
ΣΠ
ΒMultics

Inessential Zephyr

The Student Information Processing Board

Abbe Cohen

Heather Anne Harrison

Alessondra Springmann

Arun Tharuvai

June 28, 2008

Contents

1 Introduction to Zephyr . 3
2 Getting Started . 3

2.1 Basic Terms . 3
2.2 Basic Commands . 4

3 Locating Other Users . 5
4 Being Located by Other Users . 6
5 Sending Zephyrgrams . 6

5.1 zwrite Options . 6
5.2 zsigs . 7
5.3 All Shapes and Sizes . 7
5.4 Langwrite . 8

6 Recieving Zephyrgrams . 8
6.1 Colors and Locations . 8
6.2 Showing Pings . 10
6.3 How To Ignore People . 11
6.4 Logging your Zephyrgrams . 12

7 Zephyr Classes and Instances . 12
7.1 Subscribing to classes and instances . 13
7.2 What to Subscribe to . 13
7.3 Writing to instances and classes . 15
7.4 Etiquette on Zephyr Instances . 16
7.5 Can I see that last zephyr again? . 16

8 Other Useful Commands . 16
8.1 zwgc . 16
8.2 zctl . 17
8.3 zhm . 18

9 A Few Customizations and Programs . 19
9.1 zaway . 19
9.2 Pings . 19
9.3 Random Zsigs . 20
9.4 Other ways of using znol and zwrite . 22
9.5 zcrypt . 22

10 Other Zephyr Clients . 22
10.1 Owl . 22
10.2 VT . 25
10.3 WinZephyr . 26

1

10.4 MacZephyr . 26
10.5 Gaim . 26
10.6 Emacs Zephyr . 26
10.7 Emacs Zwgc . 26

11 More Information . 26

2

1 Introduction to Zephyr

Zephyr was a system designed to let system administrators send important messages to users in an
easily noticeable format. It was meant to have a low volume of traffic and be used only for official
notices. This is obviously not what Zephyr is today. It is still used in the way it was intended: notice
that you get official zephyrgrams as you log in, with important information about Athena services
and planned outages. However, the most common usage is by average users exchanging information
about classes, how their days are going, and talking on Zephyr classes and instances about everything
from the latest episode of Battlestar Galactica to the next 6.01 problem set. The usage of Zephyr has
far exceeded original expectations. Over time, people have also created programs that give Zephyr a
graphical interface, and programs that give zephyr a purely textual interface, that can be used entirely
within a ssh terminal. Some of these zephyr clients have become so widely used that there are users
who do not know that there are other ways to send (and receive) zephyrgrams. This document will
cover the traditional commands, typed at the athena% prompt, as well as the more common modern
zephyr client BarnOwl. Other programs, such as xzewd, will be mentioned later in this document.
They are not Zephyr, but are graphical programs that execute Zephyr commands.

Zephyr allows you to communicate with other users in real time. Zephyr messages appear on your
screen as windows, called windowgrams, containing text and information about the sender. If you are
using a modern zephyr client, the zephyrgrams will appear in other ways. Zephyrgrams can only be
received when you are logged in and you can only send zephyrgrams to other users who are logged in
and subscribed to messages. However, it has become common for BarnOwl users to leave themselves
permanently logged in, or “permalogged”, by having a zephyr client that is always receiving messages,
even when they are not logged-in to read them. Text-based zephyr clients, such as BarnOwl, and
the UNIX utility screen(1) (that allows for programs to continue running when you log out, and be
resumed (reattached) when you log in again), have made this usage possible.

2 Getting Started

Here is a quick rundown of the basic commands and terms related to Zephyr. They will be described
in greater detail in later sections.

2.1 Basic Terms

• windowgrams are the small windows that appear on your screen with a message from another
person.

• Zephyrgrams are the messages that you send and receive when you are using Zephyr. They
can appear as windowgrams or in other forms, depending on which client you are using.

• A Zephyr client is a program that lets you receive zephyrgrams. The zwgc client starts auto-
matically when you login to an athena workstation; you can start BarnOwl manually with add

barnowl; barnowl

• Zephyr is the name of the whole system that makes all of this happen.

3

2.2 Basic Commands

Basic Barnowl Commands

BarnOwl is normally in a viewing window where you can scroll through the history of already-received
messages with n and p (next and previous), or the up and down arrows. To use many of the commands,
you will need to enter command mode, which is done by typing a colon character (:). Many common
commands have shortcut keys that will enter command mode and fill the beginning of the command.

zwrite username will bring up a composition window to send a zephyrgram to the user username; a
period (.) on a line by itself will send the message.

subscribe classname * * will subscribe you to the zephyr class classname, so that you will receive
the messages sent there.

You can also zwrite -c classname -i instance to send a zephyrgram to class classname, instance
instance.

You won’t have to type this every time you want to send a zephyrgram, though — you can navigate
to the message you want to reply to, in the view window, and then just hit the r key, which will bring
up the correct composition window to reply to that message. If you want to reply to just the sender
of a message, and not the class and/or instance, use a capital R instead.

To find out more details about a particular message, navigate to it in the view window, and press i

(for information) – a window will pop up with many fields, including the “host” (which computer it
was sent from) and the full timestamp.

If you want to explore more of the commands available in BarnOwl, you can use the help command,
which will bring up the on-line help window, which is a quick reference for common keystrokes as well
as a place to start looking for more detailed commands.

Basic zwgc Commands

zlocate friend is the command used to find out if user “friend” is logged in and subscribing to
zephyrgrams. If they are logged in and subscribing to messages you will receive information about
where they are logged in. If they are not logged in you will receive the message “Hidden or not
logged-in.” This means they either do not want to be found or are not logged in.

zwrite friend is used to send a message to friend. Just follow the instructions given. If you get an
error saying the person is hidden or not logged in then your message has not been sent and the person
you are trying to reach is not logged in or is not subscribing to messages and you should try sending
e-mail instead.

zctl hide can be used to “hide” yourself. When hidden you are not zlocatable, but if someone tries
to zwrite you anyway they will succeed.

zctl wg shutdown should be used if you want to stop receiving zephyrgrams for this session.

zctl set zwrite-signature “foo” (quotes are mandatory) will change your Zephyr signature, or zsig,
to foo. By default your zsig is your name as it exists in your finger information. It shows up in a
zephyrgram before your username. You can change it to almost anything you like, although you should
avoid very long zsigs since they tend to annoy people.

zaway is used to let people know you are away from the terminal and not deliberately ignoring their
messages. It sends a message to whoever sends you a personal zephyrgram that lets them know that
you are away (and will probably respond later).

