Bashing Geometry with Complex Numbers

Evan Chen

August 29, 2015

This is a (quick) English translation of the complex numbers note I wrote for Taiwan IMO 2014 training. Incidentally I was also working on an airplane.

1 The Complex Plane

Let \mathbb{C} and \mathbb{R} denote the set of complex and real numbers, respectively.
Each $z \in \mathbb{C}$ can be expressed as

$$
z=a+b i=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

where $a, b, r, \theta \in \mathbb{R}$ and $0 \leq \theta<2 \pi$. We write $|z|=r=\sqrt{a^{2}+b^{2}}$ and $\arg z=\theta$.
More importantly, each z is associated with a conjugate $\bar{z}=a-b i$. It satisfies the properties

$$
\begin{aligned}
\overline{w \pm z} & =\bar{w} \pm \bar{z} \\
\overline{w \cdot z} & =\bar{w} \cdot \bar{z} \\
\overline{w / z} & =\bar{w} / \bar{z} \\
|z|^{2} & =z \cdot \bar{z}
\end{aligned}
$$

Note that $z \in \mathbb{R} \Longleftrightarrow z=\bar{z}$ and $z \in i \mathbb{R} \Longleftrightarrow z+\bar{z}=0$.

Figure 1: Points $z=3+4 i$ and $-1-2 i ; \bar{z}=3-4 i$ is the conjugate.
We represent every point in the plane by a complex number. In particular, we'll use a capital letter (like Z) to denote the point associated to a complex number (like z).

Complex numbers add in the same way as vectors. The multiplication is more interesting: for each $z_{1}, z_{2} \in \mathbb{C}$ we have

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \text { and } \arg z_{1} z_{2}=\arg z_{1}+\arg z_{2} .
$$

This multiplication lets us capture a geometric structure. For example, for any points Z and W we can express rotation of Z at W by 90° as

$$
z \mapsto i(z-w)+w .
$$

Figure 2: $z \mapsto i(z-w)+w$.

2 Elementary Propositions

First, some fundamental formulas:
Proposition 1. Let A, B, C, D be pairwise distinct points. Then $\overline{A B} \perp \overline{C D}$ if and only if $\frac{d-c}{b-a} \in i \mathbb{R}$; i.e.

$$
\frac{d-c}{b-a}+\overline{\left(\frac{d-c}{b-a}\right)}=0
$$

Proof. It's equivalent to $\frac{d-c}{b-a} \in i \mathbb{R} \Longleftrightarrow \arg \left(\frac{d-c}{b-a}\right) \equiv \pm 90^{\circ} \Longleftrightarrow \overline{A B} \perp \overline{C D}$
Proposition 2. Let A, B, C be pairwise distinct points. Then A, B, C are collinear if and only if $\frac{c-a}{c-b} \in \mathbb{R}$; i.e.

$$
\frac{c-a}{c-b}=\overline{\left(\frac{c-a}{c-b}\right)} .
$$

Proof. Similar to the previous one.
Proposition 3. Let A, B, C, D be pairwise distinct points. Then A, B, C, D are concyclic if and only if

$$
\frac{c-a}{c-b}: \frac{d-a}{d-b} \in \mathbb{R}
$$

Proof. It's not hard to see that $\arg \left(\frac{c-a}{c-b}\right)=\angle A C B$ and $\arg \left(\frac{d-a}{d-b}\right)=\angle A D B$. (Here angles are directed).

Figure 3: $\overline{A B} \perp \overline{C D} \Longleftrightarrow \frac{d-c}{b-a} \in i \mathbb{R}$.

Now, let's state a more commonly used formula.
Lemma 4 (Reflection About a Segment). Let W be the reflection of Z across $\overline{A B}$. Then

$$
w=\frac{(a-b) \bar{z}+\bar{a} b-a \bar{b}}{\bar{a}-\bar{b}} .
$$

Of course, it then follows that the foot from Z to $\overline{A B}$ is exactly $\frac{1}{2}(w+z)$.

Figure 4: The reflection of Z across $\overline{A B}$.

