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Abstract—A key challenge in ad-hoc, data-gathering wire- [8]. In [9], [10] energy-aware heuristics were used to guide
less sensor networks is achieving a lifetime of several yearsprotocol design in networks that support certain types of
using nodes that carry merely hundreds of joules of stored ¢q|laboration.
energy. In this paper, we explore the fundamental limits ., s haper, our main objective is not to propose a
of energy-efficient collaborative data-gathering by deriving .
upper bounds on the lifetime of increasingly sophisticated nevy coIIaboratlve. protocol that leads to gregte!’ network
sensor networks. lifetime. Rather, it is to bound the network lifetime that

any collaborative protocol can ever hope to achieve. In
previous work we computed such bounds for basic data
gathering scenarios using simple, non-constructive proof

Wireless networks composed of thousands of highly itechniques [11]. While this approach results in easy-to-
tegrated sensor nodes hold the promise of sensing thatse, closed form expressions for lifetime bounds, it does
far superior, in terms of quality, robustness, cost and awst factor in network topology and does not accommodate
tonomous operation, to that offered by using a few, ulteggregation of data streams. In this paper, we propose a
high precision macro-sensors [1]. Such sensor networken approach which, in principle, permits derivation of
are expected to find widespread use in a variety of apgdeunds for networks with arbitrarily complex capabilities,
cations including remote climate monitoring and seismialthough the computational costs of such derivations may
acoustic, medical and intelligence data-gathering. Dbe prohibitive. We then show that for several practically
to their compact form factors, wireless sensor nodes argeful scenarios, including sensor networks with a speci-
severely energy constrained. Furthermore, replacing bid topology that allow aggregation, this approach in fact
teries on up to thousands of nodes in possibly harsh terads to polynomial time bound derivation.
rain is infeasible. Hence, it is well accepted that the key In the next section we discuss the operation of sensor
challenge in unlocking the potential of such networks igetworks in greater detail, define lifetime and discuss node
maximizing their post-deployment active lifetime. energy models. We introduce the role assignment frame-

Effort aimed at increasing the lifetime of sensor nework in section 3 and use it to derive bounds for a variety
works is two pronged. First, the node and the physical data gathering scenarios. This is followed by some il-
link must be made as energy efficient as possible. See [ktrations of the new technique. We end with a summary.
[3], [4] for some representative work. Second, todlab-
orative strategyi.e. the strategy that governs how nodes
cooperate to perform the sensing operation, must be @n-Basic operation

ergy efficient as well. Work in this area has dealt with dif- The goal of a sensor network is to gather information

ferent aspects of the problem. Work reported in [5] higtf"_om a specified region of observatioR) and relay it to

lighted the need for metrics other than those used in tragj energy-unconstraindshsestatior(B) (figure 1). This

tional net\/\t/.orkshwh(_er;.energy IS Ian ISSUe. Vgr_'oﬁ_ener%formation originates due to one or m@eurcedocated
aware routing heunstics were aiso proposed in this papgfy - a¢ any given instant, nodes in a sensor network can

The first demonstration of near-optimal maximum IifetimSe classified ative or deaddepending on whether they
routing in ad-hoc networks was [6], [7]. Minimum-energyl,k/

but infinite lifeti d-h work th biect ave any energy left or not. By assuming different roles,
ut infinte irtime ad-hoc networks were e SUJECt Qe nodes collaborate to ensure that whenever a source re-
The authors are with the Department of EECS, Massachusetts ingides inR, itis sensed using a minimum specified number
tute of Technology (MIT), Cambridge, MA 02139. M. Bhardwaj isof sensorsX) and the resultant data relayed /B In the
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data to be routed to the basestation is reduced and the qual-
ity of the aggregated stream is higher than that of the raw
streams from which it is derived [12]. Consider a sensor
network that detects tank intrusion in a specified region.
Several nodes might declare a tank present with varying
levels of confidence. All these “tank detected” messages
may be routed to a node that aggregates them into a sin-
gle message with a revised confidence measure. Aggre-
gation here corresponds ttata-fusion As another ex-
ample, consider a sensor network collecting acoustic data.
When an acoustic event occurs, sensors record it with vary-
ing signal-to-noise ratios (SNRs). In this case aggregation
might entailbeamforminghese different streams to obtain
a single aggregated stream with enhanced SNR [13]. We
classify aggregation intoon-hierarchicaland hierarchi-
_ . _ cal varieties. In the former, all raw streams are aggregated
Fig. 1. A sensor network gathering data from a circularly ol 5 gingle node, while the latter version allows aggregation
servable source (denoted by<d residing in the shaded re- . .
of partially aggregated streams. The aggregation sub-role

gion R. Live nodes are denoted yand dead ones by. | . . .
The basestation is marked. In this example we require IS qualified by two attributes — the set of nodes transmit-

that at-least two nodes sense the source. When the sourdéid raw data to be aggregated and the destination node
at Sy, nodes 1 and 7 assume the role of sensors and notigeeiving the aggregated stream.
2 -3 — 4 — 5 — 6 form the relay path for data from Note that while nodes change their roles with time, we

node 1 while node§ — 8 — 9 — 5 — 6 form the relay assume that their locations are fixed.
path for data from node 7. Data might bggregatednto

one stream at node 5. This is not the only feasible role g8: Defining Lifetime

signment that allows the source to be sensed. For instance . . .
node 10 could act as the second sensor instead of node 7 data gathering network can be in one of the following

and10 — 7 — 8 — 4 — 5 — 6 could form the corre- States:

sponding relay path. Also, node 6 might aggregate the ddta Source present in region but network not sensing. This
instead of node 5 etc. Finally, note how the sensor, aggis-termed “loss of coverage”.

