSITE SYSTEMS 1497

then the same linear system is nonminimum phase and Theorem 1 does not apply. So
we must try the second choice y 1, resulting in a linear system with r 2 and trivially
minimum phase, because it has no finite zeros. However, now the connection structure
condition (H3) is not satisfied because G= (a:l+ se2)x depends not only on :1, but
also on s2. In Example 3 we will discuss an important implication of this violation of
(H3).

Returning to (3.1) let us recall from Theorem 1 and (2.17) that for the case r= 1
a stabilizing control for (3.1) with (3.2) is

(3.5) Ul(X, o 1)=-Ao
With these preliminaries out of the way, the stabilization condition or the case of
relative degree r is obtained using the chain of integrators result [11], [10], [25], [22].

PROPOSITION 3. Suppose that the composite system (1) satisfies (HI) and (H2)
and that the linear subsystem (1.4) is invertible with relative degree r and weakly minimum
phase (Sir). If in addition, the connection-structure condition (H3) is satisfied, then this
composite system is globally asymptotically stabilizable at (x, ) (0, O) by a smooth state

feedback control Furthermore, the expressions for a stabilizing control and for a corre-
sponding Lyapunov function can be derived recursively.

Proof It is sufficient to prove this statement for the system (3.1). Let us start with
the case r= 2. From the first three equations (3.1a)-(3.1c) the result would be known
from Theorem 1, if . were the control variable Ul in (3.5). This suggests that sa be
modified as follows:

(3.6) 2" /’/1( x, 0, :1) q- 2, T--[:0T, 1T, 2T]
The time derivative of Ul along the solutions of (3.1) can be evaluated explicitly as a
function of x and :. We denote it by

du
(3.7)

dt (3.1)
hi(x, ).

Then for r 2 the system (3.1) becomes

(3.8a)

(3.8b)

(3.8c)

(3.8d)

=f(x, 0)+ G(x, o, 1)1,

o AosCo + A11,

1 ’2 "[- /’/1( x, 0, 1),

2----hi(x, o, 1) -f" u2,

For this system we use the Lyapunov function

(3.9) W2(x v(x) / II ll 2.

Its time derivative for (3.8) is

(3.10)

An obvious choice of u that makes I)_-< 0 is

(3.11) u2(x, )-- -1 -2A hl(X ).
The remaining step of the proof that (x, o, :1, :2) (0, 0, 0, 0) is the GAS equilibrium
of (3.8) is, as in Proposition 2, via an observability property which is guaranteed by
the c?ntrollability of (Ao, A1). The return to the original coordinates via (3.6) shows
that :2 - 0 implies 2 ’’-> 0, which completes the proof for r 2.
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1498 A. SABERI, P. V. KOKOTOVIC AND H. J. SUSSMANN

To proceed to the case r 3 we note that, if 3 were the control variable, the result
(3.11) for r= 2 would apply, which in turn suggests the modification

(3.12) 3- u2(x, 0, 1, 2) + 3
where u is expressed using : rather than 2. Adding the term I111 = to w= the new
Lyapunov function W3 is formed. Requiring that if’3 -< 0 we obtain a stabilizing u3(x, -)
for the case r 3. It is clear that this procedure can be continued for any r, which
completes the proof. [3

Once again, an example is used to illustrate the closeness of the sufficient condition
above to being also necessary.

Example 3. Let us reexamine the system (3.4) in Example 2 in the case when
a < 0 and y . In this case r 2, but the connection structure (H3) is violated and
Proposition 3 does not apply. A detailed calculation in [11] shows that in this case
there are initial conditions {x(0), :(0), :2(0)} for which the solutions of (3.4) are either
unbounded as t- oe or escape to infinity in finite time. It follows that for the system
(3.4) the assumption (H3) cannot be relaxed to allow G to depend on both : and :2.