Proof. According to Figure 4 we obtain

$$
\frac{w-a}{b-a}=\overline{\left(\frac{z-a}{b-a}\right)}=\frac{\bar{z}-\bar{a}}{\bar{b}-\bar{a}} .
$$

From this we derive $w=\frac{(a-b) \bar{z}+\bar{a} b-a \bar{b}}{\bar{a}-\bar{b}}$.
Here are two more formulas.
Theorem 5 (Complex Shoelace). Let A, B, C be points. Then $\triangle A B C$ has signed area

$$
\frac{i}{4}\left|\begin{array}{ccc}
a & \bar{a} & 1 \\
b & \bar{b} & 1 \\
c & \bar{c} & 1
\end{array}\right| .
$$

In particular, A, B, C are collinear if and only if this determinant vanishes.

Proof. Cartesian coordinates.
Often, Theorem 5 is easier to use than Theorem 2,
Actually, we can even write down the formula for an arbitrary intersection of lines.
Proposition 6. Let A, B, C, D be points. Then lines $A B$ and $C D$ intersect at

$$
\frac{(\bar{a} b-a \bar{b})(c-d)-(a-b)(\bar{c} d-c \bar{d})}{(\bar{a}-\bar{b})(c-d)-(a-b)(\bar{c}-\bar{d})} .
$$

But unless $d=0$ or a, b, c, d are on the unit circle, this formula is often too messy to use.

3 The Unit Circle, and Triangle Centers

On the complex plane, the unit circle is of critical importance. Indeed if $|z|=1$ we have

$$
\bar{z}=\frac{1}{z}
$$

Using the above, we can derive the following lemmas.
Lemma 7. If $|a|=|b|=1$ and $z \in \mathbb{C}$, then the reflection of Z across $\overline{A B}$ is $a+b-a b \bar{z}$, and the foot from Z to $\overline{A B}$ is

$$
\frac{1}{2}(z+a+b-a b \bar{z})
$$

Lemma 8. If A, B, C, D lie on the unit circle then the intersection of $\overline{A B}$ and $\overline{C D}$ is given by

$$
\frac{a b(c+d)-c d(a+b)}{a b-c d} .
$$

These are much easier to work with than the corresponding formulas in general. We can also obtain the triangle centers immediately:
Theorem 9. Let $A B C$ be a triangle center, and assume that the circumcircle of $A B C$ coincides with the unit circle of the complex plane. Then the circumcenter, centroid, and orthocenter of $A B C$ are given by $0, \frac{1}{3}(a+b+c), a+b+c$, respectively.

Observe that the Euler line follows from this.
Proof. The results for the circumcenter and centroid are immediate. Let $h=a+b+c$. By symmetry it suffices to prove $\overline{A H} \perp \overline{B C}$. We may set

$$
z=\frac{h-a}{b-c}=\frac{b+c}{b-c} .
$$

Then

$$
\bar{z}=\overline{\left(\frac{b+c}{b-c}\right)}=\frac{\bar{b}+\bar{c}}{\bar{b}-\bar{c}}=\frac{\frac{1}{b}+\frac{1}{c}}{\frac{1}{b}-\frac{1}{c}}=\frac{c+b}{c-b}=-z
$$

so $z \in i \mathbb{R}$ as desired.
We can actually even get the formula for the incenter.
Theorem 10. Let triangle $A B C$ have incenter I and circumcircle Γ. Lines AI, BI, CI meet Γ again at D, E, F. If Γ is the unit circle of the complex plane then there exists $x, y, z \in \mathbb{C}$ satisfying

$$
a=x^{2}, b=y^{2}, c=z^{2} \text { and } d=-y z, e=-z x, f=-x y .
$$

Note that $|x|=|y|=|z|=1$. Moreover, the incenter I is given by $-(x y+y z+z x)$.
Proof. Show that I is the orthocenter of $\triangle D E F$.

4 Some Other Lemmas

Lemma 11. Let A, B be on the unit circle and select P so that $\overline{P A}, \overline{P B}$ are tangents. Then

$$
p=\frac{2}{\bar{a}+\bar{b}}=\frac{2 a b}{a+b} .
$$

Proof. Let M be the midpoint of $\overline{A B}$ and set $O=0$. One can show $O M \cdot O P=1$ and that O, M, P are collinear; the result follows from this.

