Why are there multiple versions of some of the files within the generated archive?

The search to remove duplicates is non-recursive wrt the files that are found.

Ini files need to be as global as the *.con files.

New Mink installer requirements:

General

Must be a monolithic installer

This installer may be used by people all over the US and Canada. It is not appropriate to use an ftp based installer in this case. Also it looks like we will be moving away from ftp based installers in most cases based on user feedback and changing requirements.

Must display information about export restrictions

Done in an early readme screen. Should also be done at distribution time.

Should not require FTP from within the MIT.EDU domain

A separate application which performs a version server check for the mink installer has been created. This is executed early in the installation.

Must install v4 and v5 binaries and configuration

On Win95 and NT the user will have an option of 16 bit binaries, 32 bit binaries, or both. The installer will not distinguish between v4 or v5 binaries because very few users will know the application dependencies.

Deal with Win 3.x , 95, and NT

Assume both MIT and non-MIT users

The primary issues to be concerned about are: the contents of the configuration files (krb.con, krbrealm.con, krb5.ini, kview.ini) other issues are the TZ environment variable, the name of the machine to use as a time source, the default destination directory.

Microsoft LOGO requirements

	

By adhering the to Microsoft NT 5.0 logo requirements when possible we are making the machine easier to maintain and administer, with the goal of lowering its cost of ownership. These requirements should also mean that ZAW tools will be applicable to maintaining this software in the future.

Register Uninstaller Program and make it appear in Add/Remove Programs

The uninstaller must be properly registered and must appear under Add/Remove Programs in the Control Panel. The method for this registration is:

[HKEY_LOCAL_MACHINE]\SOFTWARE\Microsoft\Windows\Current Version\Uninstall\MINK

DisplayName=REG_SZ: MINK - Kerberos v4 and v5 libraries and utility applications

UninstallString=REG_SZ: %MAINDIR%\mink.log /h

Your application installer must register all shared components that are designed to be uninstalled under the following registry key:

[HKEY_LOCAL_MACHINE]\SOFTWARE\Microsoft\Windows\Current Version\SharedDLLs

�SYMBOL 183 \f "Symbol" \s 11 \h �	Set count correctly for pre-existing unregistered shared components during installation. (Best Practice)

Get a list of the obvious Kerberized applications and make the count reflect them.

or

If your installer finds a shared component already on the system and not registered, the SharedDLL reference count should be incremented by one plus the number of clients being installed.

Note: we are using the “shared DLL” check box in the Install File function in WISE. This is documented to increment the shared DLL registry key. It appears that it will increment by two if the key did not previously exist but we are replacing the file. We are not going to try and determine how many Kerberized applications have been installed on the machine.

Kview.exe would imply a count of 1 for kclient.dll, krbv4win.dll, leashwin.dll. Leash.exe would imply a count of 1 for krbv4win.dll, leashwin.dll, vs.dll. So, you might think that on a pristine machine the counter for kclient.dll should be 1 and the counter for krbv4win.dll should be 2 at the end of running MINK once. However, the counters are there to support the uninstaller. And the uninstaller treats each of these shared DLLs as part of the entire MINK package. This implies that the counter should be the same for each of the shared DLLs that is installed by MINK.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Decrement the count on shared components while uninstalling. (Required)

		This is supposed to be handled by the WISE uninstaller. Needs to be confirmed during testing.

�SYMBOL 183 \f "Symbol" \s 11 \h �	Leave a zero count if not removing a component during uninstall. (Required)

	I don’t know if the WISE uninstaller addresses this issue. However the uninstall log gets appended to if the user runs the installer multiple times. This means the most of the correct things happen if the user runs the uninstaller.

The uninstaller must remove all advertisements and shortcuts placed anywhere in the Start menus (by its installer) that are associated with the component that is being removed.

The uninstaller must remove all registry entries created by the application with the exception of keys that might be shared by other programs.

The uninstaller must remove itself.

Do Not Write to Windows System Directories (recommended)

Your application should not write anything to the Windows \system or \system32 directory. In particular, they should not place shared DLLs or executables to the Windows system directories.

On Windows NT 5.0, the operating system will support a mode in which the \system32 directory is read-only and unavailable to applications and installers. This will be part of the Zero Administration for Windows effort to reduce DLL conflicts and other shared component problems.

