The Incenter/Excenter Lemma

Evan Chen
evanchen@mit.edu

March 5, 2015

In this short note, we'll be considering the following very useful lemma.
Lemma. Let $A B C$ be a triangle with incenter I, A-excenter I_{A}, and denote by L the midpoint of arc $B C$. Show that L is the center of a circle through I, I_{A}, B, C.

Proof. This is just angle chasing. Let $A=\angle B A C, B=\angle C B A, C=\angle A C B$, and note that A, I, L are collinear (as L is on the angle bisector). We are going to show that $L B=L I$, the other cases being similar.

First, notice that

$$
\angle L B I=\angle L B C+\angle C B I=\angle L A C+\angle C B I=\angle I A C+\angle C B I=\frac{1}{2} A+\frac{1}{2} B
$$

However,

$$
\angle B I L=\angle B A I+\angle A B I=\frac{1}{2} A+\frac{1}{2} B .
$$

Hence, $\triangle B I L$ is isosceles. So $L B=L I$. The rest of the proof proceeds along these lines.

Now, let's see where this lemma has come up before...

1 Mild Embarrassments

Problem 1 (USAMO 1988). Triangle $A B C$ has incenter I. Consider the triangle whose vertices are the circumcenters of $\triangle I A B, \triangle I B C, \triangle I C A$. Show that its circumcenter coincides with the circumcenter of $\triangle A B C$.

Problem 2 (CGMO 2012). The incircle of a triangle $A B C$ is tangent to sides $A B$ and $A C$ at D and E respectively, and O is the circumcenter of triangle $B C I$. Prove that $\angle O D B=\angle O E C$.

Problem 3 (CHMMC Spring 2012). In triangle $A B C$, the angle bisector of $\angle A$ meets the perpendicular bisector of $\overline{B C}$ at point D. The angle bisector of $\angle B$ meets the perpendicular bisector of $\overline{A C}$ at point E. Let F be the intersection of the perpendicular bisectors of $\overline{B C}$ and $\overline{A C}$. Find $D F$, given that $\angle A D F=5^{\circ}, \angle B E F=10^{\circ}$ and $A C=3$.

Problem 4 (Nine-Point Circle). Let $A B C$ be an acute triangle with orthocenter H. Let D, E, F be the feet of the altitudes from A, B, C to the opposite sides. Show that the midpoint of $\overline{A H}$ lies on the circumcircle of $\triangle D E F$.

2 Some Short-Answer Problems

Problem 5 (HMMT 2011). Let $A B C D$ be a cyclic quadrilateral, and suppose that $B C=C D=2$. Let I be the incenter of triangle $A B D$. If $A I=2$ as well, find the minimum value of the length of diagonal $B D$.

Problem 6 (HMMT 2013). Let triangle $A B C$ satisfy $2 B C=A B+A C$ and have incenter I and circumcircle ω. Let D be the intersection of $A I$ and ω (with A, D distinct). Prove that I is the midpoint of $A D$.

Problem 7 (Online Math Open 2014/F19). In triangle $A B C, A B=3, A C=5$, and $B C=7$. Let E be the reflection of A over $\overline{B C}$, and let line $B E$ meet the circumcircle of $A B C$ again at D. Let I be the incenter of $\triangle A B D$. Compute $\cos \angle A E I$.

Problem 8 (NIMO 2012). Let $A B X C$ be a cyclic quadrilateral such that $\angle X A B=$ $\angle X A C$. Let I be the incenter of triangle $A B C$ and by D the foot of I on $\overline{B C}$. Given $A I=25, I D=7$, and $B C=14$, find $X I$.

3 Intermediate Examples

Problem 9. Let $A B C$ be an acute triangle such that $\angle A=60^{\circ}$. Prove that $I H=I O$, where I, H, O are the incenter, orthocenter, and circumcenter.

Problem 10 (IMO 2006). Let $A B C$ be a triangle with incenter I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Show that $A P \geq A I$, and that equality holds if and only if $P=I$.
Problem 11 (APMO 2007). In triangle $A B C$, we have $A B>A C$ and $\angle A=60^{\circ}$. Let I and H denote the incenter and orthocenter of the triangle. Show that $2 \angle A H I=3 \angle B$.

Problem 12 (ELMO 2013, Evan Chen). Triangle $A B C$ is inscribed in circle ω. A circle with chord $B C$ intersects segments $A B$ and $A C$ again at S and R, respectively. Segments $B R$ and $C S$ meet at L, and rays $L R$ and $L S$ intersect ω at D and E, respectively. The internal angle bisector of $\angle B D E$ meets line $E R$ at K. Prove that if $B E=B R$, then $\angle E L K=\frac{1}{2} \angle B C D$.