Figure 5: Two tangents. $p=\frac{2}{\bar{a}+\bar{b}}$.

Lemma 12. For any x, y, z, the circumcenter of $\triangle X Y Z$ is given by

$$
\left|\begin{array}{lll}
x & x \bar{x} & 1 \\
y & y \bar{y} & 1 \\
z & z \bar{z} & 1
\end{array}\right| \div\left|\begin{array}{ccc}
x & \bar{x} & 1 \\
y & \bar{y} & 1 \\
z & \bar{z} & 1
\end{array}\right| .
$$

This formula is often easier to apply if we shift z to the point 0 first, then shift back afterwards.

5 Examples

Example 13 (MOP 2006). Let H be the orthocenter of triangle $A B C$. Let D, E, F lie on the circumcircle of $A B C$ such that $\overline{A D}\|\overline{B E}\| \overline{C F}$. Let S, T, U respectively denote the reflections of D, E, F across $\overline{B C}, \overline{C A}, \overline{A B}$. Prove that points S, T, U, H are concyclic.

Proof. Let $(A B C)$ be the unit circle and $h=a+b+c$. WLOG, $\overline{A D}, \overline{B E}, \overline{C F}$ are perpendicular to the real axis (rotate appropriately); thus $d=\bar{a}$ and so on. Thus $s=b+c-b c \bar{d}=b+c-a b c$ and so on; we now have

$$
\frac{s-t}{s-u}=\frac{b-a}{c-a} \quad \text { and } \quad \frac{h-t}{h-u}=\frac{b+a b c}{c+a b c} .
$$

Compute

$$
\frac{s-t}{s-u}: \frac{h-t}{h-u}=\frac{(b-a)(c+a b c)}{(c-a)(b+a b c)}=\frac{\left(\frac{1}{b}-\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{a b c}\right)}{\left(\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{b}+\frac{1}{a b c}\right)} \Longrightarrow \frac{s-t}{s-u}: \frac{h-t}{h-u} \in \mathbb{R}
$$

as desired.

Example 14 (Taiwan TST 2014). In $\triangle A B C$ with incenter I, the incircle is tangent to $\overline{C A}, \overline{A B}$ at E, F. The reflections of E, F across I are G, H. Let Q be the intersection of $\overline{G H}$ and $\overline{B C}$, and let M be the midpoint of $\overline{B C}$. Prove that $\overline{I Q}$ and $\overline{I M}$ are perpendicular.

Solution. Let D be the foot from I to $\overline{B C}$, and set $(D E F)$ as the unit circle. (This lets us exploit the results of Section 3.) Thus $|d|=|e|=|f|=1$, and moreover $g=-e$, $h=-f$. Let $x=\bar{d}=\frac{1}{d}$ and define y, z similarly. Then

$$
b=\frac{2}{\bar{d}+\bar{f}}=\frac{2}{x+z} .
$$

Similarly, $c=\frac{2}{x+y}$, so

$$
m=\frac{1}{2}(b+c)=\frac{1}{x+y}+\frac{1}{x+z}=\frac{2 x+y+z}{(x+y)(x+z)}
$$

Next, we have $Q=D D \cap G H$, which implies

$$
q=\frac{d d(g+h)-g h(d+d)}{d^{2}-g h}=\frac{\frac{1}{x^{2}}\left(-\frac{1}{y}-\frac{1}{z}\right)-\frac{1}{y z} \frac{2}{x}}{\frac{1}{x^{2}}-\frac{1}{y z}}=\frac{2 x+y+z}{x^{2}-y z}
$$

so

$$
m / q=\frac{x^{2}-y z}{(x+y)(x+z)}
$$

Now,

$$
\overline{m / q}=\frac{\frac{1}{x^{2}}-\frac{1}{y z}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{y z-x^{2}}{(x+y)(x+z)}=-m / q
$$

thus $m / q \in i \mathbb{R}$, as desired.
Example 15 (USAMO 2012). Let P be a point in the plane of $\triangle A B C$, and γ a line through P. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points where the reflections of lines $P A, P B, P C$ with respect to γ intersect lines $B C, A C, A B$ respectively. Prove that $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.