MIT’s default location is c:\net\mit\ and then this directory is added to the path. The second most frequent location is the \system32 directory but now this must be stopped. The next best alternative appears to be \program files\mink and then put this into the path. This seems like a big consumption of the limited length of the path. Note that the value “program files” is actually read from the registry, and the actual name is under user or administrator control.

Support Informational Keys in the Registry

Your application must write all the information in the table below to the registry so that Add/Remove Programs in the Control Panel can obtain information about the application as needed.

The registry values should be written under the following key:

HKEY_LOCAL_MACHINE

 \Software

 \Microsoft

 \Windows

 \CurrentVersion

 \Uninstall

 \NameofApplication

Name of Value�
Type�
Contains�
�
�
�
DisplayName�
REG_SZ�
Display name of application. [MINK - Kerberos v4 and v5 libraries and utility applications]�
�
UninstallPath�
REG_SZ*�
Full path to the application uninstall program. [TBD!!!!]�
�
ModifyPath�
REG_SZ*�
Full path to the application setup/modify program. [In this case we will not add the registry value.]�
�
InstallLocation�
REG_SZ*�
Full path to the application (folder or *.exe). [%MAINDIR%] (%MAINDIR% is the expansion of the destination directory selected during the installation.)�
�
InstallSource�
REG_SZ*�
Location where the application was installed from. See Implementation below. [%INST%\mink.exe; http://mit.edu/is/help/mink/]�
�
DisplayVersion�
REG_SZ�
Displayed version number of application. [2]�
�
VersionMajor�
DWORD�
Major version number of application. See Implementation below. [2]�
�
VersionMinor�
DWORD�
Minor version of application. See Implementation below. [0]�
�
Publisher�
REG_SZ�
Publisher/developer of application. [Massachusetts Institute of Technology]�
�
ProductID�
REG_SZ�
Product ID of installed application. [980129]�
�
RegOwner�
REG_SZ�
Registered owner of application.�
�
RegCompany�
REG_SZ�
Registered company of application. [MIT]�
�
HelpTelephone�
REG_SZ�
Telephone number for support/help. [(617) 253-1102]�
�
HelpLink�
REG_SZ*�
Full path of Help file or Help URL for application. [%MAINDIR%\kerberos.hlp]�
�
URLUpdateInfo�
REG_SZ�
URL of update information for application. See Implementation below. [http://mit.edu/is/help/mink/]�
�
URLInfoAbout�
REG_SZ�
URL that provides a link to the publisher's home page or the application home page. See Implementation below. [http://mit.edu/kerberos/www/]�
�

Implementation

InstallSource

This is the path from which the application was installed. It can also be an HTTP site or a network UNC path, such as \\applications\sample. If the application is installed from a floppy, this value would be a:\ for the floppy drive letter. This value also supports multiple paths. To add additional paths, just separate each path with a semicolon. For example:

InstallSource = \\applications\sample; \\\\corpnet\\sample

In our case this will be: %INST%\mink.exe; http://web.mit.edu/is/help/mink

%INST% is the expansion of where the mink installer is located at execution time.

VersionMajor/VersionMinor

Future versions of Add/Remove Programs will use these two values to compute whether an upgrade is necessary. These values will not be displayed to the user. The numbering and ordering scheme of these numbers is up to the application. Newer versions of the application must have a larger VersionMinor and/or a larger VersionMajor field to indicate an update.

All shortcuts created by the installation must not result in file not found or other error conditions when activated.

�SYMBOL 183 \f "Symbol" \s 11 \h �	When installing the application, the installer must check for the user privilege level. If the user is not an administrator and the application will work but with limited functionality, the installer must warn the user that only limited functionality will be available since they do not have administrator privileges; the installer must allow them to discontinue the installation.

We’re relying on a WISE primitive, part of “Check Configuration” to perform this determination. We hope they got it correct. The installer checks this early in the configuration and warns the user. At other points we also warn the user. We need to determine if these other warnings should be removed.

Remarks

		

The following sample code checks for user privilege level.