gator and relay roles must change as the source moves fromgource present and network sensing while satisfying
So to 51. At every instant, the following decisions must,ser gictated constraints. This state is termed “active”.

be made: which sensor(s) to use, whether to aggregat °'Source present and network sensing but not satisfying

not, where to aggregate, what fraction to aggregate, how 1o ! . . . B . .
route data to the aggregator, how to route aggregated d4g€" dictated constraints. This state is termed “quality fail-

and how to account for changes in source location. This dé\r—e”-
per demonstrates a computationally feasible methodology?o NO source present in the region.
upper bound the lifetime thainycollaborative protocol that In non-mission-critical applications, a reasonable defini-
makes these decisions can ever hope to achieve. tion of lifetime is the cumulative active time of the net-
work (i.e. whenever the network is active its lifetime clock
is ticking, otherwise not). In mission-critical applications,
which must now be relayed to the basestation. Hence tietime is defined as the cumulative active time of the net-
sensor sub-role is really a “sense and transmit” sub-rau@rk until the first loss of coverage or quality failure. In
and is qualified by a single attribute — the node that rthis paper, we adopt this latter definition of lifetime. Note
ceives the raw sensor data or simply the destination nodbat active lifetime is different fromphysicallifetime. For
« Relay: The node simply forwards the received data oifstance, a sensor network deployed to detect tank intru-
ward without any processing. A relay sub-role is qualifiesion can “live on” forever (ignoring battery degradation,
by two attributes — the source and destination nodes of ieékage etc.) in the absence of activity. But it can only
data being relayed. detect, say, 1000 hours of tank intrusion.
« Aggregator: The node receives two or more raw data .
streams and then aggregates them into a single strefm.Node Composition and Energy Models
While the actual mechanism is application dependent, theDespite the many implementations [1], [14], [15], inte-
underlying motivation is the same — the total volume afrated wireless sensor nodes have the same overall com-




position illustrated in figure 2. 1. BOUNDSUSING OPTIMAL ROLE ASSIGNMENTS

In previous work [11], we tackled the following prob-

Digitized Processed Ie m:.

Seneor g = Given the region of observatiof®{, the source radius of
Vv observability @s), the node energy parameters {, a2,
s az, a3 andn), the number of nodes deployed’), the
Progessor initial energy in each nodeF), what is the upper bound
on the active lifetimet) of anynetwork established using
R these nodes which gathers data from a source residing in
sensor Computation Communication R according to a specified spatial p.ddsurcd z, 7)™
The key steps we used to derive tight or near-tight
Fig. 2. Composition of the wireless sensor node. bounds were:
1. Computing the minimum cumulative energy needed to
relay a bit over a certain distance, where the minimum is
C.1 Sensor Core calculated over all possible multi-hop topologiesp/f is
a convex function of distance, this minimum turns out to
ﬁe%asy to compute.
2. Deriving a lower bound on the expected power dissipa-
tion in an ad-hoc network.
3. Using energy conservation to derive an upper bound on
lifetime using the lower bound on average power.
Using this technique, the bound on the lifetime of a net-
We assume the following model for the power dissipavork gathering data from a source residing in a certain
tion whenn,g, raw streams are aggregated into a singfegion is given by:
stream [16]:
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We assume that the energy needed to sense a bit
constant 3). Thus, for a sensing rate given byits/sec,
the sensing power is simpptc,.se = asr. Atypical value
of ag is 50 nJd/bit [10].

C.2 Computation Core
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wherer is the rate (in bits/sec) of each of thg,, streams
(and also that of the output stream) adglis a constant.
Note thatp.., just represents the energy dissipated in dehar =
the computational core. The energy costs of receiving

the streams and transmitting the aggregated stream are3@€l dgeom is @ function of the geometry ok and the
counted for separately. The parametgrcan be anywhere P-d.f. lsoucdz, ). Note that these bounds hold in a limit-
from a pJ/bit to 10s of nJ/bit depending on the type of affleorem sense i.e. the probability the bound holds can be

where,
Q1

{ ag(n — 1)

gregation and the architecture used. made arbitrarily close to 1.
The bounds derived using this technique allow quick es-
C.3 Communication Core timates of the maximum possible lifetime. However, they

_ ~do not factor in the topology of the network and are de-
We use the following models for the communicatiofyeq for non-aggregating networks. We now introduce a
core [17]: new framework that eliminates these deficiencies.