Solution. Let $p=0$ and set γ as the real line. Then A^{\prime} is the intersection of $b c$ and $p \bar{a}$. So, using Theorem 6 we get

$$
a^{\prime}=\frac{\bar{a}(\bar{b} c-b \bar{c})}{(\bar{b}-\bar{c}) \bar{a}-(b-c) a} .
$$

Note that

$$
\bar{a}^{\prime}=\frac{a(b \bar{c}-\bar{b} c)}{(b-c) a-(\bar{b}-\bar{c}) \bar{a}} .
$$

Thus by Theorem 5, it suffices to prove

$$
0=\left|\begin{array}{ccc}
\frac{\bar{a}(\bar{b} c-b \bar{c})}{(\bar{b}-\bar{c}) \bar{a}-(b-c) a} & \frac{a(b \bar{c}-\bar{b} c)}{(b-c) a-(\bar{b}-\bar{c}) \bar{a}} & 1 \\
\frac{\bar{b}(\bar{c} a-c \bar{a})}{(\bar{c}-\bar{a}) \bar{b}-(c-a) b} & \frac{b(c \bar{a}-\bar{c} a)}{(c-a) b-(\bar{c}-\bar{a}) \bar{b}} & 1 \\
\frac{\bar{c}(\bar{a} b-a \bar{b})}{(\bar{a}-b) \bar{c}-(a-b) c} & \frac{c(a \bar{b}-\bar{a} b)}{(a-b) c-(\bar{a}-b) \bar{c}} & 1
\end{array}\right|
$$

This is equivalent to

$$
0=\left|\begin{array}{ccc}
\bar{a}(\bar{b} c-b \bar{c}) & a(\bar{b} c-b \bar{c}) & (\bar{b}-\bar{c}) \bar{a}-(b-c) a \\
\bar{b}(\bar{c} a-c \bar{a}) & b(\bar{c} a-c \bar{a}) & (\bar{c}-\bar{a}) \bar{b}-(c-a) b \\
\bar{c}(\bar{a} b-a \bar{b}) & c(\bar{a} b-a \bar{b}) & (\bar{a}-\bar{b}) \bar{c}-(a-b) c
\end{array}\right| .
$$

Evaluating the determinant gives

$$
\sum_{\mathrm{cyc}}((\bar{b}-\bar{c}) \bar{a}-(b-c) a) \cdot-\left|\begin{array}{cc}
b & \bar{b} \\
c & \bar{c}
\end{array}\right| \cdot(\bar{c} a-c \bar{a})(\bar{a} b-a \bar{b})
$$

or, noting the determinant is $b \bar{c}-\bar{b} c$ and factoring it out,

$$
(\bar{b} c-c \bar{b})(\bar{c} a-c \bar{a})(\bar{a} b-a \bar{b}) \sum_{\text {cyc }}(a b-a c+\bar{c} \bar{a}-\bar{b} \bar{a})=0 .
$$

Example 16 (Taiwan TST Quiz 2014). Let I and O be the incenter and circumcenter of $A B C$. A line ℓ is drawn parallel to $\overline{B C}$ and tangent to the incircle of $A B C$. Let X, Y be on ℓ so that I, O, X are collinear and $\angle X I Y=90^{\circ}$. Show that A, X, O, Y are concyclic.

Solution. Let X^{\prime} and Y^{\prime} respectively denote the reflections of X and Y across I. Note that X, Y lie on $\overline{B C}$. Also, let P, Q be the intersections of $\overline{I Y}$ with the circumcircle.