//--

// IsAdmin - tests to see if the current user is an admin

//--

BOOL IsAdmin()

{

 SC_HANDLE hSC;

// Try an Admin Privileged API - if it works, return TRUE, else FALSE

 hSC = OpenSCManager(

 NULL,

 NULL,

 GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE);

 if (hSC == NULL)

 return FALSE;

 CloseServiceHandle(hSC);

 return TRUE;

}

Query the Registry for Directory Names

Requirement (Designed for Microsoft® Windows® Logo)

Your application should not assume that directory names such as "My Computer" will be in English or will be unchanged by the user. Your application should query the registry directly to obtain the proper language-specific directory names.

Vendors should be aware that English versions of their applications might be installed onto non-English versions of Windows. In this instance, a search for the English language directory string "Program Files" would not be successful and would result in a failed installation.

For many standard folders, a qualified path can be obtained by calling the SHGetSpecialFolderLocation function with the appropriate CSIDL constant. The following standard folders are accessible in this way.

Standard Folder�
CSIDL Constant Name�
Hex�
�
�
�
Alternate Startup folder (All Users profile, DBCS)�
CSIDL_COMMON_ALTSTARTUP�
0x1e�
�
Alternate Startup ([user], DBCS)�
CSIDL_ALTSTARTUP�
0x1d�
�
Application Data ([user] profile)�
CSIDL_APPDATA�
0x1a�
�
Control Panel virtual folder�
CSIDL_CONTROLS�
0x03�
�
Cookies folder�
CSIDL_COOKIES�
0x21�
�
Desktop (namespace root)�
CSIDL_DESKTOP�
0x00�
�
Desktop folder (All Users profile)�
CSIDL_COMMON_DESKTOPDIRECTORY�
0x19�
�
Desktop folder ([user] profile)�
CSIDL_DESKTOPDIRECTORY�
0x10�
�
Favorites folder (All Users profile)�
CSIDL_COMMON_FAVORITES�
0x1f�
�
Favorites folder ([user] profile)�
CSIDL_FAVORITES�
0x06�
�
Fonts virtual folder�
CSIDL_FONTS�
0x14�
�
History folder�
CSIDL_HISTORY�
0x22�
�
Internet Cache folder�
CSIDL_INTERNET_CACHE�
0x20�
�
Internet virtual folder�
CSIDL_INTERNET�
0x01�
�
My Computer virtual folder�
CSIDL_DRIVES�
0x11�
�
Network Neighborhood root�
CSIDL_NETWORK�
0x12�
�
Network Neighborhood directory�
CSIDL_NETHOOD�
0x13�
�
Personal folder ([user] profile)�
CSIDL_PERSONAL�
0x05�
�
Printers virtual folder�
CSIDL_PRINTERS�
0x04�
�
PrintHood folder ([user] profile)�
CSIDL_PRINTHOOD�
0x1b�
�
Programs folder (under Start menu in All Users profile)�
CSIDL_COMMON_PROGRAMS�
0X17�
�
Programs folder (under Start menu in [user] profile)�
CSIDL_PROGRAMS�
0x02�
�
Recent folder ([user] profile)�
CSIDL_RECENT�
0x08�
�
Recycle Bin folder�
CSIDL_BITBUCKET�
0x0a�
�
SendTo folder ([user] profile)�
CSIDL_SENDTO�
0x09�
�
Start menu (All Users profile)�
CSIDL_COMMON_STARTMENU�
0x16�
�
Start menu ([user] profile)�
CSIDL_STARTMENU�
0x0b�
�
Startup folder (All Users profile)�
CSIDL_COMMON_STARTUP�
0x18�
�
Startup folder ([user] profile)�
CSIDL_STARTUP�
0x07�
�
Templates folder ([user] profile)�
CSIDL_TEMPLATES�
0x15�
�

Folders can also be located using the following Windows NT environment variables.

Standard Folder or Location�
Environment Variable�
�
�
�
System drive�
%SystemDrive%�
�
System root directory�
%SystemRoot%�
�
Windows folder�
%windir%�
�
Program Files folder�
%ProgramFiles%�
�
User's profile folder�
%UserProfile%�
�
User's temporary folder�
%Temp%�
�

Do Not Register Hard-Coded Paths

Best Practice (Designed for Microsoft® Windows® Logo)

Installers and applications should make use of the registry REG_EXPAND_SZ string type; the %SystemDrive%, %SystemRoot%, %windir%, %ProgramFiles%, %Temp%, and %UserProfile% environment variables; and the ExpandEnvironmentStrings function.