pz(ni,m2) = (a11 + azd(ni, n2)")r (2) A. The Role Assignment Framework

Prz = o12r 3) We introduce the simple and intuitive concepts of roles

_ o _ and role-assignments in sensor networks.
wherep;,.(n1,n2) is the power dissipated in nodg when

it is transmitting to nodes, d(ny,n2) is the distance be- Definition 1 (Role). A role is composed of one or more in-
tween the two nodes, is the path loss index, and thes stances of the three sub-roles introduced earlier — sensing,
are positive constants. Typical values of these paramete[é\lhen we say a source “resides in a region” according to a spatial

areay1=45 nJ/bit,a12=135 nJ/bitx =10 pI/bitin? (n=2) p.d.f., we mean that its successive locations in that region are i.i.d. ran-
or 0.001 pJ/bith?* (n=4) [10]. dom variables that are governed by that p.d.f.



relaying and aggregating. At most one sensor sub-role chrads to,
be assumed. Several relay sub-roles can be assumed only .
. - e ={fil1<i<

when data streams being relayed originated from distinc f {1f"1 B 12_ 1%}’ where,
.. : — : —

sensor nodes. Similarly, a role can have several aggrega-f1 159 ' B9 B

. . : — :

tion sub-roles only if those sub-roles aggregate data from?? 153 B’ 5 . B

distinct originating sensors. The unique role that has no ’? ’

i . f1:1-2—-3—-B;2— B
sub-roles is called thdormantrole. Filo B2 3B

f6:1—-2—-B;2—-3— B
Definition 2 (Role Assignment). An assignment of roles f;:1 -3 — B;2 -3 — B
to nodes in a network constitutes a role assignment. fs:1—-2—-3—-B;2—-3—1B
fo:1—-2—>B;2—> B
fio:l—-2—-3—-B;2—-3— B
fi1:1—-3—-B;2—-3— B
fi1e:1-2—-3—-B;2—-3—- 0B

1. Results in data being relayed from the minimum speci- i . . -
fied number of sensors to the basestation, and. The reader may wish to verify that this is an exhaustive list

. . of all non-self-crossing FRASs that allow aggregation. The
2. Has no r_edur_ldancy_l.e. no s_ub—role in any node can H%t 8 FRAs are non-aggregating. In the first FRA)(for
deleted while still obeying the first property, instance, the data from node 1 (which is sensing) is routed
straight to the basestation and the same is true for node 2
s{also sensing). Consider now an aggregating FRA fsay
Here, node 3 is the aggregatoNode 1 is sending its raw

f is being sustained by the network is denoteg:by f). sensor data to 3 via 2 while 2 is sending its data straight to

The energy models discussed earlier lead to simple, closed IS @ggregating these two streams into one and sending
form expressions fop(i, f). the aggregated stream straight to the basestation.

Consider the example network in figure 3. If we corPefinition 4 (Feasible Collaborative Strategy).A col-
laborative strategy specifies the FRAs used by a network

to fulfil its contract. Specifically, a collaborative strat-
egy is simply aF|-tuple where the™ element specifies
the time (possibly zero) for which the corresponding FRA
is sustained. A collaborative strategy is ternfedsible
Fig.3. A coIIinegr 3-node network with node 1 as the assigng\q,ith respect to the network’s initial energy state) if, after

Sensor dchar IS 134 meters). its execution, all nodes have non-negative residual energy.

The lifetime achieved by a feasible collaborative strategy

strain node 1 to be the sensor, there are 4 FRAs given kg, simply the sum of the elements of fRgtuple.

Non-aggregating

Definition 3 (Feasible Role Assignment (FRA)).A role
assignment is termeeasibleif it:

Aggregating

We denote FRASs by and the set of all feasible role a
signments byF. The power dissipated in noderhen FRA

B

We denote feasible collaborative strategies:land the

F ={f1, fa, f3, fa}, where, (infinite) set of all such strategies ky. The lifetime
fi:1—B achieved by is denoted by(c).
fo:1—2—-DB Proposition 5 (Lifetime Bound). The lifetimet, achieved
f3:1—-3—B by a wireless sensor network is upper bounded thus:
fi1:1—-2—-3—B tSmaé(t(c) (5)
ce

There are in fact 8 FRAs, but we have ignored the “self- Proof: At any instant, an active network must sense
crossing” ones likd — 3 — 2 — B because they arethe source using the specified minimum number of sensors
clearly sub-optimal in collinear networks. Note that ther@nd deliver bits to the basestation. Every bit is delivered

can be no aggregation since only one, pre-assigned n¥tesome assignment of roles to nodes. In practical net-
senses. works, there are energy overheads incurred for, say, pro-

Consider, the same network, but with the constraint thtgfOI operations (like media access control etc.). Hence,

both 1 and 2 must sense and aggregation is allowed. Thihe aggregator has been emphasized in aggregating FRAs.



the lifetime computed in the absence of such overhedsls Topology Sensitive Bounds

is a valid upper bound on lifetime. Finally, note that, by While the framework in table I is conceptually straight-

construction, using role assignments that are non—feasiRJRNard to use to tackle topology, it suffers from a com-
calnnot Improve t'he bhound. I—Il;rz:e we take the max'm"f:ﬂ]tational drawback since the number of FRAs grows ex-
on y ov.er strategies _t atuse S ponentially with the number of nodes. Interestingly how-
Finding the quantity on the RHS of (5) turns out to be @ver, we will show that for a broad class of role assign-
straightforward linear programming problem as shown fent problems, we can derive our bounds in a time that
table l. The fiI’St set Of ConStl’aintS iS ObViOUS - |t makeS ng polynomialin the number Of nodesl Speciﬁca”y’ we
reason that if the role assignment problem can be trans-
P formed toresemblea network-flow problem, a computa-
ionally tr I lution might follow. This r nin
A t=zti tionally tractable solutio ght follo S reasoning
=1

Objective:

is motivated by prior work in the area of energy efficient
multi-hop routing in ad-hoc networks [6], [7].

