FreeWRL/FreeX3D  3.0.0
geom.c
1  /*
2  * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3  * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice including the dates of first publication and
13  * either this permission notice or a reference to
14  * http://oss.sgi.com/projects/FreeB/
15  * shall be included in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Except as contained in this notice, the name of Silicon Graphics, Inc.
26  * shall not be used in advertising or otherwise to promote the sale, use or
27  * other dealings in this Software without prior written authorization from
28  * Silicon Graphics, Inc.
29  */
30 /*
31 ** Author: Eric Veach, July 1994.
32 **
33 */
34 
35 #include "gluos.h"
36 #include <assert.h>
37 #include "mesh.h"
38 #include "geom.h"
39 
40 int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
41 {
42  /* Returns TRUE if u is lexicographically <= v. */
43 
44  return VertLeq( u, v );
45 }
46 
47 GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
48 {
49  /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
50  * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
51  * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
52  * If uw is vertical (and thus passes thru v), the result is zero.
53  *
54  * The calculation is extremely accurate and stable, even when v
55  * is very close to u or w. In particular if we set v->t = 0 and
56  * let r be the negated result (this evaluates (uw)(v->s)), then
57  * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
58  */
59  GLdouble gapL, gapR;
60 
61  assert( VertLeq( u, v ) && VertLeq( v, w ));
62 
63  gapL = v->s - u->s;
64  gapR = w->s - v->s;
65 
66  if( gapL + gapR > 0 ) {
67  if( gapL < gapR ) {
68  return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
69  } else {
70  return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
71  }
72  }
73  /* vertical line */
74  return 0;
75 }
76 
77 GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
78 {
79  /* Returns a number whose sign matches EdgeEval(u,v,w) but which
80  * is cheaper to evaluate. Returns > 0, == 0 , or < 0
81  * as v is above, on, or below the edge uw.
82  */
83  GLdouble gapL, gapR;
84 
85  assert( VertLeq( u, v ) && VertLeq( v, w ));
86 
87  gapL = v->s - u->s;
88  gapR = w->s - v->s;
89 
90  if( gapL + gapR > 0 ) {
91  return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
92  }
93  /* vertical line */
94  return 0;
95 }
96 
97 
98 /***********************************************************************
99  * Define versions of EdgeSign, EdgeEval with s and t transposed.
100  */
101 
102 GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
103 {
104  /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
105  * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
106  * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
107  * If uw is vertical (and thus passes thru v), the result is zero.
108  *
109  * The calculation is extremely accurate and stable, even when v
110  * is very close to u or w. In particular if we set v->s = 0 and
111  * let r be the negated result (this evaluates (uw)(v->t)), then
112  * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
113  */
114  GLdouble gapL, gapR;
115 
116  assert( TransLeq( u, v ) && TransLeq( v, w ));
117 
118  gapL = v->t - u->t;
119  gapR = w->t - v->t;
120 
121  if( gapL + gapR > 0 ) {
122  if( gapL < gapR ) {
123  return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
124  } else {
125  return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
126  }
127  }
128  /* vertical line */
129  return 0;
130 }
131 
132 GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
133 {
134  /* Returns a number whose sign matches TransEval(u,v,w) but which
135  * is cheaper to evaluate. Returns > 0, == 0 , or < 0
136  * as v is above, on, or below the edge uw.
137  */
138  GLdouble gapL, gapR;
139 
140  assert( TransLeq( u, v ) && TransLeq( v, w ));
141 
142  gapL = v->t - u->t;
143  gapR = w->t - v->t;
144 
145  if( gapL + gapR > 0 ) {
146  return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
147  }
148  /* vertical line */
149  return 0;
150 }
151 
152 
153 int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
154 {
155  /* For almost-degenerate situations, the results are not reliable.
156  * Unless the floating-point arithmetic can be performed without
157  * rounding errors, *any* implementation will give incorrect results
158  * on some degenerate inputs, so the client must have some way to
159  * handle this situation.
160  */
161  return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
162 }
163 
164 /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
165  * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
166  * this in the rare case that one argument is slightly negative.
167  * The implementation is extremely stable numerically.
168  * In particular it guarantees that the result r satisfies
169  * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
170  * even when a and b differ greatly in magnitude.
171  */
172 #define RealInterpolate(a,x,b,y) \
173  (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
174  ((a <= b) ? ((b == 0) ? ((x+y) / 2) \
175  : (x + (y-x) * (a/(a+b)))) \
176  : (y + (x-y) * (b/(a+b)))))
177 
178 #ifndef FOR_TRITE_TEST_PROGRAM
179 #define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
180 #else
181 
182 /* Claim: the ONLY property the sweep algorithm relies on is that
183  * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
184  */
185 #include <stdlib.h>
186 extern int RandomInterpolate;
187 
188 GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
189 {
190 printf("*********************%d\n",RandomInterpolate);
191  if( RandomInterpolate ) {
192  a = 1.2 * drand48() - 0.1;
193  a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
194  b = 1.0 - a;
195  }
196  return RealInterpolate(a,x,b,y);
197 }
198 
199 #endif
200 
201 #define Swap(a,b) if (1) { GLUvertex *t = a; a = b; b = t; } else
202 
203 void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
204  GLUvertex *o2, GLUvertex *d2,
205  GLUvertex *v )
206 /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
207  * The computed point is guaranteed to lie in the intersection of the
208  * bounding rectangles defined by each edge.
209  */
210 {
211  GLdouble z1, z2;
212 
213  /* This is certainly not the most efficient way to find the intersection
214  * of two line segments, but it is very numerically stable.
215  *
216  * Strategy: find the two middle vertices in the VertLeq ordering,
217  * and interpolate the intersection s-value from these. Then repeat
218  * using the TransLeq ordering to find the intersection t-value.
219  */
220 
221  if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
222  if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
223  if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
224 
225  if( ! VertLeq( o2, d1 )) {
226  /* Technically, no intersection -- do our best */
227  v->s = (o2->s + d1->s) / 2;
228  } else if( VertLeq( d1, d2 )) {
229  /* Interpolate between o2 and d1 */
230  z1 = EdgeEval( o1, o2, d1 );
231  z2 = EdgeEval( o2, d1, d2 );
232  if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
233  v->s = Interpolate( z1, o2->s, z2, d1->s );
234  } else {
235  /* Interpolate between o2 and d2 */
236  z1 = EdgeSign( o1, o2, d1 );
237  z2 = -EdgeSign( o1, d2, d1 );
238  if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
239  v->s = Interpolate( z1, o2->s, z2, d2->s );
240  }
241 
242  /* Now repeat the process for t */
243 
244  if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
245  if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
246  if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
247 
248  if( ! TransLeq( o2, d1 )) {
249  /* Technically, no intersection -- do our best */
250  v->t = (o2->t + d1->t) / 2;
251  } else if( TransLeq( d1, d2 )) {
252  /* Interpolate between o2 and d1 */
253  z1 = TransEval( o1, o2, d1 );
254  z2 = TransEval( o2, d1, d2 );
255  if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
256  v->t = Interpolate( z1, o2->t, z2, d1->t );
257  } else {
258  /* Interpolate between o2 and d2 */
259  z1 = TransSign( o1, o2, d1 );
260  z2 = -TransSign( o1, d2, d1 );
261  if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
262  v->t = Interpolate( z1, o2->t, z2, d2->t );
263  }
264 }