Do not hard-code paths to the Windows system root or to the drive containing Windows in the registry because users can remap their drives under Windows NT.

For example, under Windows NT, do not use a key such as the following:

MyPath : REG_SZ : "C:\Program Files\MyApp" // BAD PRACTICE!

Instead, use a key such as:

MyPath : REG_EXPAND_SZ : "%SystemDrive%\Program Files\MyApp"

When the string is retrieved, the ExpandEnvironmentStrings function can be used to get the up-to-date path.

Install Applications to the \Program Files Directory

Requirement (Designed for Microsoft® Windows® Logo)

Your application must default installation to a directory (or directories) under "drive:\Program Files". The installer must query the registry for this directory path to ensure appropriate install if, for example, a user has renamed this directory on his or her computer or if the application is being installed onto a non-English localized version of Windows.

Common to both v4 and v5

Display screen telling what the installer is for

Display distribution restrictions

Display system requirements

ok, what are the current system requirement?

Establish temporary directory

Establish Operating System

Establish components to be installed

Establish final destination directory

DLLs

Applications

Establish installer log file

Check that directories are writeable

Check free disk space

Do we want to back up any files that will be changed?

Where will the backups go?

ensure the backup location is writeable

always install

Pathname=%_WISE_%\INCLUDE\uninstal.wse

Source=c:\installs\Min-kerb\Win16\Cdestroy.exe

Source=c:\installs\Min-kerb\Win16\Kerberos.hlp

Source=c:\installs\Min-kerb\Win32\I386\Kdestroy.exe (does not contain a version resource.)

Source=c:\installs\Min-kerb\Win32\I386\Kexpire.exe (does not contain a version resource.)

Source=c:\installs\Min-kerb\Win32\I386\Klist.exe (no version resource)

TZ issues

There have been some recent modifications to the behavior of the libraries. In the case of the 32 bit libraries, if there is no TZ environment variable set, then the libraries will call _tzset() which gets the TZ information from the Time and Date control panel.

The 16 bit libraries do not do this because the 16 bit MS implementation of _tzset() doesn’t know how to access the 32 bit registry even when running under NT. The 16 bit libraries usually depend on the environment variable TZ. If TZ is not in the environment the library will try to load the IDS_TZ string resource in the DLL and use that. This means that a site admin can edit the DLL without recompiling to cause the correct default behavior for their local domain. Using the registry instead of the resource sounds like a good idea but the code would be complicated, determine if we're on a 32 bit operating system then thunk to the registry; if we’re not on a 32 bit operating system then don’t thunk, instead load the resource. (

16 bit component

Get the root directory, usually C:

check to see if root\lanwp.bat exists, if it does

look for the TZ environment variable and comment it out

but remember the value

Check to see if we are running under 95 or NT. If we are, check the TZ registry settings…

Now look at root\autoexec.bat

if there is a TZ statement and it contains EDT then make it EST5EDT. This fixes older MIT systems that were exposed to a defective installer that made TZ=EDT5EDT, a nonsense value.

If there is not a TZ statement use the one from lanwp.bat

If there was no lanwp TZ then prompt the user for a timezone.

Hey, what if we’re running under NT or 95? The TZ may be set in the registry. XXX

32 bit component

If there is no TZ set, then we need to verify the control panel settings. Can we just invoke the Date&Time control panel? Yes, but not with the TimeZone sheet as the top sheet.

To invoke the control panel execute: “control timedate.cpl”

Remember to check the “automatically adjust for daylight saving time” option.

The problem is, as soon as the user changes something, the application appears to end and then the installer proceeds, even though the control panel has not finished. This is because control.exe performs a CreateProcess to invoke rundll32.exe and then terminates. To make WISe work as desired we need to run a program that invokes “control timedate.cpl” and then watches to see when rundll32.exe terminates. Then it will also exit. This can probably be written by modifying ntpmon (http://www.ntinternals.com).

The WINTER registry settings for NT and 95: (note that the ActiveBias or ActiveTimeBias is the difference, in minutes, between Coordinated Universal Time and local time; given by the formula UTC = local time + bias.)