We are now prepared to remove the assumption that the linear system is "square,"
that is, m p, and with a scalar relative degree. In the next step we allow m->_ p and
require that the linear subsystem be right invertible and weakly minimum phase. The
definitions of right invertibility and weak minimum phase are the same as in 2 except
that now we have m->_ p. The problem of converting a right invertible system into an
invertible one with scalar relative degree, which has been examined during the last
two decades (e.g., [27], [21]), involves dynamic decoupling via precompensator and
static feedback. In the following proposition, this conversion is achieved with the
preservation of the weak minimum phase property using the results of [23] and [24].

PROPOSITION 4. Consider the system (1.4) with m >-p. Assume that (1.4) is right
invertible and let H(s) be its transferfunction matrix. Then there exists a precompensator
u C(s) a, R P, such that the system ISI (s) a__ H(s) C (s) has the following properties"

(i) H(s) has relative degree r.
(ii) Invariant zeros ofH(s) invariant zeros ofH(s) t.J A,

where A denotes the set of additional invariant zeros induced by the compensator C(s)
and arbitrarily assignable.

Proof In the proof we construct two precompensators. The task of the first
precompensator u= Cl(s)t is to "square down" H(s)A H(s)Cl(s) subject to the
requirement that the "squared" system satisfies (ii). The task of the second precom-
pensator C2(s) is that the compensatesystem H(s) be of relative degree r, but without
changing _the finite-zero structure of H(s). In other words, we require that invariant
zeros of H(s) equal invariant zeros of H(s).

As the de,sign of Cl(S) was developed in [24], the remaining task is to design
C2(s). Since H(s) is invertible, it can be represented in the s.c.b, of [23] as follows"

(3.12a)

(3.12b)

(3.12c)
(3.12d)
where F1, F2 R are nonsingular matrices and

o A0sCo + A137,

aii+ Bi(i+ Di’) + Li, i= 1, r,
j=0 /

fi=C,,, 37,R ’, r=(,...,f), fi=Fly,

a=(a, .,a),

(3.13) Ai--(0 I(’-l)qi) Bi=( 0 )o o Zq, c,=(Zqi, O).
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GLOBAL STABILIZATION OF: COMPOSITE SYSTEMS 1499

This s.c.b, displays the zero structure of the system"

Invariant zeros of/(s) eigenvalues of Ao,
Zero dynamics of H(s)- the solutions of o-AosCo,
i-order of an infinite zero, iqi- number of infinite zeros of order i.

Now, to design C2(s) that makes H(s) of relative degree r we simply add an appropriate
number of integrators to each input tii. Hence we let

1 (__1/)(3.14) aT=(r, tf) ffi= r_---7Oi, ff=C2(s)tT, C(s)--adiag
S \S -/

and obtain that (s)F2(s) has relative degree r and its invariant zeros are the
invariant zeros of/(s). So the second compensator is C(s)

Applying Propositions 3 and 4 to our stabilization problem we formulate the main
result of this paper as follows.

THEOREM 2. If the assumptions (H1)-(H3) hold, and the linear subsystem (1.4) is
right invertible and weakly minimum phase, then the composite system (1.1) is globally
asymptotically stabilizable at (x, )- (0, 0) by dynamic state feedback.

4. Restrictions on the nonlinear part. An assumption made throughout this paper
is that the full state of the composite system (1.1) is available for feedback. Despite
this assumption, our stabilizability conditions impose restrictions on the input-output
structure of the linear subsystem. In addition to the connection structure and right
invertibility assumptions, the key restriction is that the linear subsystem be weakly
minimum phase. The analysis of Example 1 has given us a hint that this key restriction
is in some sense necessary. Pursuing this hint we now prove that, given a strictly
nonminimum phase linear subsystem (1.4), a nonlinear subsystem can be found such
that the cascade (1.1) of these two subsystems, satisfying (H1)-(H3), is not globally
stabilizable. Our Theorem 3 reveals that the underlying instability mechanism is an
interplay of unstable zero dynamics with rapidly growing nonlinear terms, such as x3.
To limit this interplay, in Proposition 5 we introduce a specific growth condition which
is less restrictive than a global Lipshitz condition.