To illustrate this idea, consider once again the network
in figure 3. One way to view the optimal strategy is that
f2 is sustained for 0.375 se¢; for 0.375 sec and; for
0.625 sec. In other wordg;, and f5 are each responsible
for shipping-2 of the data whilef, ships the remaining;.

) ) It follows that link1 — 2 carrieslg—1 of the data. Similarly
Zp(l’ fitj<e + 1<i<N () Jink 1 — 3 is responsible for shipping:, all of which is
=1 due tofs. Figure 4, demonstrates this transformation. We

wheret; corresponds to the time for which FRA is sus-
tained.
Constraints:

;>0 :  1<j<|F| (6)
||

TABLE |
5/11 5/11
LINEAR PROGRAM FOR DETERMINING OPTIMAL T AR
COLLABORATIVE STRATEGY
\\:'\.§ /// 3 "~ e 2'\ ////l
B o~ T - . _ //// - ;(\\ N, T

_ _ o T -7 3AL IR L1
physical sense to sustain a FRA for negative time. The sec- s 311
ond set of constraints are energy conservation constraints, @
one for each node, with the LHS denoting the energy con- 511+ 311 51 511+ 311

sumed and the RHS the initial energy the node started out
with. The solution of this linear program yields the opti-
mal collaborative strategy and as a result a bound on t
lifetime of the network.

For the example network in figure 3 with no aggre- sl 31
gation, the optimal collaborative strategy turns out to beFig. 4. Deriving a flow view from a role assignment view.
(0,0.375,0.375,0.625) sec i.e. the first FRA is not used at
all, the second is used for 0.375 sec and so on. This Yiel§e transformed the role assignment view to the network
a lifetime bound of 1.375 séc For the aggregating case&oy view:
with two sensors, the optimal turns out to fge= 0.3192,

tg = 0.8938 and;p = 0.3192 sec, with other FRAs sus- fi2 = rsl

tained for zero time, yielding a bound of 1.532 sec. t1 =0 sec Jiz = T31

In the next four sections, we will use this role assign- t2=0375sec{ | fip=0

ment framework to include network topology, sets of po- t3 = 0.375 sec fa3 =11

tential sensors, aggregation and source movement. tq = 0.625 sec ;23 = é
\ J3B — 11

3The reader should not be alarmed to see lifetimes of mere seconfflere fij is the flow from node to nodej. Note that

This i he initial energy w r | 180 n iel . e . . .
rhis is because the initial energy was purposely set to 180 nJ o yigldl o o 5 stified in calling the above view a flow because
lifetimes around a second. Real-world nodes start off with several hun-

dreds or thousands of joules. Note that lifetime bounds derived vdlySatisfies the following properties expected of any valid
linearly with the initial energy per node. flow:



1. Non-negativity of flow. straints simply state that this is a valid flow. The third con-
2. Conservation of flows at all nodes but the sensor. Irstraint normalizes the flow out of the sensor. This ensures
other words the total flow out of a node is the same as ttiat if the flows above can be sustained for timéhent

total flow into a node. is simply the lifetime of the network. The last condition

It is fairly straightforward to see that for the class of nestates that the total energy drain of any node be no greater
works with an assigned sensor (as in the flow constructitii®n the initial energy present in that node. Replacing each
example above), every flow view that is constructed fromtgaknown flowf;; with a new unknown;; = f;;t ensures
collaborative strategy will have these properties. We ndii@t the program is linear in the new unknowns. Also, the
ask the reverse question - can one always derive a fe&mber of constraints and variables are now polynomial in
ble collaborative strategy given a flow and the total lifdhe number of nodes and we can compute the upper bound
time? It turns out that we can, since every flow can b@ polynomial time.
expressed as a sum of cycles and paths from the sourc&t
sink with non-negative weights [18]. These paths corre-
spond to FRAs for the simple case of a fixed point sourceln practical networks, we must deal with a set of po-
with an assigned sensor. This case turns out to be the migxtial sensorsq) of which a specified numbek( 1 <
imum lifetime multi-hop routing which was first reportedc < m = [S]) must be active. For instance, in the
in [6], [7]. We can now replace the program in table | witiexample shown in figure 1, we requiréd = 2. Also,
that in table Il. We have labelled the pre-assigned sensor {1, 7,10} when the source is at locaticfy. The case

of a pre-assigned sensor considered in the last section is
Objective: simply corresponds té = m = 1. While our original
max t linear program (table 1), can handle this new problem, the
problem is again computational complexity. Rather, we
will resort to the flow view again. Two modifications to
the program in table Il allow us to capture thig 6f m”