4

zwgc -ttymode will start up a Zephyr client when you are logged in remotely. Zephyrs appear as
plain text on your screen.

znol will let you know which people on a list are logged in. Your ~/.anyone file should contain the
list of usernames you want to know about (it should have one name per line and no spaces). You will
also be sent login and logout notices in the form of a zephyrgram whenever one of the users in your
list logs in or out (if they are announced, see below) after you have run znol during a session.

zctl set exposure exposurelevel will set your exposure (how other people know when you are logged
in). An exposure level of net-announced causes login and logout notices to be sent to people who have
you in their .anyone file, and you will be zlocatable. net-visible is the same except login and logout
notices are not sent. The realm-announced and realm-visible settings require authentication before
your information is divulged, but behave in most situations in the same way as net-announced and
net-visible, respectively. The opstaff setting makes you unable to be zlocated and does not send
login and logout notices. Finally the none setting provides no information about you and you will
not be able to receive zephyrgrams.

zctl sub message foo * will subscribe you to a Zephyr “instance” named foo. Zephyr instances
(and classes) allow groups of people to have conversations via Zephyr. The above zctl command will
subscribe you to the instance foo for your current login only; to make it more permanent replace sub

with add. To unsubscribe for this login only change sub to unsub, and to unsubscribe permanently
use delete instead.

zwrite -i foo will send a message to the Zephyr instance foo.

zctl sub foo * * subscribes you to the Zephyr class foo. Zephyr classes are slightly more private
than instances as you must know the name of the class to subscribe to it. unsub, add and delete work
the same way for classes as for instances.

zwrite -c foo sends a zephyr(gram) to class foo.

3 Locating Other Users

To find out if another user is logged in and zwriteable, you can use the following command:

zlocate username

which will either give you the name of the machine the user is logged in on, or tell you that the user is
Hidden or not logged-in. The latter message indicates that the user is either not logged in, is not
subscribing to zephyrgrams, or does not want to be zlocated.

You can check whether or not your friends (and enemies!) are logged in using the znol command.
First, you need to create a file called .anyone in your home directory. This file should contain a list
of the usernames of all the people you want to look for (friends and enemies alike), with one username
on each line and no spaces. Then, you can type

znol

at your athena% prompt. You will see a list of all the people in your .anyone file who are logged in.
You must be logged in to use the znol command, with the exception of znol -l (list) command. The
znol -l command may be used at any time and will not subscribe you to login and logout zephyrgrams
or require that you be subscribed to messages.

The znol command will also allow you to get zephyrgrams announcing when people in your .anyone
file log in and log out, if they expose this information. You can use znol -q to receive login and logout
zephyrgrams without listing who is currently logged in.

5

Another use of znol is

znol -u username,
which allows you to just check one username and get zephyrgrams when that person logs in and out.
This differs from just zlocating that person because you will get login and logout zephyrgrams. It can
be done in addition to running znol normally, so you can basically add individual users to the list of
people you want to check on (in this session only) without adding them to your .anyone file.

You can use the -f option to use a file other than .anyone as the list of people. For instance, you
might list the usernames of members of a club in a file called .anyone.club, and check if any of them
are logged in with znol -f ~/.anyone.club.

4 Being Located by Other Users

Your exposure setting determines who can zlocate you or receive login and logout notices about you.
There are several options for exposure settings that will be explained in detail below. The command
to change your exposure is

zctl set exposure exposurelevel

where exposurelevel is the setting you have chosen, which may be replaced by any of the ex-
posure settings mentioned in this section. The net-announced setting provides the most informa-
tion to the largest number of users. Anyone (with or without Kerberos tickets) can find out if
you are subscribed to Zephyr, and those people who have you in their ~/.anyone file will receive
login and logout notices about you. This means that people using the www zlocate gateway at
http://www.mit.edu/zlocate, and those using Zephyr at other realms (e.g. ANDREW.CMU.EDU,
FSCK.COM) will be able to zlocate you in addition to people who are logged in with valid Kerberos
tickets in the realm ATHENA.MIT.EDU .

The setting realm-announced is like net-announced except that only people with Kerberos tickets
in the realm ATHENA.MIT.EDU (which you receive upon login to your Athena account) can check
your online status.

net-visible is in practice almost identical to net-announced. realm-visible is just like realm-
announced, except that no login or logout messages are sent.

The opstaff setting means that only Operations Staff are able to access information about you.
You are not zlocateable, nor are login or logout announcements sent when this setting is used.

Lastly, the none setting does not allow information to be given out in the form of login or logout
notices or through zlocate. It also is the only setting in which you are not able to receive zephyrgrams.

5 Sending Zephyrgrams

As mentioned in section three, sending a zephyrgram is done by using the zwrite command. However,
it is possible to customize the zephyrgrams that you send. There are also several useful sending options
that have yet to be mentioned.

5.1 zwrite Options

Sending a zephyr to multiple recipients it is possible by the command zwrite friend enemy. This
sends the same Zephyr to users friend and enemy.

zwrite friend -m Hello friend

6

sends a message to user friend with the message “Hello Friend”. The -m argument must be the last
one, as the message text extends until the end of the line.

zwrite -C friend enemy

sends a message to friend and enemy and places the line “CC: friend enemy” at the top of the message.
zwrite -n friend

sends a message to friend, but does not ping friend to make sure he is logged in before attempting to
send the message. This is slightly faster, especially when the Zephyr system is being used heavily.

If you do not like waiting for the message sent notification after you have sent a Zephyr, it is
possible to suppress this information by using the zwrite -q option.

5.2 zsigs

You can send zephyrgrams with different “zephyr signatures,” or “zsigs.” Your zsig is on the line of a
zephyrgram that says “From: zsig username”. Unless you have changed it, your zsig will be your
name as it is listed in your finger information. You can change it to read just about anything you want
by using the command

zctl set zwrite-signature ’mysig’

which will change your zsig permanently until you use the command again. You can also use

zwrite -s ’mysig’ username

to send a zephyrgram with the zsig mysig, for only that one zephyrgram.

5.3 All Shapes and Sizes

You can change the font, size, and appearance of the text of a zephyrgram. You can send zephyrgrams
with boldface, italic, and different-sized of text. To send part of your message in a large font, you
would format it like this:

@large(message)

Only the portion of the message that you enclose in parentheses will be in large text, so you don’t have
to make the entire message the same size or style of text. You can use any form of bracket to enclose
the portion of the message that you want to be affected, including [], { }, and (). In addition to
@large you can use @small or @huge to affect the size of text in your zephyrgrams. To use boldface
or italics, you can use @bold (or @b) and @italic (or @i). The formatting for all of these is identical
to the example above, replacing @large with the typeface you want to use.

You can also use different fonts in zephyrgrams. The three fonts that are readily available for
zephyrgrams are Courier, Times, and Helvetica. Courier is the default font. To use a different font,
you can use @fontname(message) in the text of a message. For example, to send the message “hi!” in
the Helvetica font, you would type @helvetica(hi!) as your message.

You can also send zephyrgrams with color text, using a slightly different formatting technique. To
use color, format your message by typing @color(colorname)message. For example, if you wanted the
message “I like blue” to be printed in blue, you could use @color(blue)I like blue as your message.
Unlike fonts, sizes, and typefaces, this will make the rest of the message stay that color, unless you
switch it back with another @color in the same message. Another way to have color text limited to a
portion of the message is to format it like this:

I like @(@color(purple) purple), but I don’t like @(@color(green) green).