THEOREM 3. Consider the composite system satisfying assumption (H1)-(H3)"

(4.1a) : f(x, O)/ G(x, o, Y)Y, x g n,
(4.1b) A+ Bu, g q, u g m,
(4.1c) y C, y Rp,

and let the dynamics of (4.1b), (4.1c) associated with its invariant zeros be represented by

(4.2) o AosCo + Aly, o Rq.

When (4.1b), (4.1c) is strictly nonminimum phase, i.e., some of the eigenvalues of Ao
have positive real parts, then there existf(x, O) and G(x, o, Y) satisfying (H2) and (H3)
such that the composite system (4.1) is not globally stabilizable.

Proof Without loss of generality we assume that all the eigenvalues of Ao are
with positive real parts Re A(Ao)> 0. (If only some of them are, then we let Ao
diag (Aol, Ao), with Re A (Ao2)> 0 and modify the proof to apply to the subsystems
with A02 instead of with Ao.) Using the positive-definite Po satisfying

(4.3) PoAo+APo 2I,
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1500 A. SABERI, P. V. KOKOTOVIC AND H. J. SUSSMANN

we evaluate the derivative of Vo scPosCo along the trajectories of (4.2)"

go 211o11 + 2scPoA,y + IlPoA,yll 2- IIPoA,yl] 2

(4.4) => I1:oll 2- [[PoA,yll

>- , Vo- =llayll
where /3= 1/Amax(Po) /2= IIPoll . We are now in the position to pick a nonlinear
subsystem to complete the proof. Consider the nonlinear subsystem defined by

(4.5) f(x, O)= -x3, G(x, o, y)= x3yTAA,
which satisfies (H2), (H3) and is nontrivial because, in view of (H1), the pair (Ao, A1)
is completely controllable and, hence, A1 # 0. Integrating the nonlinear subsystem

(4.6) : --x + 2y]lAyll2x

we obtain

(4.7) [xto) Io ]-2x2(t) ,,-__2;,<+ t- 2[IA,y(s)[I 2 ds +/-
O(t)

Clearly, 0(0)>0 and O(t) must remain nonnegative for all > 0 or else x(t) would
escape to infinity. Thus, using (4.4) a necesary condition for x(t) to remain bounded
is

1
(4.8) 2x2(0)+ + Qo(S) fla Vo(s)) ds 0

and, hence,

(4.9) Vo(t)>=, Vo(s)-
1

ds+ Vo(0)--------2x(0)"

Finally, applying a version of Gronwall’s lemma, (4.9) implies that

1 ( 1 1 ) eta,,"(4.10) Vo(t) ->1+ Vo(O) 2x2(0) 1
Now, from Vo(0)= sr(0)PosC(0) we observe that, for any given x(0), there exists so(0)
such that the factor multiplying et,’ is positive and Vo(t) scor(t)Poo(t) grows exponen-
tially. This completes the proof, because 0(t)>= 0, a necessary condition for bounded-
ness of x(t), implies that o(t) grows unbounded as -+ oo. For sCo(t) to remain bounded,
0(t) must become negative at some finite time at which x(t) escapes to infinity. [3

While Theorem 3 shows the limits to stabilizability of the composite system caused
by the nonminimum phase property of its linear part, the above proof reveals the
underlying instability mechanism. The effort to stabilize the unstable linear zero
dynamics may destabilize the nonlinear subsystem through some rapidly growing
nonlinear connection terms. It is clear, therefore, that the class of nonlinear subsystems
which can be cascaded with linear nonminimum phase subsystem must be restricted
by restricting the growth of the connection terms. It turns out that, under one such
restriction, the feedback loop needs to be closed only around the linear subsystem.
With u K and v(x, sc) 0, the feedback system (2.2) becomes

(4.11a)

(4.11b)