0Set of Potential Sensors

Constraints:
Non-negativity of flow:

fij 20 (8) sensors problem:
Conservation of flow: Objective:
max ¢ (12)
Z fsi = Z fia: 1€[2,N]  (9) Constraints:
selLN+1] defl,N+1] Non-negativity of flow:
571 d#i
fij >0 (13)

Total sensor flow:
Flow conservation:

> fa— Y. fa=1 (10) S fi= Y fu: i€LNLigS (14)

aelH] seRNT €[L,N+1] de[1,N+1]
S b b
Er) d#i
Overall flow from sensor seb|:

Energy constraints:

t < Z Dta (i7 d) fia + Z Prefsi +  Dsense

de[l,N+1 e[1,N+1
[d;éi ] E [s;éz‘ ] For node 1 only Z Z Fid — Z fil =k (15
<e: 1€][l,N] = dE[Z,?Zé\;—i—l] Se[igﬂ-l}

Non-consumption of flow in sensors:

TABLE Il
PROGRAM FOR COMPUTING BOUND USING FLOW VIEW Z fia — Z fsi>0: 1€8 (16)
de[1,N+1] s€[L,N+1]
d#i s#£i

node 1 and the basestation is n@del. The first two con- Limit on total flow from any single sensor:

“Knowledge of the total lifetime allows one to determine #ieso- Z fid — Z fa<1: 4i€e8 an
lute, rather than relative, durations for which the FRAs must be sus- de[1,N+1] s€[L,N+1]

tained. d#i s#i



Energy constraints: which nodes to use as aggregators, how to route data to the
aggregator(s) and from the aggregators to the basestation.
. A . Of course, we must also find out how to change these deci-
t{ de[l,ZN—i-l} Pra (i, d) fia + SE[LZNH] Prafsit sions with time (which corresponds to how long we should
doti s£i sustain these FRAS) so as to maximize lifetime.
This represents an important conceptual leap since we
‘ are exploring the fundamental tradeoff between computa-
Psense Z fia — Z fsi } <ei: 1€ [LN] tion and communication (as captured by the cost of ag-
de[b’;\fiﬂ] Se“g;ﬁ]\/ﬁ” gregating versus the cost of relaying data, respectively),
- - a theme which has not seen rigorous analysis in previous
Term to be included for potential sensors only work. We want to repeat that the general role assignment
framework in table | is capable of producing a bound, but
will get computationally burdensome for largé Hence,

_ . _ we focus on a transformation to a flow-centric view in-
First, (10) has been modified to (15) because 'nSteads‘t)éad

unit flow from an assigned sensor, we now desire the ne{ o pirg can originate from several sensors in a non-

sensor flow out of5 to be k. Simply equating theotal_ aggregating network, they undergo no change till they
flow out of 5'to be: does not guarantee that the reSUItIn|geach their common, final destination — the basestation.

flow solution will have a meaningful equivalent CouabOHence, at any instant, there is a single commodity flow-

rative strategy. We have to guard against two possibiliti&s

(18)

. through the network. Consider an aggregating network
— nodes inS that consume data or that produce too mu J g ggregating

e ith, say, three, potential aggregators - nodes 4, 6 &nd 7
d_ate?. To see why the Iatfter S|tuat|or1 ISa prob_lem, Cori\'low, bits haveour potential destinations - the basestation
sider, a scenario where: '5_5 andk is 2. Solving the and these aggregators. Bits that go unaggregated or that are
program might yield a solution where one of the nodes oduced as a result of aggregation comprise the first com-

S accounts for the entire flow of 2. Clearly, such a flo odity (which we abbreviate amiagg. Bits destined for

cannot be transfated to a collaborative str_ategy. wherea E;regation at one of these aggregating nodes comprise the
least two nodes sense when the network is active. C% Rer three commodities (which we teragg commodi-

straint (16) precludes sensors from consuming data WWilgs). This leads td + | P| commodities in general. This

(17) prevents sensors from'producmg tgo much data.i treminiscent of anulti-commaodity flowproblem except
turns out that these constraints are not just necessary

lé& the commodities are not distinguished based on their

also sufficient to guarantee. the existence of an equwalgghrce but their destination and flows are not conserved
strategy. In other words, given a setsafflows (one for Jvhen raw streams are aggregated

each sensor it%), all of which are no greater than 1 an In the program that follows, floy;; . indicates flow on

add up tok, we can always guarantee that there eX'StStr?e linki — ;j carrying commodity: i.e. destined for ag-

schedule where exactly of m sensors are active at any@;egation at node. We use> — 0 for the case when the

time. We omit the simple constructive proof. Once aga . : .
. . . . <~ Tlow will not be aggregated i.e. for thenaggcommodity.
using a change of variables identical to that used in t . .
encez € {0} U P denotes: running over all commodi-

previous section, we end up with a linear program Whlspes. Given a node, any flow originating from or terminat-

can be solved in polynomial time. Hen_ce, I|fet|me bour_1 n%g in itis said to beelatedto the node if the commodity it
for the k of m problem can also be derived in polynomial = . . .
carries is destined for the node. Hence, only flows of type

time. fiji or fji; are related to node It follows that nodes not
D. Bounds for Aggregating Networks in P have no related flows.