Problem 13 (Online Math Open 2012/F27). Let $A B C$ be a triangle with circumcircle ω. Let the bisector of $\angle A B C$ meet segment $A C$ at D and circle ω at $M \neq B$. The circumcircle of $\triangle B D C$ meets line $A B$ at $E \neq B$, and $C E$ meets ω at $P \neq C$. The bisector of $\angle P M C$ meets segment $A C$ at $Q \neq C$. Given that $P Q=M C$, determine the degree measure of $\angle A B C$.

4 Harder Tasks

Problem 14 (Iran 2001). Let $A B C$ be a triangle with incenter I and A-excenter I_{A}. Let M be the midpoint of arc $B C$ not containing A, and let N denote the midpoint of arc $M B A$. Lines $N I$ and $N I_{A}$ intersect the circumcircle of $A B C$ at S and T. Prove that the lines $S T, B C$ and $A I$ are concurrent.

Problem 15 (Online Math Open 2014/F26). Let $A B C$ be a triangle with $A B=26$, $A C=28, B C=30$. Let X, Y, Z be the midpoints of arcs $B C, C A, A B$ (not containing the opposite vertices) respectively on the circumcircle of $A B C$. Let P be the midpoint of arc $B C$ containing point A. Suppose lines $B P$ and $X Z$ meet at M, while lines $C P$ and $X Y$ meet at N. Find the square of the distance from X to $M N$.

Problem 16 (Euler). Let $A B C$ be a triangle with incenter I and circumcenter O. Show that $I O^{2}=R(R-2 r)$, where R and r are the circumradius and inradius of $\triangle A B C$, respectively.

Problem 17 (IMO 2010). Let I be the incenter of a triangle $A B C$ and let Γ be its circumcircle. Let the line $A I$ intersect Γ again at D. Let E be a point on the arc $B D C$ and F a point on the side $B C$ such that

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C
$$

Finally, let G be the midpoint of $\overline{I F}$. Prove that $\overline{D G}$ and $\overline{E I}$ intersect on Γ.

5 Bonus Problems

Problem 18 (Russia 2014). Let $A B C$ be a triangle with $A B>B C$ and circumcircle Ω. Points M, N lie on the sides $A B, B C$ respectively, such that $A M=C N$. Lines $M N$ and $A C$ meet at K. Let P be the incenter of the triangle $A M K$, and let Q be the K-excenter of the triangle $C N K$. If R is midpoint of arc $A B C$ of Ω then prove that $R P=R Q$.

Problem 19. Let $A B C$ be a triangle with circumcircle Ω, and let D be any point on $\overline{B C}$. We draw a curvilinear incircle tangent to $\overline{A D}$ at L, to $\overline{B C}$ at K and internally tangent to Ω. Show that the incenter of triangle $A B C$ lies on $\overline{K L}$.

6 Hints to the Problems

1. Tautological.
2. Who is O ?
3. Point F is the circumcenter of $\triangle A B C$. Who are D and E ?
4. What is the incenter of $\triangle D E F$? What is the D-excenter?
5. Show that $A C=4$.
6. Apply Ptolemy's Theorem.
7. Who is C ? Erase E.
8. Apply Ptolemy's Theorem.
9. Since $\angle B H C=\angle B I C=\angle B O C=120^{\circ}$, points H and O now lie on the magic circle too. So $I H=I O$ is just an equality of certain arcs.
10. Use the angle condition to show that P also lies on the magic circle.
11. The point H lies on the magic circle. So $\angle I H C=\angle 180^{\circ}-\angle I B C$.
12. You need to do quite a bit of angle chasing. Show that R is the incenter of $\triangle C D E$. Who is B ?
13. Both M and P are arc midpoints. (Why?)
14. First show that S, T, I, I_{A} are concyclic, say by $N I \cdot N S=N M^{2}=N I_{A} \cdot N T$.
15. Add the incenter I. Line $M N$ is a tangent.
16. Add in point L, the midpoint of arc $B C$. By Power of a Point, it's equivalent to prove $A I \cdot I L=2 R r$, which can be done with similar triangles.
17. Take a homothety with ratio 2 at I. This sends G to F and D to the A-excenter.
18. Construct arc midpoints on the circumcircles of both $\triangle A M J$ and $\triangle C N K$. Use spiral similarity at R.
19. Let the tangency point to Ω be T, let M be the midpoint of arc $B C$, and let lines $K L$ and $A M$ meet at I. Show that M, K, T are collinear. Show that ALIT is cyclic. Prove that $M I^{2}=M K \cdot M T=M C^{2}=M I^{2}$.