Of course, $(A B C)$ is the unit circle. Let j be the complex number corresponding to I (to avoid confusion with $i=\sqrt{-1}$). Thus,

$$
x^{\prime}=\frac{(\bar{b} c-b \bar{c})(j-0)-(\bar{j} 0-j \overline{0})(b-c)}{(\bar{b}-\bar{c})(j-0)-(b-c)(\bar{j}-\overline{0})}=\frac{j \cdot \frac{c^{2}-b^{2}}{b c}}{j \cdot \frac{c-b}{b c}-(b-c) \bar{j}}=\frac{j(b+c)}{j+b c \bar{j}}
$$

We seek y^{\prime} now. Consider the quadratic equation in z given by

$$
\frac{z-j}{j}+\frac{\frac{1}{z}-\bar{j}}{\bar{j}}=0 \Longleftrightarrow z^{2}-2 j z+j / \bar{j}=0
$$

Its zeros in z are p and q, which implies that $p+q=2 j$ and $p q=j / \bar{j}$ (by Vieta!). From this we can compute

$$
y^{\prime}=\frac{p q(b+c)-b c(p+q)}{p q-b c}=\frac{j(b+c)-2 b c j \bar{j}}{j-b c \bar{j}}=\frac{j(b+c)-2 b c j \bar{j}}{j-b c \bar{j}}
$$

which gives

$$
x=2 j-x^{\prime}=\frac{j(2 j-b-c+2 b c \bar{j})}{j+b c \bar{j}} \quad \text { and } \quad y=2 j-y^{\prime}=\frac{j(2 j-b-c)}{j-b c \bar{j}} .
$$

From this we can obtain

$$
\begin{aligned}
y-x & =j \cdot \frac{(2 j-b-c)(j+b c \bar{j})-(2 j-b-c+2 b c \bar{j})(j-b c \bar{j})}{(j-b c \bar{j})(j+b c \bar{j})} \\
& =j \cdot \frac{2 b c \bar{j}(2 j-b-c)-2 b c \bar{j}(j-b c \bar{j})}{(j-b c \bar{j})(j+b c \bar{j})} \\
& =j \cdot \frac{2 b c \bar{j}(j-b-c+b c \bar{j})}{(j-b c \bar{j})(j+b c \bar{j})} \\
X=\frac{y-x}{x} & =\frac{2 b c \bar{j}(j-b-c+b c \bar{j})}{(j-b c \bar{j})(2 j-b-c+2 b c \bar{j})} \\
A=\frac{y-a}{a} & =\frac{j(2 j-b-c-a)+a b c \bar{j}}{a(j-b c \bar{j})}
\end{aligned}
$$

We need to prove $X / A=\overline{X / A}$. Now set $a=x^{2}, b=y^{2}, c=z^{2}, j=-(x y+y z+z x)$, $\bar{j}=-\frac{x+y+z}{x y z}$ (this is a different x, y than the points X and Y.) So, the above rewrites as

$$
\begin{aligned}
X & =\frac{2 \frac{y z}{x}(x+y+z)\left(\frac{y z}{x}(x+y+z)+y^{2}+z^{2}+x y+y z+z x\right)}{\left(-\frac{y z}{x}(x+y+z)+x y+y z+z x\right)\left(y^{2}+z^{2}+2(x y+y z+z x)+2 \frac{y z}{x}(x+y+z)\right)} \\
& =\frac{2 y z(x+y+z)\left(2 x y z+\sum_{\mathrm{sym}} x^{2} y\right)}{(y+z)\left(x^{2}-y z\right)(x(y+z)(2 x+y+z)+2 y z(x+y+z))} \\
& =\frac{2 y z(x+y+z)(x+y)(x+z)}{\left(x^{2}-y z\right)\left(\left(x^{2}+y z\right)(y+z)+(x y+y z+z x)(x+y+z)\right)}
\end{aligned}
$$

and

$$
A=\frac{(x y+y z+z x)(x+y+z)^{2}-x y z(x+y+z)}{x^{2}\left(-(x y+y z+z x)+\frac{y z}{x}(x+y+z)\right)}=\frac{(x+y+z)(x+y)(y+z)(z+x)}{x\left(y z-x^{2}\right)(y+z)}
$$

thus

$$
\begin{aligned}
X / A & =\frac{-2 x y z}{\left(x^{2}+y z\right)(y+z)+(x+y+z)(x y+y z+z x)} \\
& =\frac{-\frac{2}{x y z}}{\left(\frac{1}{x^{2}}+\frac{1}{y z}\right)\left(\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}\right)}=\overline{X / A}
\end{aligned}
$$