Aggregation can significantly increase the lifetime of @bjective:
network by reducing the volume of data that needs to be max & (19)

relayed to the basestation. We now generalizekté m

scenario to include non-hierarchical aggregation. Insteg@gneral Constraints

of simply deciding which sensors to use from the poteflon-negativity of flow:

tial sensor-set and how to route data, we must now de-

cide what fraction of the data to aggregate, how many and fisz > 0: 4j €[, N+1,zc{0}uP  (20)

Note that (14) imposes flow conservation only on noges. SWe denote the set of potential aggregatorsgby



Absence of related aggregated flow in output: Non-consumption of flow in sensors
Non-consumption of unrelated flows in sensors:

fid7i:O: ’L'EP,dE[l,N—Fl],d?éi (21)
Overall flow from the sensor sét Z fidz = Z fsizt 1€85z2€Pz#i
de[1,N+1] [1,N+1]
d;éz s;ﬁz

(28)

Z Z Z fidz = Z Fsiz | =k (22) Non-consumption of theanaggcommaodity in sensors that
2€{0}UP i€S \ de[1,N+1] s€[1,N+1]

2hi deti ook are not aggregators:
Energy constraints: Z i > Z fizo: i€S—P (29)
s€[1,N+1] de[1,N+1]
oy
t{ Z ptac Z d Z fzd z+ Pagg Z fsz % - 7
de[1,N+1] ze{0}uP s€[1,N+1] Non-consumption in sensors that are aggregators:
d#i s#£i
i 1
Term to be included f
poteerrq;ia(l)ageglrr:e%gtois oonrly Z fzd 0— Z fsi,O > E—1 Z fsi,i
de[1,N+1] s€[1,N+1] s€[1,N+1]
d#i s#i s#£i
+ Psense Z Z fid,z - Z fsiz | + : ieSNP (30)
z€{0}UP \ d€[1,N+1] s€[1,N+1] L
244 d#i s#i Limits on sensor flows

Term 1o be included for Limits on total flow from any single sensor:

potential sensors only

E Drz E fsi,z} <e:1€ [LN] (23) S '
SE[L,N+1] 2€{0}UP Z Z fia,z Z Jsiz
s#i 2€{0}UP,2#1i d6[2g+1] 86[1¥N+l]

Conservat_lon Constraints o _ <1:ieS (31)
Conservation ohggcommaodities in the basestation:

o fawvane= Y, fovina:2€P  (24)

Limits on sensor flow destined for aggregation:

s€[1,N] de[1,N] )
. . . Z fzdz - Z fszz < - Z fsz,z
Conservation of flow in nodes that neither sense nor aggre, (i v i k sl
gate: d# S;ﬁz Ly
ie€S,zePz#1i (32)
Z fsi,z = Z fid,z
s€[1,N+1] de[1,N+1]
7 o W lain the constraints in the program. Con
i€[1,N]— {SUP},ze {0}UP (25) e now explain the constraints e program. Co

straint (21) states that if a flow originates from an aggre-
Conservation ofinrelatedflow in aggregators that do notgator, it must not carry any commodity that is destined for
sense: that aggregator. (22) is essentially the same as (15) with
the only difference that since we have multiple commodi-
Y. fuie= ) fua:: i€P-Sz€Pz#i ties he?/e, we must sum over all of them. Corl?straint (23) is
sell ael e a similar extension of (18).
(26) Constraint (24) ensures thaglg commodities are con-
Aggregation Constraints Compression ofelatedflow in  served at the basestation whereasggcommodities are

aggregators that do not sense: unconstrainefl In nodes that neither sense nor aggre-
gate i.e. which only route, conservation constraints are
Z fia0 — Z fsio =7 Z fsisi the same as before — every commodity is conserved as ex-
de[L,N+1] €[1,N+1] se[l,N+1] pected (25). In the case of an aggregating node that does
d#i s#£i s#£i

"An interesting side effect of aggregation is that it can be beneficial

iepP—-5 (27) to routeaggcommodities at the basestation back into the network!



not senseunrelatedflows must be conserved (26) while
the the neunaggflow is augmented by the volume of the
aggregated stream (27). Note that this volume is simply
1//lcth the volume of the total inflow destined for aggrega-
tion.