If you sent this as your message, the word purple would appear in purple and green would ap-
pear in green. The colors available vary by system architecture; a full list can be found in the file

7

/usr/openwin/lib/rgb.txt on machines running Solaris, and in /etc/X11/rgb.txt on linux-athena.
Note that some colors will be invisible on some backgrounds, especially on monochrome screens, so
you risk sending messages which are unreadable.

You can also combine font changes and size changes into your zsigs by using these same formatting
commands when you set the zsig. You should be especially cautious when using colors in your zsig,
since, as mentioned above, some colors may be unreadable on certain displays. If you use color
formatting without the extra parentheses, your username and message would also be the same possibly
invisible color, and other people wouldn’t be able to tell who was zwriting them. If you decide to still
use color zsigs and risk them being invisible, you should use the format with the additional parentheses,
which we will repeat here. You would use something like

@(@color(blue)I like blue zsigs)

and make this your zsig with zctl set zwrite-signature.
It is important to emphasize that color in zsigs can cause legibility problems on monochrome screens

or screens that have colorful backgrounds. In general it is best to use special colors and fonts as little
as possible, for these reasons, and because it tends to annoy some users.

5.4 Langwrite

You can send Zephygrams with accents and other symbols used in some foreign languages with the
help of a program called langwrite. Langwrite is in the potluck locker, so in order to access it you
would need to type

add potluck

To find exact details on how langwrite works, you should type

man langwrite

Then, to use langwrite with Zephyr, you would type

langwrite | zwrite username

to send the output of the langwrite program over Zephyr as the message. On some remote connections
characters produced by langwrite may display incorrectly or not display at all.

6 Recieving Zephyrgrams

Receiving zephyrgrams is rather simple. Zephyrgrams are displayed to your screen as long as you have
zwgc running and your exposure set properly. It is possible, however, to customize your account such
that zephyrgrams are sorted and appear in different places, colors, and sizes. It is also possible to
display more information than the default settings show, and to ignore specific users. Another option
is to log (save to a file) all the zephyrgrams that you receive. This can be especially useful when logged
in remotely over a poor connection, or in conditions where zephyrgrams may dissapear before you have
a chance to read them.

6.1 Colors and Locations

The colors and locations of your incoming zephyrgrams can be changed in two ways: through your
.Xresources file, which can be used to customize all of your X applications, and through your
.zwgc.desc file, which describes only your zephyrgrams. People often change the color and loca-
tions of zephyrgrams from different Zephyr classes and instances, including things like class login (for
znol login and logout announcements), and class mail (for announcements of new mail).

8

To change where zephyrs appear, it is useful to first understand the way that geometry is specified
in X. This is best explained by example. The top left corner of the screen is +0+0. The first number
of this is the X coordinate and the second the Y coordinate. The right edge of the screen corresponds
to an X coordinate of -0, and the bottom edge to a Y coordinate of -0. The lowercase letter c refers
to the center of either the x or y axis. You can also use any integer to refer to a location on the
screen. +0-20, for example, is near the bottom left corner of the screen, 20 pixels up from the bottom,
while -100+100 is 100 pixels away from the right side of the screen and 100 pixels down from the top
of the screen. In summary, positive numbers measure from the left and from the top, and negative
numbers measure from the right and from the bottom; the horizontal position is the first number and
the vertical position is the second number.

The basic format of an entry in your .Xresources file to change the geometry (location) of incoming
zephyrgrams is:

zwgc*style.class.instance*geometry: +x-y

where +x-y is any combination of integers, as described above. Some examples follow:

zwgc*style.message.personal*geometry: -0+0

zwgc*style.message.white-magic*geometry: +c-0

zwgc*style.login*geometry: +0+0

zwgc*style.mail*geometry: +0+30

These four lines place personal zephyrgrams in the top right corner of the screen, zephyrgrams on
instance white-magic in the bottom center of the screen, login and logout zephyrgrams (from znol)
in the top left corner of the screen, and new mail notification zephyrgrams just below login and logout
zephyrgrams in the top left corner of the screen.

To do something similar by editing your .zwgc.desc file you would need to have lines something
like this (we have included comments in this code with #’s, to make clearer what it is actually doing
since you will need to alter this significantly to meet your needs. Any line beginning with a # is a
comment, and your zwgc will ignore it (whereas you should pay attention to it):

looks at the name of the instance after converting it to lowercase

since .zwgc.desc is case sensitive

case downcase($instance)

things to do if instance name is white-magic

match "white-magic"

set X_geometry = "+c-0"

things to do if instance name is personal

match "personal"

set X_geometry = "-0+0"

stops looking at instances

endcase

looks at the name of the class after converting it to lowercase

since .zwgc.desc is case sensitive

case downcase($class)

things to do if class name is login

match "login"

set X_geometry = "+0+0"

9

things to do if class name is mail

match "mail"

set X_geometry = "+0+30"

stops looking at classes

endcase

This code has the same effects as the .Xresources entries listed before. Although it is somewhat
longer, some people opt to use the .zwgc.desc method because they can include additional customiza-
tions (other than position) to .zwgc.desc for those particular classes and instances at the same time.
For example, you can change the way a message is formatted. The best way to learn how to do this is
to look at other people’s .zwgc.desc files and examine what the various commands are doing. Some
examples can be found in the dotfiles locker. One particular .zwgc.desc file you might want to look
at is rjbarbal’s, which you can find in /mit/dotfiles/Zwgc.desc/rjbarbal.zwgc.desc (you need to
type attach dotfiles first).

You can change the colors of incoming zephyrgrams by modifying your .Xresources file. The basic
format of .Xresources entries for foreground and background colors for zephyrgrams is:

zwgc.style.class.instance*background: color

zwgc.style.class.instance*foreground: color

To avoid problems when you don’t have a color screen, you can place your color preferences after a
line reading

#ifdef COLOR

and follow them with a line reading
#endif

An example follows:

#ifdef COLOR

zwgc.style.login*background: LawnGreen

zwgc.style.login*foreground: MidnightBlue

zwgc.style.message.white-magic*background: purple

zwgc.style.message.white-magic*foreground: white

zwgc.style.message.personal*background: blue

zwgc.style.message.personal*foreground: yellow

zwgc.style.mail*background: red

zwgc.style.mail*foreground: black

#endif

These lines would cause login announcements to show up as MidnightBlue on LawnGreen, zephyr-
grams in instancewhite-magic to show up as white on purple, personal messages to show up as yellow
on blue, and mail notifications to show up as black on red.

6.2 Showing Pings

When someone sends a Zephyr to you a “ping” is sent to check whether you are logged in. As a
default these pings are not shown on your screen, but it is possible to have them displayed by making
alterations to your .zwgc.desc file. Information on how to do this is in section 9.2.