6 Practice Problems

1. Let $A B C D$ be cyclic. Let $H_{A}, H_{B}, H_{C}, H_{D}$ denote the orthocenters of $B C D$, $C D A, D A B, A B C$. Show that $\overline{A H_{A}}, \overline{B H_{B}}, \overline{C H_{C}}, \overline{D H_{D}}$ are concurrent.
2. (China TST 2011) Let Γ be the circumcircle of a triangle $A B C$. Assume $\overline{A A^{\prime}}, \overline{B B^{\prime}}$, $\overline{C C^{\prime}}$ are diameters of Γ. Let P be a point inside $A B C$ and let D, E, F be the feet from P to $\overline{B C}, \overline{C A}, \overline{A B}$. Let X be the reflection of A^{\prime} across D; define Y and Z similarly. Prove that $\triangle X Y Z \sim \triangle A B C$.
3. In circumscribed quadrilateral $A B C D$ with incircle ω, Prove that the midpoint of $\overline{A C}$ and the midpoint of $\overline{B D}$ are collinear with the center of ω.
4. (Simson Line) Let $A B C$ be a triangle and P a point on its circumcircle.
(a) Let D, E, F be the feet from P to $\overline{B C}, \overline{C A}, \overline{A B}$. Show that D, E, F are collinear.
(b) Moreover, prove that the line through these points bisects $\overline{P H}$, where H is the orthocenter of $A B C$.
5. (PUMaC Finals) Let γ and I be the incircle and incenter of triangle $A B C$. Let D, E, F be the tangency points of γ to $\overline{B C}, \overline{C A}, \overline{A B}$ and let D^{\prime} be the reflection of D about I. Assume $E F$ intersects the tangents to γ at D and D^{\prime} at points P and Q. Show that $\angle D A D^{\prime}+\angle P I Q=180^{\circ}$.
6. (Schiffler Point) Let triangle $A B C$ have incenter I. Prove that the Euler lines of $\triangle A I B, \triangle B I C, \triangle C I A, \triangle A B C$ are concurrent.
7. (USA TST 2014) Let $A B C D$ be a cyclic quadrilateral and let E, F, G, H be the midpoinst of $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$. Call W, X, Y, Z the orthocenters of $A H E$, $B E F, C F G, D G H$. Prove that $A B C D$ and $W X Y Z$ have the same area.
8. Let O be the circumcenter of $A B C$. A line ℓ through O cuts $\overline{A B}$ and $\overline{A C}$ at points X and Y. Let M and N be the midpoints of $\overline{B Y}, \overline{C X}$. Show that $\angle M O N=\angle B A C$.
9. (APMO 2010) Let $A B C$ be an acute triangle, where $A B>B C$ and $A C>B C$. Denote by O and H the circumcenter and orthocenter. The circumcircle of $A H C$ intersects $A B$ again at M; the circumcircle of $A H B$ intersects $A C$ again at N. Prove that the circumcenter of triangle $M N H$ lies on line $O H$.
10. (Iran 2013) Let $A B C$ be acute, and M the midpoint of minor $\operatorname{arc} \widehat{B C}$. Let N be on the circumcircle of $A B C$ such that $\overline{A N} \perp \overline{B C}$, and let K, L lie on $A B, A C$ so that $\overline{O K}\|\overline{M B}, \overline{O L}\| \overline{M C}$. (Here O is the circumcenter of $A B C$). Prove that $N K=N L$.
11. (MOP 2006) Cyclic quadrilateral $A B C D$ has circumcenter O. Let P be a point in the plane and let $O_{1}, O_{2}, O_{3}, O_{4}$ be the circumcenters of $P A B, P B C, P C D, P D A$. Show that $\overline{O_{1} O_{3}}, \overline{O_{2} O_{4}}, \overline{O P}$ are concurrent.