The single non-consumption constraint (16) stated ear-
lier now leads to three constrainRelated aggommodi-
ties are already taken care of by (27). Constraint (28) han-
dlesunrelated aggcommodities and is conceptually iden-
tical to (16). Next, consider thenaggcommodity. FOr iy 5 pividing a region into sub-regions based on sets of po-
sensors that are not aggregators, the constraint oarthe  tential sensors.
agg commodity is straightforward (29). For sensors that
are also aggregators, thmaggoutput must not only be
greater than thenagginput, but greater by the volume o

gsources —one in every sub-regfolVe want to determine

the aggregated stream produced at the node (30). Note {H grnaximum p0-35|'ble lifetime such that the source re-
we usel /(k — 1) and notl/k since one stream destineg'dng in sub-regiony can be sensed for a certain fraction

for aggregation must come from the node itself. n; of the lifetime. _
. . . We extend our single source framework to attack the
The final constraints are the limits on sensor ﬂowﬁﬁultiple source problem as follows. We deal with
V;hl'Ch vtvhere motlvate(i;n thedlast sec;uon. The first ?f thesé%urces by splitting each node infovirtual nodes, one
(31) 'S IN€ Same as (17) and prevents any sensor from rrc18Fresponding to each source. We then setup constraints
nopolizing the output from the sensor group. We also ne%q the /" source { < I < L) as we did for the single
to prevent a sensor from monopolizing the sensor tiow PR

ith the followi ifications:
a particular aggregatomwhich is achieved by (32). source case, with the following modifications

. ) . 1. Flowsf;, . are now labelled;; . ; where the new sub-
We have omitted the more complex case of hierarchicgl, Jig.: iy,

: _ ipt indicates that the flows correspond to source
aggregation due to lack of space. The interested reaggr.rhe overall flow from the sensor-set is seftb instead

s referreq to [19], Whgre we ShO\.N that bqunds can %‘fn'k (cf. (22)). Similarly, the RHS in (31) is changed from
obtained in a computationally feasible fashion for a Coq.-tOm

strained form of hierarchical aggregation. 3. We do not impose the energy constraint (23).

_ _ _ After setting up these constraints for thesources, we
E. Extensions to Arbitrary Regions setup asingleenergy constraint for each node by constrain-

ing the sum of the energy consumptions of ftsvirtual

In the previous sections, we showe_d how bounds C80pies to be less than the initial energy in that node. The
be refined to include topology, potential sensor sets ay ective is the same as before - maximizingMe claim

aggregation. Throughout, we implicitly assumed a f'Xe(ﬂat this new program solves our optimization problem.

point source. We now e_:xtend our framework to allow To see why, first observe that any solution produced by
sources that reside in regions. . L . . .
o . _ _ this program is in fact feasible. We can start with the first
Two insights lead to a solution of this problem. Firskoyrce, map the flows corresponding to this source to the
we transform the problem d single source residing in 53l nodes (we can do this since the flows obey single
a regionto a problem ofmultiple sources at fixed points g rce constraints) and allow them to runfet time. We
Next, we use a simple trick to extend our single-sour¢gap, do this, in sequence, for all tiesources. Our uni-
framework to accommodate multiple sources. fied energy constraint guarantees that we cannot run out of
We use the network in figure 5 to illustration the firsgnergy in the interim.
idea. We divide the region of observatioR)into sub-  Next, we claim that any solution to the multiple sources
regions characterized by the set of potential sensors. phiyblem can always be expressed in the form above i.e.
our example, there are twelve sub-regions. Consider s¥Ring the language of virtual nodes. Consider any such so-
regione, which is characterized by = {1,2,3}. Also, |ution. It must correspond to a feasible collaborative strat-
we eXpeCt the source to residedrfor a fraction of time egy for Sensing these mu|t|p|e sources. We can group all

(say,n) equal to the integral of the location p.d.f. evaluatedRAs which are used for sensing the first source, all FRAs
overe. We can similarly characterize every sub-region.

We now have a problem which is identical to sensing 12Fixed atanypoint in that sub-region.
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used for the second source and s8.@ince each of these 12,
groups of FRAs can be translated into flows that obey sil
gle source constraints, we end up with a virtual node viev 10
Note that this virtual-node based approach leads to a <
lution that runs in time that is polynomial in the number oig ¢l
nodes and locationd,. In practical sensors networks, the§
region of observatiorR) is much larger than the source’s & Al
region of observability. Furthermore, the node density ar &
source observability radius are fixed parameters that do r £
change withR. Under these assumptions,is propor-
tional to the area R and as a consequence to the numbe

Life

of nodesN. 2

Finally, it is worth mentioning that the same technique
follows through if we are dealing w_it_h multiple moving o4, 5 6 7 8 9 10
sources whose trajectories are specified. Number of nodes in S that must sense (k)

Fig. 7. Lifetime bounds of the network in figure 6 as a function

IV. ILLUSTRATIONS .-
of the minimum number of nodes that must serige (

We present two illustrations of the techniques developed

T e e ool noerrcical soregatn. e ran cu roras
i Fofthe aggregated and unaggregated versions. They reveal
the source change. In figure 6, we have a set of ten pot«tahn-

. : at aggregation has the potential to increase lifetime b
tial sensors. We vary the number of desired observers fr%’?actgrgof% 67 over the uEa reqated case if agare atioyn
one to the maximum possible, ten. For each valug ofur ' ggreg gagreg

) costs are small compared to receive costs.
k-of-m program presented earlier computes the bound on

lifetime. The resulting bounds on lifetime are in figure 7. 3000
8
1
2500( ]
500 10 55 62 1 12 4
31 41 4 56
64 12 6
21 2000¢ ]
400t M 59 3 635 ] 14
11 $2 20 44 60 20 2
30 46 45 528 4719 1500} 10 10
300 4%6 40 g 17 5
g 25 29 7 18
— 6
200l ¥ 27 35 39 | 1000 13
6 53 11
9 18 3 24 3
100! 14 26 54 | 5001
57 87 50 3815 4 x
9
458 " 23 | | | 15
0
or X 22 1 0 500 1000 1500 2000 2500 3000
0 100 200 300 400 500 Fig. 8. An example 20 node network wiff¥{1,8,12, k=3 and
) . P={1:20}.
Fig. 6 The 64 node network with

5={4,5,9,12,20,32,56,62,63,p4and k varying from 1
to 10 that is the basis for figure 7. The basestation is marked
x and distances are in meters.