DaylightStart		00 00 04 Month of the year

00 01 occurrence of the week

00 02 day of the week

00 00 00 00 00 00 00 00 hr:min:sec

Under NT: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\TimeZoneInformation\

Eastern (-5)

ActiveBias		0x0000012c (300)

Bias 		0x0000012c (300)

DaylightBias		0xffffffc4 (4294967236)

DaylightName	“Eastern Daylight Time”

DaylightStart		00 00 04 00 01 00 02 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“Eastern Standard Time”

StandardStart	00 00 0a 00 05 00 02 00 00 00 00 00 00 00 00

Central (-6)

ActiveBias		0x00000168 (360)

Bias 		0x00000168 (360)

DaylightBias		0xffffffc4 (4294967236)

DaylightName	“Central Daylight Time”

DaylightStart		00 00 04 00 01 00 02 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“Central Standard Time”

StandardStart	00 00 0a 00 05 00 02 00 00 00 00 00 00 00 00

Mountain (-7)

ActiveBias		0x000001a4 (420)

Bias 		0x000001a4 (420)

DaylightBias		0xffffffc4 (4294967236)

DaylightName	“Mountain Daylight Time”

DaylightStart		00 00 04 00 01 00 02 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“Mountain Standard Time”

StandardStart	00 00 0a 00 05 00 02 00 00 00 00 00 00 00 00

Pacific (-8)

ActiveBias		0x000001e0 (480)

Bias 		0x000001e0 (480)

DaylightBias		0xffffffc4 (4294967236)

DaylightName	“Pacific Daylight Time”

DaylightStart		00 00 04 00 01 00 02 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“Pacific Standard Time”

StandardStart	00 00 0a 00 05 00 02 00 00 00 00 00 00 00 00

Atlantic (-4)

ActiveBias		0x000000f0 (240)

Bias 		0x000000f0 (240)

DaylightBias		0xffffffc4 (4294967236)

DaylightName	“Atlantic Daylight Time”

DaylightStart		00 00 04 00 01 00 02 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“Atlantic Standard Time”

StandardStart	00 00 0a 00 05 00 02 00 00 00 00 00 00 00 00

Alaska (-9)

ActiveBias		0x0000021c (540)

Bias 		0x0000021c (540)

DaylightBias		0xffffffc4 (4294967236)

DaylightName	“Alaskan Daylight Time”

DaylightStart		00 00 04 00 01 00 02 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“Alaskan Standard Time”

StandardStart	00 00 0a 00 05 00 02 00 00 00 00 00 00 00 00

Hawaii (-10)

ActiveBias		0x00000258 (600)

Bias 		0x00000258 (600)

DaylightBias		0x00000000 (0)

DaylightName	“Hawaiian Daylight Time”

DaylightStart		00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“Hawaiian Standard Time”

StandardStart	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Arizona (-7)

ActiveBias		0x000001a4 (420)

Bias 		0x000001a4 (420)

DaylightBias		0x00000000 (0)

DaylightName	“US Mountain Standard Time”

DaylightStart		00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“US Mountain Standard Time”

StandardStart	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Indiana (East) (-5)

ActiveBias		0x0000012c (300)

Bias 		0x0000012c (300)

DaylightBias		0x00000000 (0)

DaylightName	“US Eastern Standard Time”

DaylightStart		00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

StandardBias		0x00000000 (0)

StandardName	“US Eastern Standard Time”

StandardStart	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

What about under 95?

Eastern (-5)

ActiveTimeBias	2c 01 00 00

Bias 		2c 01 00 00

DaylightBias		c4 ff ff ff

DaylightFlag		01 00 00 00

DaylightName	“Eastern Daylight Time”

DaylightStart		00 00 04 00 00 00 01 00 02 00 00 00 00 00 00 00

StandardBias		00 00 00 00

StandardName	“Eastern Standard Time”

StandardStart	00 00 0a 00 00 00 05 00 02 00 00 00 00 00 00 00

Central (-6)

ActiveTimeBias	68 01 00 00

Bias 		68 01 00 00

DaylightBias		c4 ff ff ff

DaylightFlag		01 00 00 00

DaylightName	“Central Daylight Time”