10

6.3 How To Ignore People

People often express interest in hiding from a specific user, so that eviljoe can’t zwrite you and doesn’t
know that you are logged in, but everyone else can zwrite you. Zephyr is not actually capable of this
exact functionality, but it comes close. You can not set it up so that Zephyr will give a yourusername:

not logged in or not subscribing to messages error message to eviljoe and not to everyone else.
However, there is a way to edit your .zwgc.desc to filter out zephyrgrams from any users you specify
and to send them an automatic message informing them that you are not receiving their messages.
Again, the relevant .zwgc.desc lines will be explained with comments in the code. Here is the code:

punting a user

zctl set username punt

zctl unset username

take the sender’s username, and assign it to a variable called test

set test = zvar($sender)

#if the sender’s username has been set to punt

if ($test == "punt") then

if it is also a personal Zephyr sent only to you

if (upcase($instance) == "PERSONAL" && upcase($class)=="MESSAGE") then

send them a message, and don’t print the Zephyr

you should not have a return between the -m and the message

exec "zwrite" "-q" "-n" $sender "-m"

"Your Zephyr is not being received at this time."

exit

endif

exit

endif

exit from the .zwgc.desc without printing any zephyrgrams

For your changes to .zwgc.desc to take effect without logging out and logging in, you will neeed
to type zctl wg read to re-read the configuration file. Then, in order to “punt” a particular user’s
zephyrgrams, you can type

zctl set username "punt"

and to “unpunt” them (see their zephyrgrams again and stop ignoring them), you can type

zctl unset username

The basic methods used in this code sample allow you to make your own Zephyr variables and then
set them from your athena% prompt using zctl set. If you want a customization to only happen
when you explicity say so, you could make up the name of a variable, and use zvar to make it a
variable. You could have if statements in your .zwgc.desc that will execute the customization for
certain values of that variable.

In your .zwgc.desc, before you use a variable, you need to declare it, thusly:
set variable = zvar("value")

Then, to change its value, you would type

11

zctl set variable value

Note that if you want to set variables to non-numerical values like “punt” or “true,” you will need to
quote the word both when you set it with zctl set and when you test it in .zwgc.desc.

6.4 Logging your Zephyrgrams

You can log zephyrgrams to a file as well as receive them on your screen, with only a few simple changes
to your .zwgc.desc file.

If you want to save the complete zephyrgram (everything you see on your screen), you should add
the following things to your .zwgc.desc file. First, near the beginning of the file, before any of the
code that actually places and formats zephyrgrams, you need to add the line

appendport "outf" getenv("HOME")+"/.zlog"

which tells .zwgc.desc that “outf” refers to a file in your home directory called .zlog.
Then, wherever you want a particular kind of zephyrgram (like personal zephyrgrams, or all zephyr-

grams to a particular instance) to be recorded in the file, you would need to find where those zephyr-
grams are specified in the .zwgc.desc file and add the command

put "outf"

after the line (that should already be there) that says just put.
Another thing that can easily done using this infrastructure is to log Zephygrams only if a certain

variable is set. To do this, instead of just adding the put "outf" line mentioned above, you would
add several lines of code. Near the beginning of your .zwgc desc, you would put the line:

set log = zvar("log")

Then, in the locations where the zephyrgrams you want to log are mentioned, instead of just putting
put "outf", you would add the lines

if ($log == "true") then

put "outf"

endif

Then, to start logging zephyrgrams, you would need to type

zctl set log "true"

To stop logging them, you would need to type

zctl unset log

7 Zephyr Classes and Instances

Zephyr classes and instances allow groups of people to have conversations via Zephyr. Zephyr classes
are slightly more private than instances since you must know the name of a Zephyr class to be able to
receive zephyrgrams directed to it. Zephyr classes have sub-channels called instances. When someone
talks about a Zephyr instance they usually mean an instance of the Zephyr class message, although all
Zephyr classes have instances. Since class message is widely known, and it is possible to subscribe to
class message, the instances of class message are not very private. Instances of class message are good
for public discussions that are of interest to many people. For (slightly) more private conversations
amongst a group of friends, a Zephyr class of some other name is probably preferable.

There are three parameters that control who will get a zephyrgram: a class, an instance, and a
recipient. When you send a zephyrgram to a friend, using zwrite username, the class is message, the

12

instance is personal, and the recipient is your friend’s username. These parameters can be changed
to allow conversations among a group of people via Zephrgrams. What people call a Zephyr class is a
particular set of zephyrgrams with the class parameter set to something other than message. What
people call a Zephyr instance, or public instance, refers to the set of zephyrgrams in class message
with a particular value for the instance parameter. In the next few sections, we will explain how to
change the class, instance, and recipient parameters, to send and receive zephyrgrams to groups of
people through different classes and instances.

7.1 Subscribing to classes and instances

When you are subscribed to a class or instance, you will see messages sent to that class or instance.
There are two commands to subscribe to a class or instance:

zctl sub class instance recipient

which lasts for your current login session, and

zctl add class instance recipient

which adds this subscription permanently.
To reverse zctl sub, you can use zctl unsub. If you want to reverse zctl add, you can do

it permanantly using zctl delete. To unsubscribe temporarily to a class or instance that you are
currently subscribed to using, you can use zctl unsub

One additional way to subscribe and unsubscribe to Zephyr classes and instances is to modify
your .zephyr.subs file directly. The commands zctl add and zctl delete make permanent changes
because they alter the list of subscriptions in this file. The format of a subscription in the .zephyr.subs
file is class,instance,recipient (note that there are no spaces between words). To update Zephyr
subscriptions directly from this file, you must use the command zctl load. If you want to list other
Zephyr subscriptions in a file other than .zephyr.subs, you can load those subscriptions using zctl

load ~/filename. Only the subscriptions in your .zephyr.subs file are read when you first log in and
run Zephyr; if you want to read subscriptions from another file automatically, you would need to put
the zctl load ~/filename command in one of your startup files.

7.2 What to Subscribe to

Now that you know the various ways to set up subscriptions, some specific examples of subscribing to
instances and classes will be described.

Classes

Zephyr Classes are considered to be private because there is no * wildcard option for the class field.
You must subscribe to a class explicitly. If you try to subscribe to a class using zctl sub * * *,
you will be subscribed to all the instances on the class named *. However, the lack of this wildcard
does not guarantee absolute privacy on a Zephyr class. Listening in on a Zephyr class is as easy as
figuring out what the name of the class is and then subscribing to it.

Classes are a good to use for things like having a group of friends chat, or to send zephyrgrams to
a number of people, perhaps about a group project. If you and your friends wanted to use a Zephyr
class to chat, you could make up a name like myfriends (you would want to choose something private,
that other people would probably not be using already) and then type

zctl sub myfriends * *

13

(Again, you could use zctl add instead.)
The * for the instance means you will be subscribed to all instances on class myfriends. This means

that your friends could write to a specific instance within class myfriends, perhaps to distinguish what
you are talking about, or just to be silly, and you would receive the message regardless of which instance
they decided to use.

One class you might want to subscribe to allows you to receive zephyrgrams from the post office
servers when you get new mail. To subscribe to this class, you should use zctl add mail inbox. You
probably want to use add rather than sub so that you will receive these zephyrgrams whenever you
are logged in. In your .zephyr.subs file, this will appear as the line mail,inbox,%me%, indicating
that you are only subscribed to messages on this class with your username as the recipient, and on the
instance inbox.