V. CONCLUSIONS

In previous work, we derived tight or near-tight but
Next, we see the impact of aggregation via the exampigpology insensitive bounds for non-aggregating sensor
network in figure 8. Here, we have a set of three potenetworks where the source resided in a region according to
tial sensors and we desire maximum quality3), but we a location p.d.f. In this paper, we generalized our bounds

9Note that if a FRA allows several sources to be sensed simultartlce)-the case of aggregating networks with SpeCIerd tOpOl-

ously, then it can be split into constituent FRAs that sense individU@dy and even source move_ment- _
sources. These bounds were derived by employing the formal-
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ism of feasible role assignments (FRAs). We argued that less ad-hoc networks,” iRroc. of IEEE INFOCOM 2000vol. 1,
there is a finite set of assignments of roles to nodes that Pp.- 22-31, 2000.

allow sensing in a non-redundant manner. Every bit r@] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless
’ networks,”|EEE Journal on Selected Areas in Communicatjons

ceived at the basgstation must have employed one of these | 17, pp. 1333-1344, Aug. 1999.
FRAs. The question then is —what FRAs must we use apfl W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
in what proportion such that lifetime is maximized. The Efficient Routing Protocols for Wireless Microsensor Networks,”

resulting lifetime provides a bound on the lifetime of ac- in Proc. 33rd Hawaii International Conference on System Sci-
9 P ences (HICSS '00Qyan. 2000.
tual networks.

[10] W. Heinzelman Application-Specific Protocol Architectures for
The role assignment technique is conceptually simple Wireless NetworksPhD thesis, Massachusetts Institute of Tech-

and extremely powerful since it can allow arbitrarily com-  nology, 2000.

. S . 1] M. Bhardwaj, T. Garnett, and A. Chandrakasan, “Upper bounds
plex ways of gatherlng data and still yleld crisp bouno[% on the lifetime of sensor networks,” Proc. of the International

via a linear program. However, it is computationally bur-  conference on Communications (ICC’0ayine 2001.

densome. We showed in this paper that a class of role g8} G. J. Pottie, “Hierarchical information processing in distributed
Signment pr0b|ems permit a transformation to linear pro- sensor networks,” irlnternational Symposium on Information
grams based on network flows that can be solved in pol . Theoryp. 163, 1998.

ial ti .. hasi h 3] K. Yao, C. Reed, R. Hudson, and F. Lorenzelli, “Beamforming
nomial time. It is important to emphasize that not a performance of a randomly distributed sensor array system,” in

role assignment problems can be similarly transformed. workshop on Signal Processing Systems (SIPS 97 - Design and

But several ones of practical importance — pure routing, Implementation)pp. 438-447, 1997.

non-hierarchical and constrained hierarchical aggregatiéf] J- M. Rabaey, M. J. Ammer, J. L. da Silva, Jr., D. Patel, and
S. Roundy, “Picoradio supports ad hoc ultra-low power wireless

mgltlple or moving sources, sources with spgcn‘led trajeC-  jetworking,”Computervol. 33, pp. 42-48, July 2000,
tories — are amenable to such a transformation. An intgfs] R. Min et al, “An architecture for a power-aware distributed mi-
esting open question is whether a similar transformation crosensor network,” iRroc. of the IEEE Workshop on Signal Pro-

exists for networks that allow generalized hierarchical ag-  Cessing Systems:Design and Implementation (SiPS200p.
gregation 6] A. Wang, W. Heinzelman, and A. Chandrakasan, “Energy-

) ) ) scalable protocols for battery-operated microsensor networks,”
While the framework here accommodates fairly sophis- in Proc. of the IEEE Workshop on Signal Processing Systems
ticated data gathering scenarios, other practical concerns, (SiPS'99) pp. 483-492, 1999.

chief amongst them the energy spent in the medium accgg% T. RappaportheI(_ess Communications: Principles & Practice
New Jersey: Prentice-Hall, Inc., 1996.

control (MAC), remain to be incorporated. It is our hopﬁs] R. K. Ahuja, T. L. Magnanti, and J. B. Orliretwork Flows:
that the techniques reported here will provide a starting Theory, Algorithms, and Application®rentice Hall, 1 ed., Feb.

point in constructing the ultimate bounds on the lifetime  1993.

of data gathering wireless sensor networks [19] M. Bhardwaj, “Power-Aware Systems,” Master’s thesis, Mas-
' sachusetts Institute of Technology, 2001.
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