DaylightStart		00 00 04 00 00 00 01 00 02 00 00 00 00 00 00 00

StandardBias		00 00 00 00

StandardName	“Central Standard Time”

StandardStart	00 00 0a 00 00 00 05 00 02 00 00 00 00 00 00 00

Mountain (-7)

ActiveTimeBias	a4 01 00 00

Bias 		a4 01 00 00

DaylightBias		c4 ff ff ff

DaylightFlag		01 00 00 00

DaylightName	“Mountain Daylight Time”

DaylightStart		00 00 04 00 00 00 01 00 02 00 00 00 00 00 00 00

StandardBias		00 00 00 00

StandardName	“Mountain Standard Time”

StandardStart	00 00 0a 00 00 00 05 00 02 00 00 00 00 00 00 00

Pacific (-8)

ActiveTimeBias	e0 10 00 00

Bias 		e0 10 00 00

DaylightBias		c4 ff ff ff

DaylightFlag		01 00 00 00

DaylightName	“Pacific Daylight Time”

DaylightStart		00 00 04 00 00 00 01 00 02 00 00 00 00 00 00 00

StandardBias		00 00 00 00

StandardName	“Pacific Standard Time”

StandardStart	00 00 0a 00 00 00 05 00 02 00 00 00 00 00 00 00

Atlantic (-4)

ActiveTimeBias	f0 00 00 00

Bias 		f0 00 00 00

DaylightBias		c4 ff ff ff

DaylightFlag		01 00 00 00

DaylightName	“Atlantic Daylight Time”

DaylightStart		00 00 04 00 00 00 01 00 02 00 00 00 00 00 00 00

StandardBias		00 00 00 00

StandardName	“Atlantic Standard Time”

StandardStart	00 00 0a 00 00 00 05 00 02 00 00 00 00 00 00 00

Alaska (-9)

ActiveTimeBias	1c 02 00 00

Bias 		1c 02 00 00

DaylightBias		c4 ff ff ff

DaylightFlag		01 00 00 00

DaylightName	“Alaska Daylight Time”

DaylightStart		00 00 04 00 00 00 01 00 02 00 00 00 00 00 00 00

StandardBias		00 00 00 00

StandardName	“Alaska Standard Time”

StandardStart	00 00 0a 00 00 00 05 00 02 00 00 00 00 00 00 00

Hawaii (-10)

ActiveTimeBias	58 02 00 00

Bias 		58 02 00 00

DaylightBias		c4 ff ff ff

DaylightFlag		01 00 00 00

DaylightName	“Hawaii Daylight Time”

DaylightStart		00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

StandardBias		00 00 00 00

StandardName	“Hawaii Standard Time”

StandardStart	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Arizona (-7)

ActiveTimeBias	a4 01 00 00

Bias 		a4 01 00 00

DaylightBias		c4 ff ff ff

DaylightFlag		01 00 00 00

DaylightName	“Mountain Daylight Time”

DaylightStart		00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

StandardBias		00 00 00 00

StandardName	“Mountain Standard Time”

StandardStart	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

If TZ is set then do some verification. If it is EDT5EDT then change it to EST5EDT. Does it come out of the registry or out of autoexec.bat?

V4 specific

Determine if older versions of V4 have been installed on this machine.

krb.con and krbrealm.con strategy

We might not be in the Athena realm, tread cautiously.

The mink installer consists of a single binary. The file contains compressed files compatible with the ZIP format from PKWARE. This means that other sites may make a local copy for distribution and modify the krb.con and krbrealm.con files using pkzip or a similar package.

A note about how the libraries find the configuration files:

The Kerberos DLLs normally need two configuration files to function properly. These are krb.con and krbrealm.con. Older releases had overly restrictive locations for these files. Previously the files had to be located in c:\net\kerb or %NDIR%\kerb where %NDIR% was an environment variable e.g. set NDIR=d:\etc and the files should be located in d:\etc\kerb\

At the suggestion of several sites we relaxed this restriction. The DLLs will now search for the krb.con and krbrealm.con in the following locations and search oder:

1.%NDIR%\kerb\ 2.The current directory 3.The Windows directory 4.The Windows system directory 5.The directory containing the executable file for the current task 6.The directories in the path 7.The list of directories mapped in a network 8.%NDIR%\ 9.%ETC%\

Note: %NDIR% and %ETC% indicate the expansion of the environment variables named NDIR and ETC, if present.