Another class that you might be interested in subscribing to is class help. As its name suggests, it
is commonly used for the purpose of asking questions about various topics. To subscribe to it, type at
the athena prompt:

zctl sub help * *

Topics on this zephyr class are threaded by instance, using the topic name. After subscribing, in order
to send a message, you can type (at an Athena prompt:)

zwrite -c help -i topicname

Instances – Class Message

Class message is special. When someone talks about a Zephyr instance they probably mean an
instance of class message. Just like other classes, it is possible to subscribe to all of the instances of
class message (many people do). This means that zephyr instances are very public and are not a good
place to discuss anything you do not want made public..

To subscribe to the particular instance help, you would type

zctl sub message help *

In any of these examples, you can also use zctl add. This would give you a permanent subscription,
in this case to the instance help. A permanent subscription to the instance help would show in your
.zephyr.subs file as the line message,help,*

Looking at the above example of a subscription to instance help, the * in the recipient field
indicates a broadcast message. (You need to type a \ before the * so that it is interpreted correctly
by the shell.) In other words, the * means that means that you are receiving zephyrgrams that have
been sent to everyone who subscribes to that instance. The other option for recipient in a Zephyr
subscription is %me%, which indicates that you are subscribed to zephyrgrams sent specifically to you.
This is generally not useful on an instance such as help, which is intended to send messages to a large
number of people, rather than a specific user. The help instance is used by people who want to ask
a question, about anything ranging from using Athena, to progamming, to random facts about MIT,
Boston, history, etc. If you just want to ask a question, you probably want to use zctl sub to ask it
and see the answer, since there are a lot of zephyrgrams on this instance, and you may not want them
distracting you when you don’t have a question to ask. Many knowledgeable people are subscribed to
the instance help.

Public instances are not limited to the instances people often write to. Any public instance (i.e. on
the class message) that someone chooses to write to exists when they decide to write to it. Obviously,
you can’t explicitly subscribe to each one of these, but you can explicity subscribe to instances that
you know of. Some others besides help are white-magic, which is an instance for random chatting,

14

b5, which is an instance where people chat about Babylon 5, and instances like 6.170, where people
talk about that particular subject.

You can also subscribe to every possible public instance by typing zctl sub message * *. In
this case, the * for the instance name acts as a wildcard which subscribes you to all instances in the
class message. The * wildcard for instances is the reason that instances on class message are called
public—anyone who chooses to subscribe to message * * will get zephyrgrams sent to any instance
you might send to, so there is no way to keep people from finding out about the instance and jumping
into a conversation on it. There are actually a number of people who are always subscribed to “star
star,” as it is often called.

If you do want to subscribe to message * *, there are a few useful things you might want to
know. First of all, a word of warning: you will receive a lot of zephyrgrams, which can be very
confusing if you do not customize your dotfiles to make zephyrgrams on instances look different from
personal zephyrgrams, and change where they appear on your screen. It is also rather distracting. To
decrease the volume of zephyrgrams somewhat, you can filter out zephyrgrams on certain instances
that you have no interest in reading by creating “negative subscriptions” in your .Zephyr.subs file.
For each instance you want to filter out, you would add a line reading -message,silly-instance,* (where
silly-instance is the name of the instance you want to filter out). You would then be subscribed to
all public instances except those listed with a minus sign in your .zephyr.subs file. Also, there is a
command called zpunt in the sipb locker which you can use to unsubscribe from a particular instance
temporarily. The zpunt command is necessary for people who are subscribed to “star star” because
using the zctl unsub command will not work in this case. It works in the same way that the “negative
subscriptions” in your .zephyr.subs file do. To use zpunt, you would type

add sipb; zpunt annoying instance

If you want to resubscribe to that instance before you log out, you can type

zunpunt annoying instance

7.3 Writing to instances and classes

zwrite -i instancename

changes the instance you are sending to from personal to instancename, and by default sends to
the class message and the recipient *, which was explained above. For example, zwrite -i help

would send a zephyrgram to the instance help, and anyone who had subscribed would receive the
zephyrgram.

zwrite -c classname

changes the class you are sending to from message to classname. By default, it will send to the
instance personal, and the recipient *. This means that everyone subscribed to that class would
receive the zephyrgram. Using the example class myfriends, zwrite -c myfriends would send a
zephyr to the class myfriends and the instance personal.

zwrite -c classname -i instancename

sends a zephyrgram to an instance within the class you are writing toinstead of to the instance per-
sonal. Generally, all people subscribed to a class subscribe to all the instances within that class, so
sending to the instance silly-name in the class myfriends would not go to any different people than
just sending to the class myfriends.

One thing to note about sending to various Zephyr instances and classes is that the capitaliza-
tion you use does not matter. For example, zwrite -i white-magic is the same as zwrite -i

15

WHITE-MAGIC, which is the same as zwrite -i WhIte-mAGiC, etc. Anyone subscribed to white-magic
will receive messages sent any of these ways.

7.4 Etiquette on Zephyr Instances

When sending zephyrgrams to instances, it is best to avoid doing things that might annoy other users
who are subscribed to those instances. You should generally avoid things like sending excessively
long messages, having excessively long zsigs, using the font @huge, using color. Using ALL CAPS is
considered shouting and should be used as little as possible. Also, it is customary to send messages
that are not really relevant to the discussion on an instance (for example, a joke about something
said on the instance) to the instance instancename.d. This is used particularly for instance help and
instances for discussion about classwork.

7.5 Can I see that last zephyr again?

Zephyrs sent to a few commonly used zephyr classes are logged in a couple of Athena lockers. Instances
of class message are logged in the zlog locker in the file /mit/zlog/instance . For example, to look at
the last bunch of zephyrs sent to instance 6.170, you can type

attach zlog

tail -100 /mit/zlog/6.170

Zephyrs sent to a couple of other classes (including class help) are logged in the zlogs locker. All
the zephyrs sent to class help since the last 3AM are located in /mit/zlogs/help/help . Zephyrs
sent to class help on the previous day can be found in the same directory in help.0 , those from two
days can be found in help.1 , etc. Additionally, class help zephyrs are also logged by instance under
/mit/zlogs/help-by-instance/instance . To look at the last few zephyrs sent to class help, instance
boston, you can type:

attach zlogs

tail -100 /mit/zlog/help-by-instance/help

8 Other Useful Commands

There are two four-letter words that you may notice get used a lot when talking about Zephyr. One of
these, zctl, has appeared in this document many times already, as part of the commands to change
Zephyr subscriptions, Zephyr exposure levels, and other things. The other one is zwgc. In this section,
both the zwgc and zctl programs will be introduced, so that you can better understand how Zephyr
actually works.