=f(x, O)+ G(x, ) =f(x, ),

=(A+BK)=AK,
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GLOBAL STABILIZATION OF COMPOSITE SYSTEMS 1501

where the decomposition off(x, ) in (4.11a) is always possible due to the smoothness
off(x, c). The assumption (H2) is now strengthened by requiring global exponential
stability (GES), rather than only global asymptotic stability of 2 =f(x, 0). Another
crucial restriction to be imposed is the following:

(H4) There exists a nondecreasing scalar function 7(llll)0, bounded for all
bounded , such that

(4.12) IIa(/, )ll (llll)llxll for all x, sc.
This assumption is much less restrictive than the linear growth condition of 18].

It includes, for example, the product nonlinearities such as G(x, ) -x.
PROPOSITION 5. Ifx =0 is the GES equilibrium of2 f(x, O) and (HI) and (H4)

hold, then the equilibrium (x, :)= (0, 0) of the composite feedback system (4.1) is GES
for every linear feedback u K such that Re A (A:) < 0.

Proof. In view of the GES assumption, the Lyapunov function V(x) defined in
(H2) has the following additional properties:

(4.13) lllxll = V(x) <- =llxll =, IIv V(x)ll--< 311xll,
(4.14) I?-< -aoV,
where Q is the derivative of V for 2 =f(x, 0) and ao, ’, o are some positive constants.
Taking the derivative of V for (4.11b) we obtain

(4.15) f’(x, t) V V(x)f(x, O) + 7 V(x)G(x, ( t))( t),

where any solution. :(t) of (4.11b) satisfies

(4.16) k_->l, a>0.

Taking into account (4.12), (4.13), (4.14), and (4.16) we obtain from (4.15)

(4.17) (z<--aoV+ [[(O)ll e

From this inequality it follows that V(x(t)) is bounded by

(4.18) V(x(t)) <= ko((O)) e-o’V(x(O)),
where ko(sC(0)) exp {(c3k/ oa)(kll :(0) II) (0) II}. This completes the proof of global
exponential stability of (4.11).

5. Conclusions. The two types of structure constraints imposed by the coordinate-
free stability condition of Theorem 2 are, first, the interconnection structure constraint
and, second, the linear stable right invertibility constraint. To examine the first con-
straint, consider a decomposition f(x, )=fo(x, )+ R(x, ) that is more general than
(3.3). A simple extension of the assumption (H2) is to require for =fo(x, ) that the
asymptotic stability property, guaranteed by V(x), be uniform in . Much more
fundamental is the question of whether an assumption about the interconnection
R(x, ), less restrictive than (H3), can be made. Once a linear subsystem output
y= C:= 1 is chosen, the assumption (H3) disallows R(x, ) to depend on linear
variables other than 1 and the zero dynamics o induced by the output 1. For linear
systems with relative degree two and higher, this restriction is a challenging research
topic. If, as our Example 3 suggests, the interconnection condition (H3) is in some
cases necessary, then the challenge is to delineate such cases, and to search for less
restrictive conditions for other classes of systems. In any event, the study of delicate
interconnection properties, initiated in [11] and in this paper, is a promising direction
for future research.
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1502 A. SABERI, P. V. KOKOTOVIC AND H. J. SUSSMANN

The second condition, which restricts the linear subsystem to be right invertible
and weakly minimum phase, cannot be relaxed, without imposing some form of growth
restriction on the nonlinear subsystem, as shown in Theorem 3 and Proposition 5. A
direction in which the right invertibility condition can be generalized is to consider
that both subsystems in the cascade are nonlinear and the first one is right invertible
and globally minimum phase. The results of this paper combined with several nonlinear
invertibility results starting with [8], justify the conjecture that a nonlinear analogue
of Theorem 2 exists, at least for the minimum phase case.

Acknowledgment. Discussions with Alan Laub of the University of California at
Santa Barbara have contributed to the final form of the Proposition 2.
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