It is up the local system administrator or end user to configure the machine for reasonable performance.

installer logic

If the environment NDIR is set, we’ll use it. Find the con files and update them if the date/time is the same or older.

If NDIR is not set then we’ll search the path for the con files. If we find them on the path we’ll update them based on the date/time differences.

If we don’t find the con files on the path then check to see if %WIN% is writeable. If it is put the con files into it. If %WIN% is not writeable then put the files into %MAINDIR% since this is being put onto the path.

Search for older or duplicate copies of the binaries

c:\net\mit

c:\windows

c:\eudora

\program files\eudora

system32

%path%

Optional full disk search

Version check the binaries

Kerbmem

If we are running under Windows 3.x call kerbmem.exe in the autoexec.bat. We used to call this in lanwp.bat, we should check the presence of lanwp.bat and remove this line if it is present.

If we are running NT then we should not install the file.

If we are running under 95 Kerbmem should be installed and called in the autoexec.bat file. However the MSDOS.SYS file will also need to be created or edited. Some Windows 95 users experience problems when using Kerbmem. This can be fixed by editing the MSDOS.SYS file in the root directory on the Windows 95 machine. Specify LOADTOP=0 in the MSDOS.SYS file. If LOADTOP=1 Win95 will not let kerbmem set the environment variable. This is not required on all machines, but we’ll do it anyway. If there is already a LOADTOP=1 in the msdos.sys file warn the user.

16 bit binaries

Source=c:\installs\Min-kerb\Win16\Kclient.dll

Source=c:\installs\Min-kerb\Win16\Krbv4win.dll

Source=c:\installs\Min-kerb\Win16\Kview.exe

Source=c:\installs\Min-kerb\Win16\Leash.exe

Source=c:\installs\Min-kerb\Win16\Leashwin.dll

Source=c:\installs\Min-kerb\Win16\Vs.dll

32 bit binaries

Source=c:\installs\Min-kerb\Win32\I386\Kerb16.exe

Source=c:\installs\Min-kerb\Win32\I386\Vs32.dll

Source=c:\installs\Min-kerb\Win32\I386\Kinit.exe (no version resource)

Source=c:\installs\Min-kerb\Win32\I386\Krbv4w32.dll

Source=c:\installs\Min-kerb\Win32\I386\Kview32.exe

Source=c:\installs\Min-kerb\Win32\I386\Leashw32.dll

Source=c:\installs\Min-kerb\Win32\I386\Vs2.dll

Create the program group, icons, and start menu entries

v4 INI files

leash.ini - only contains version server information, will be automatically created if needed

kview.ini - should create from the installer, otherwise the wrong time server will be used.

Krbcheck

V5 specific

16 bit

Source=c:\installs\Min-kerb\Win16\Sapkrb16.dll

Source=c:\installs\Min-kerb\Win16\Sapgss16.dll

Source=c:\installs\Min-kerb\Win16\Krb5_16.dll

Source=c:\installs\Min-kerb\Win16\Krb5.exe

Source=c:\installs\Min-kerb\Win16\Krb4_16.dll

Source=c:\installs\Min-kerb\Win16\Gssapi.dll

Source=c:\installs\Min-kerb\Win16\Comerr16.dll

32 bit

Source=c:\installs\Min-kerb\Win32\I386\krb5.exe

Source=c:\installs\Min-kerb\Win32\I386\sapkrb32.dll

Source=c:\installs\Min-kerb\Win32\I386\sapgss32.dll

Source=c:\installs\Min-kerb\Win32\I386\krb5_32.dll

Source=c:\installs\Min-kerb\Win32\I386\krb4_32.dll

Source=c:\installs\Min-kerb\Win32\I386\gssapi32.dll

Source=c:\installs\Min-kerb\Win32\I386\comerr32.dll

cdestroy.exe (and put it in the startup folder)

content and location of configuration files?

insure SAP compatibility

insure KSIGN compatibility

what about for non-MIT users?

do we sneek in the ftp beta? No, make this available seperately

cns.exe vs. Krb5.exe?

v5 INI files

kerberos.ini used by krb5 (cns) exe

krb5.ini used by v5 libraries