8.1 zwgc

zwgc stands for Zephyr Windowgram Client. It is generally pronounced “zwig-see” or “zwigka”. zwgc
is the program that actually makes zephyrgrams appear on your screen. By default, zwgc is started
automatically when you log into Athena on a workstation running X windows. If you log in through
dialup, or for some other reason you do not have an X display, zwgc will not be able to start properly
and you will get the error message: zwgc: Unable to open X display -- disabling X driver.
In order to enable you to receive zephyrgrams in these cases, you can use the -ttymode option to zwgc:

zwgc -ttymode

16

will start the zwgc program so that you can receive zephyrgrams, but instead of trying to place them
in windowgrams that require an X display, it will print them to the screen that you are typing in as
text. (This text is treated only as output, i.e. it will not be read in as part of the command you were
typing when you received the zephyrgram, or otherwise interfere with your terminal input.) You can
also cause zwgc -ttymode to start automatically when you log in through dialup using the following
command:

zctl set fallback true

This basically tells zwgc that if it can’t startup in X, it should automatically fall back to zwgc

-ttymode. Some people prefer to place the line

zwgc -ttymode

in their .startup.tty file, but this is less efficient, because it means that the zwgc process will try
to start up in X, fail, and then start up in ttymode, each time you log in on dialup. In any case, using
both of these things together is a mistake, as you will wind up running the zwgc -ttymode process
twice and getting double zephyrgrams.

Since zwgc is the program that causes the appearance of zephyrgrams on your screen, if you ever
want to completely stop receiving zephyrgrams, one way you can do this is to stop running zwgc

by killing the process. You could do this by first getting a list of processes using some form of the
command ps, and then searching for the process id that zwgc was started with. Also, there is a simple
command in the consult locker that kills a process. To kill zwgc with it, you would type

add consult; punt zwgc

The zwgc program is also responsible for setting the appearance of zephyrgrams on your screen.
When started, zwgc looks at a file called .zwgc.desc, which was discussed briefly in Section 6,
to find the descriptions of how the zephyrgrams should behave. The default .zwgc.desc, which
will be read if you do not create a .zwgc.desc with your own customizations, can be found in
/usr/athena/lib/zephyr/zwgc.desc. An excellent example of a.zwgc.desc file can be found in
/mit/dotfiles/Zwgc.desc/rjbarbal.zwgc.desc; you may need to attach dotfiles before you can
access it.

8.2 zctl

zctl stands for Zephyr Control program. It is usually pronounced “zeekootle” or “z’ctul” (Try reading
zctl as a word, and however you pronounce it will probably be about right, as long as you still have
your tongue.) As we have mentioned in previous sections, you can use zctl to modify your Zephyr
subscriptions and to change your Zephyr exposure level. The zctl program can be called in two ways:
either by typing the arguments to zctl at the command line (i.e. zctl add mail pop, or by just
typing zctl at the prompt, and then typing the rest of the command. The second method allows
you to type ? at the zctl: prompt and get a list of possible commands to type if you are unsure of
the exact command you want to use, among other things. Other useful options in the zctl command
include:

zctl flush locs

This removes “ghost” zlocates you might have left over from being on a dialup machine. It removes
all zlocate information, so you need to use zctl unhide to make yourself zlocateable again after this.

zctl new server

This allows you to change Zephyr servers, which might be necessary if you know someone is logged in
but for some reason you seem unable to zwrite them. Often this means that the Zephyr server you
are using (one of a few machines that control the transmission of all the Zephyr messages on Athena)

17

is having some problems. Changing servers will hopefully help you work around the problems you are
experiencing.

zctl retrieve

This lists all of your current Zephyr subscriptions, so you can tell if you have temporarily lost any of
them because of problems with the Zephyr servers. Many of the subscriptions listed by this command
are not zephyrgram subscriptions, but subscriptions made by the file system, which can be ignored for
all practical purposes.

zctl wg read

This rereads the information from the .zwgc.desc file and updates the behavior of the windowgrams
according to it.

zctl wg shutdown

This shuts zwgc down, so that you no longer receive any zephyrgrams.

zctl wg startup

This reverses zctl wg shutdown and starts zwgc again.

zctl add class instance recipent

This subscribes you to the class, instance, recipient triplet and adds it to your .zephyr.subs file. so
that in future login sessions you will be subscribed to that triplet.

zctl delete class instance recipient

This unsubscribes you from the class, instance, recipient triplet and removes it to your .zephyr.subs
file. so that in future login sessions you will not be subscribed to that triplet.

zctl sub class instance recipient

This subscribes you to the class, instance, recipient triplet, but only for the current login session.
zctl unsub class instance recipient

This unsubscribes you from the class, instance, recipient triplet, but only for the current login session.

zctl load

This is used to reread your Zephyr subscriptions from your .zephyr.subs file.

8.3 zhm

Although it is a three-letter word, zhm, the Zephyr Host Manager, is also important in understanding
how Zephyr works. zhm is the program that is run on a machine you are logged into that allows your
machine to communicate with the Zephyr servers. All zephyrgrams, and error messages about Zephyr,
are transmitted through zhm. Once in a while, you may get an error message when you are logging in
saying something about Hostmanager not responding. This generally means that for some reason,
the zhm process on your machine is not running or is too slow to be useful. Therefore, when your
other Zephyr processes try to start, they can’t communicate with the Zephyr servers. If the problem
persists, you can fix this by starting a new zhm process on your machine by typing su and then the
root password, and then typing

zhm

exit

to exit from the root shell. (You would also need to load your Zephyr subscriptions again using zctl

load after starting a new zhm).

18

9 A Few Customizations and Programs

9.1 zaway

zaway is a command that you can use to send an automatic message to everyone who zwrites you
saying that you aren’t there to read the message, acting as a Zephyr answering machine. Just typing
zaway in an xterm will give the default zaway message, with a zsig of Automated Reply:, to anyone
who tries to zwrite you while you have zaway running. zaway will only respond to zephyrgrams sent
directly to you, as opposed to on instances or classes, and will not respond to other zaway messages.
People generally run zaway when they are not at their workstations and want to let friends know that
they are not ignoring them. Upon returning to your workstation, you can stop running zaway by
typing Control-C in the window you started it in.

You caN customize the zaway messages by create a file called .away containing the messages you
want sent to different users. Here is an example .away file:

>joeuser

Hi, Joe! I’m not here. Catch ya later.

>friend1

>friend2

Hello, my friend. As you can see, I’m not at this machine right now.

>%

Hi there. I don’t seem to be at this machine,

but I’ll read your message and

figure out who you are when I return.

>*

I’ll get back to you when I return!

The line(s) following >joeuser will be sent in the text of a reply to joeuser. The line(s) following
>friend1 and >friend2 will be sent in a reply to either friend1 or friend2. The line(s) following >%

will be sent in a reply to anyone who is neither friend1, friend2, or joeuser, and the line following >*

will be sent in a reply to everyone, including friend1, friend2, and joeuser.
Another common thing that people do with zaway is to start it automatically when running

xscreensaver. xscreensaver can be found in the sipb locker; you can run it by typing:
add sipb; xscreensaver

To start zaway with xscreensaver, you can add the following in your .Xresources file:
xscreensaver*lockCommand: zaway

Then whenever you leave your screen and run xscreensaver, the zaway messages will automatically
inform anyone who zwrites you that you are not there.

9.2 Pings

When you send someone a message using the normal zwrite command, the first thing that the zwrite
does is to send a “ping” to the person you are zwriting. This is used to check whether they are
logged in. If they are not logged in, Zephyr gives you the message username: Not logged in or

not subscribing to messages. To zwrite people without sending pings, you can use the option
zwrite -n, which saves a bit of time and lessens the load on the Zephyr servers.

When people use zwrite without the -n to write to you, you can intercept these “pings” and have
them displayed as small zephyrgrams, so you know who is about to send messages to you. To do this,
you will need to modify your .zwgc.desc file, which describes how you want your zephyrgrams to

19

appear on your screen, to tell it to display the pings somewhere on your screen. Then you will know
when people are about to zwrite you.

You can check to see if you already have a .zwgc.desc by typing ls -a ~/.zwgc.desc. If you
don’t, you should first copy the default .zwgc.desc file into your home directory, from the file:

/usr/athena/lib/zephyr/zwgc.desc

You should be sure that you copy it to the file .zwgc.desc, as the default file does not have the
initial period. You probably want to have some basic understanding of how the .zwgc.desc file works
so that you can figure out where to place modifications you want so that they will have the desired
effects. Sample code to receive pings for personal zephyrgrams follows. A few modifications you might
want to make might be to change the X geometry (or leave it out altogether), which determines where
to place the zephyrgram on the screen, but also leaves that setting for other zephyrgrams until you
change it in your .zwgc.desc file for those cases, and to change the message printed in the ping. You
might need to read through your .zwgc.desc file to figure out where the proper location for these lines
are; .zwgc.desc hacking is not easy to do by “formula”. Here is what you would need to include:

match "message"

if (upcase($opcode) == "PING") then

if (upcase($instance) == "PERSONAL" && upcase($class) == "MESSAGE") then

set X geometry = "+0+20"

print "@b("+$sender+")"

print "@small(is about to send you a message)"

print "@beep()"

put

exit

endif

exit

endif

You may also need to remove a line stating

9.3 Random Zsigs

Many people have used their copious free time to devise methods of sending zephyrgrams through
some sort of program that chooses a zsig randomly from a list of quotes they have chosen. In this
section, I will suggest three programs that work as zsig randomizers. The first is a csh script, written
by Ross Lippert, <ripper>. In order to use it, you would need to put the program into a file (calling
it .zrandom would work) and add your zsigs. Then, after saving the file, you would need to make it
executable using the command chmod 755 .zrandom, and then make an alias such as

alias zr ’~/.zrandom’

in your .cshrc.mine file which you would use to zwrite with random zsigs. The program follows:

#!/bin/csh -f

set zsigs = (\

"Your zsig number 1." \

"Your zsig can not easily deal with apostrophes and quotes." \

"Multi-line zsigs are not possible." \

"Exclamation points must be backlashed like this \!" \

)

20

set index = ‘jot -r 1 1 $#zsigs‘

if ($index <1 || \$index>$#zsigs) then

if ($index<0) then

@ index = - $index

endif

@ index = $index % $#zsigs

@ index = $index + 1

endif

zwrite -s "$zsigs[$index]" $argv:q

echo "$zsigs[$index]"

Another program you can use is a Perl randomizer was written by SIPB member Matthew Gray,
<mkgray>. In order to use it, you need to create a file of your zsigs with one zsig on each line, which
must be called ~/.zsigs, and then follow a few steps. You would put the perl code into a file, calling
it something like .zrandom, make the file execut able using chmod 755 .zrandom, and then alias the
execution of the file with a line like

alias zr ’~/.zrandom’

in your .cshrc.mine file. The code follows:

#!/usr/athena/bin/perl

srand;

open(ZSIGS, "/mit/$ENV{’USER’}/.zsigs")|| die("No ~/.zsigs file");

$ops = join(’ ’, @ARGV);

while(<ZSIGS>){

chop;

$sig[$i++]=$_;

}

$x = rand($i-1);

print("Zsig: $sig[$x]\n");

exec("zwrite", "-d", "-s", $sig[$x], split(’ ’,$ops));

Yet another randomizer was written by SIPB member Aaron Ucko <amu>. Like the previous ran-
domizer, it uses a file called ~/.zsigs, but with signatures seperated by blank lines. This randomizer
allows multiple-line signatures, but please bear in mind that sigs over a certain length are rude.

#!/usr/athena/bin/perl

-*- perl -*-

die "no arguments" unless @ARGV;

$/ = ’’;

open(ZSIGS, "$ENV{HOME}/.zsigs");

@zsigs = <ZSIGS>;

$sig = $zsigs[rand(@zsigs)];

chomp $sig;

21

$sig .= "\n" if (($sig =~ /.\n./) || (length($sig) >= 60));

exec(’/usr/athena/bin/zwrite’, ’-s’, $sig, @ARGV);

% There are a lot of funny comments in this document. That is because

% emacs font lock mode can’t handle verbatim modes and other random

% programming languages thrown into the mix

% $

9.4 Other ways of using znol and zwrite

One of the simplest hacks you can do with znol is to have your znol list of who is logged on be sent to
you as a zephyrgram instead of being in the xterm where you typed the command. This is done with
UNIX redirection, sending the output of the znol program to zwrite as the message. To do this, you
would type

znol | zwrite yourusername

Another popular program which many people use to replace both znol and zwrite is called xzewd.

This program is not supported by SIPB. It was written by a user, Eddie Kohler, <eddietwo>. It is
an X application that gives you lots of windows with silly graphics for your znol list and for sending
zephyrgrams. In order to use xzewd, you need to type

add outland; xzewd &

If you have problems with xzewd, you should bring them to eddietwo@mit.edu. There are a few
important things to note about xzewd. While it is easy to use, it makes dotfiles and changes some of
your dotfiles for you. It also uses up computational resources constantly because of the graphics.

Other programs that some people use include xzul and xzwrite. xzwrite can be found in the
standard athena release. To read more about it, type

man xzwrite

xzul is written by a SIPB member, Yonah Schmeidler. It is an update of xznol. For more information
about it, type

add outland; man xzul

All of these programs are graphical applications that do similar things to znol and zwrite.

9.5 zcrypt

zcrypt is a program written by Philip Lisiecki. He is not affilited with SIPB and the program is not
supported by SIPB. The program is designed to allow encryption over Zephyr. It has some security
holes, but is an option if you feel the need for a more secure Zephyr conversation. For information
about this program

add outland ; man zcrypt

10 Other Zephyr Clients

There are a few other commonly used zephyr clients out there.

10.1 Owl

Owl is a text-mode, curses-based zephyr client. Unlike the other zephyr clients used on Athena, owl
is a monolithic program - sending and receiving of zephyrs is all done in a scrollable, searchable text

22

window. It has a configuration language in perl, though no configuration files are necessary to run it.
You can find out more about owl from its official homepage at http://www.ktools.org/owl.html.

The following documentation was adapted from the owl introduction found at
http://web.mit.edu/ktools/src/owl/dev/doc/intro.txt.

Running owl

Owl will run happily without a configuration file, so to get started just run the program. Owl will take
over the terminal window it is started in, so you may wish to have another terminal window available
at the same time.

On Athena, you can run the latest version of owl by typing at the athena prompt:

add ktools; owl-beta

Why owl?

Why use owl instead of another zephyr client?

1. Owl allows you to “thread” zephyr conversations and read them one thread at a time. This is
convenient if you return from a lunch break to hundreds of zephyrs in owl.

2. Owl is configurable in perl

3. Owl is popular! More of your friends can help you learn to use it

4. Owl provides easy logging and filtering of messages

5. Owl can be run within screen and then accessed from any computer

The Screen Layout

There are three main parts to the owl screen. The large top portion of the screen is where messages are
displayed. The status bar separates this area from the one below and displays owl status information,
such as the total number of messages. The space below that is used to type messages and is also used
by owl to give warnings and information to the user.

Getting help

Owl has a full on-line help system. Pressing the h key will bring up the basic help screen. Further help
can be obtained using the help command, described later.

Sending zephyrs

To send a zephyr press the z key. This will start a zwrite command, which you can finish by typing
the name of the user you wish to send to, followed by enter. Begin typing your message. When you
are ready to send the message type Control-D or a dot (.) on a line by itself. If instead you wish to
cancel the message type Control-C.

If you wish to send to a class/instance pair simply supply -c and -i arguments to the zwrite command
as you normally would.

23

Getting around in owl

Owl indicates the current message with an arrow that looks like this: ->. To move up and down from
message to message, use the up and down arrows. To scroll the screen from side to side, use the right
and left arrow keys.

Replying to a message is simple: simply select the message you want to reply to using the up or
down commands, then type r. Type your message, then send it with Control-D or a dot (.) on a line
by itself.

To delete a message, mark with with the d key, and a D will appear to the left of the message. To
undelete a message, select it with the arrow keys and type u. Messages will not be removed from owl
until you perform an expunge. x expunges all messages marked for deletion.

Here are some more message manipulation controls. Note that in Unix, “C-*” is a shorthand way of
saying “Control-*” or “press and release the control key then this key.” Similarly “M-*” is shorthand
for “press and release Meta then this key”. If you don’t have a Meta key on your keyboard, the Esc
will work the same way. Holding down Alt, then the specified key, then releasing both also replicates
the Meta functionality.

Moving between messages

n move to the next non-deleted message

p move to the previous non-deleted message

C-n or down move to the next message

C-p or up move to the previous message

< move to the first message

> move to the last message

C-v page down

M-v page up

right scroll the screen to the right

left scroll the screen to the left

P move to the next personal message

M-P move to the previous personal message

You can also use the up and down arrow keys to move up and down from message to message.
Deleting, undeleting, and expunging messages

d mark a message for deletion

u unmark a message for deletion

x expunge deleted messages

T mark all ‘trash’ messages for deletion

M-D mark all messages in the view for deletion

M-u unmark all messages in the view for deletion

Replying to messages
Beyond your basic “reply” command, owl has some other reply functions.

r Reply. Personal messages get a personal reply,

group messages get a group reply.

R Reply to sender. Always replies personally

to the sender.

24

M-r Reply but allow editing of the command line.

M-R Reply to sender but allow editing of the

command line.

Manipulating windows within owl
Pressing M on a selected message brings it into a separate popup window. Within that window,

you can further navigate the message with these commands.

SPACE page down

b page up

RETURN line down

BACKSPACE line up

(The message pointer will change to indicate that the message is not starting at the first line.)
To get more detailed information about a particular message (such as the host the message was

sent from, or a more precise time stamp), type i with the message selected instead of M.

Command Mode

To enter owl’s command mode press the colon (:) key:

: begin command mode

Owl will give you a command prompt and you can begin typing your command. Type Enter to
execute the command, Control-C to cancel. The basic commands are listed on the basic help screen
(by pressing h).

For detailed information on the syntax and use of a command you can use:
help command

For example help zwrite will display all the options available when using the zwrite command.

AOL Instant Messenger (AIM) and Owl

In addition to sending and receiving zephyrs, owl also can send and receive AIM messages. Before
sending an AIM message you must login to AOL Instant Messenger, by using the aimlogin command,
with your screenname as an argument:

aimlogin screenname

You will be prompted for your password, which you then enter. Once you are successfully logged
in you can send an AIM message by pressing the a key, which will bring up an aimwrite command:

aimwrite screenname

Supply the screen name you wish to write to as an argument and then send the message just as
you would send a zephyr, as described above.

10.2 VT

VT is another text-mode zephyr client, originally designed as a MUD client and then later on (several
years ago) was given as set of configuration files to support zephyr. The configuration is done in a
C-like scripting language called VTC, and many people have diverging configuration files. For more
information, you can go to http://web.mit.edu/cat/project/vt/ivt (information can be found on athena
by looking in the directory /mit/cat/project/vt (make sure you type attach cat first).

25

10.3 WinZephyr

WinZephyr is a Windows based zephyr client. It has two display modes: Windowgrams which behave
similarly to zwgc on Athena, and also a scrolling buffer. One can send zephyrs from this client by
clicking on a zephyr sender icon, or by typing zwrite from a Command Prompt. More information is
available from http://web.mit.edu/is/help/winzephyr

10.4 MacZephyr

MacZephyr is a MacOS classic based zephyr client. It has three display modes: As entries in a
list (the default); As a TTY window; or as popup windows. More information is available from
http://web.mit.edu/is/help/maczephyr

10.5 Gaim

Gaim is a GTK2 based multi-protocol IM client, supporting, in addition to Zephyr, AIM, MSN Mes-
senger, Yahoo Messenger, ICQ, Jabber, IRC, and Gadu-Gadu. It supports both personal zephyrs
and chats (subscription entries from your /.zephyr.subs), in per-person windows, or with a tabbed
interface.

The version currently installed on Athena is 1.5.0 with a couple of fixes for connecting to MIT’s
jabber server. For more information, on gaim, you can go to http://gaim.sourceforge.net

To run it from any Athena cluster workstation, type
gaim

On some older Athena workstations, gaim is not installed locally, and you will have to run an older
version from the im locker. To do that, type

add im; gaim

10.6 Emacs Zephyr

10.7 Emacs Zwgc

11 More Information

To start with, you can read manual pages on various things related to Zephyr. Some helpful ones
include man zwgc, man zwrite, and man zctl. Also, looking in the dotfiles locker and at various
people’s world-readable .zwgc.desc files can give you more ideas about Zephyr customizations. You
can also read through the On-Line Consultants’ stock answers on Zephyr, by typing olc answers and
choosing the menu item on Zephyr. On-Line Help (OLH) also has information on Zephyr, which can
be found by typing help & and choosing the menu item “Communicating with other Users.”

You can also feel free to visit the SIPB office in W20-557, right next to the Athena Cluster in
the Student Center, call us at 253-7788, or email us at sipb@mit.edu and ask us whatever you are
interested in finding out. The Student Information Processing Board (SIPB) is a student volunteer
organization that helps computer users at MIT and provides many services to the user community.
You can stop by and ask us anything you’d like to know, about any computing-related topic, and we’ll
try our best to answer.

26

