FreeWRL/FreeX3D  3.0.0
normal.c
1 /*
2  * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3  * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice including the dates of first publication and
13  * either this permission notice or a reference to
14  * http://oss.sgi.com/projects/FreeB/
15  * shall be included in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Except as contained in this notice, the name of Silicon Graphics, Inc.
26  * shall not be used in advertising or otherwise to promote the sale, use or
27  * other dealings in this Software without prior written authorization from
28  * Silicon Graphics, Inc.
29  */
30 /*
31 ** Author: Eric Veach, July 1994.
32 **
33 */
34 
35 #include "gluos.h"
36 #include "mesh.h"
37 #include "tess.h"
38 #include "normal.h"
39 #include <math.h>
40 #include <assert.h>
41 
42 #define TRUE 1
43 #define FALSE 0
44 
45 #define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
46 
47 #if 0
48 static void Normalize( GLdouble v[3] )
49 {
50  GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
51 
52  assert( len > 0 );
53  len = sqrt( len );
54  v[0] /= len;
55  v[1] /= len;
56  v[2] /= len;
57 }
58 #endif
59 
60 #undef ABS
61 #define ABS(x) ((x) < 0 ? -(x) : (x))
62 
63 static int LongAxis( GLdouble v[3] )
64 {
65  int i = 0;
66 
67  if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
68  if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
69  return i;
70 }
71 
72 static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
73 {
74  GLUvertex *v, *v1, *v2;
75  GLdouble c, tLen2, maxLen2;
76  GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
77  GLUvertex *maxVert[3], *minVert[3];
78  GLUvertex *vHead = &tess->mesh->vHead;
79  int i;
80 
81  maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
82  minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
83 
84  for( v = vHead->next; v != vHead; v = v->next ) {
85  for( i = 0; i < 3; ++i ) {
86  c = v->coords[i];
87  if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
88  if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
89  }
90  }
91 
92  /* Find two vertices separated by at least 1/sqrt(3) of the maximum
93  * distance between any two vertices
94  */
95  i = 0;
96  if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
97  if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
98  if( minVal[i] >= maxVal[i] ) {
99  /* All vertices are the same -- normal doesn't matter */
100  norm[0] = 0; norm[1] = 0; norm[2] = 1;
101  return;
102  }
103 
104  /* Look for a third vertex which forms the triangle with maximum area
105  * (Length of normal == twice the triangle area)
106  */
107  maxLen2 = 0;
108  v1 = minVert[i];
109  v2 = maxVert[i];
110  d1[0] = v1->coords[0] - v2->coords[0];
111  d1[1] = v1->coords[1] - v2->coords[1];
112  d1[2] = v1->coords[2] - v2->coords[2];
113  for( v = vHead->next; v != vHead; v = v->next ) {
114  d2[0] = v->coords[0] - v2->coords[0];
115  d2[1] = v->coords[1] - v2->coords[1];
116  d2[2] = v->coords[2] - v2->coords[2];
117  tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
118  tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
119  tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
120  tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
121  if( tLen2 > maxLen2 ) {
122  maxLen2 = tLen2;
123  norm[0] = tNorm[0];
124  norm[1] = tNorm[1];
125  norm[2] = tNorm[2];
126  }
127  }
128 
129  if( maxLen2 <= 0 ) {
130  /* All points lie on a single line -- any decent normal will do */
131  norm[0] = norm[1] = norm[2] = 0;
132  norm[LongAxis(d1)] = 1;
133  }
134 }
135 
136 
137 static void CheckOrientation( GLUtesselator *tess )
138 {
139  GLdouble area;
140  GLUface *f, *fHead = &tess->mesh->fHead;
141  GLUvertex *v, *vHead = &tess->mesh->vHead;
142  GLUhalfEdge *e;
143 
144  /* When we compute the normal automatically, we choose the orientation
145  * so that the the sum of the signed areas of all contours is non-negative.
146  */
147  area = 0;
148  for( f = fHead->next; f != fHead; f = f->next ) {
149  e = f->anEdge;
150  if( e->winding <= 0 ) continue;
151  do {
152  area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
153  e = e->Lnext;
154  } while( e != f->anEdge );
155  }
156  if( area < 0 ) {
157  /* Reverse the orientation by flipping all the t-coordinates */
158  for( v = vHead->next; v != vHead; v = v->next ) {
159  v->t = - v->t;
160  }
161  tess->tUnit[0] = - tess->tUnit[0];
162  tess->tUnit[1] = - tess->tUnit[1];
163  tess->tUnit[2] = - tess->tUnit[2];
164  }
165 }
166 
167 #ifdef FOR_TRITE_TEST_PROGRAM
168 #include <stdlib.h>
169 extern int RandomSweep;
170 #define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0)
171 #define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0)
172 #else
173 #if defined(SLANTED_SWEEP)
174 /* The "feature merging" is not intended to be complete. There are
175  * special cases where edges are nearly parallel to the sweep line
176  * which are not implemented. The algorithm should still behave
177  * robustly (ie. produce a reasonable tesselation) in the presence
178  * of such edges, however it may miss features which could have been
179  * merged. We could minimize this effect by choosing the sweep line
180  * direction to be something unusual (ie. not parallel to one of the
181  * coordinate axes).
182  */
183 #define S_UNIT_X 0.50941539564955385 /* Pre-normalized */
184 #define S_UNIT_Y 0.86052074622010633
185 #else
186 #define S_UNIT_X 1.0
187 #define S_UNIT_Y 0.0
188 #endif
189 #endif
190 
191 /* Determine the polygon normal and project vertices onto the plane
192  * of the polygon.
193  */
194 void __gl_projectPolygon( GLUtesselator *tess )
195 {
196  GLUvertex *v, *vHead = &tess->mesh->vHead;
197  GLdouble norm[3];
198  GLdouble *sUnit, *tUnit;
199  int i, computedNormal = FALSE;
200 
201  norm[0] = tess->normal[0];
202  norm[1] = tess->normal[1];
203  norm[2] = tess->normal[2];
204  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
205  ComputeNormal( tess, norm );
206  computedNormal = TRUE;
207  }
208  sUnit = tess->sUnit;
209  tUnit = tess->tUnit;
210  i = LongAxis( norm );
211 
212 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
213  /* Choose the initial sUnit vector to be approximately perpendicular
214  * to the normal.
215  */
216  Normalize( norm );
217 
218  sUnit[i] = 0;
219  sUnit[(i+1)%3] = S_UNIT_X;
220  sUnit[(i+2)%3] = S_UNIT_Y;
221 
222  /* Now make it exactly perpendicular */
223  w = Dot( sUnit, norm );
224  sUnit[0] -= w * norm[0];
225  sUnit[1] -= w * norm[1];
226  sUnit[2] -= w * norm[2];
227  Normalize( sUnit );
228 
229  /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
230  tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
231  tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
232  tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
233  Normalize( tUnit );
234 #else
235  /* Project perpendicular to a coordinate axis -- better numerically */
236  sUnit[i] = 0;
237  sUnit[(i+1)%3] = S_UNIT_X;
238  sUnit[(i+2)%3] = S_UNIT_Y;
239 
240  tUnit[i] = 0;
241  tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
242  tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
243 #endif
244 
245  /* Project the vertices onto the sweep plane */
246  for( v = vHead->next; v != vHead; v = v->next ) {
247  v->s = Dot( v->coords, sUnit );
248  v->t = Dot( v->coords, tUnit );
249  }
250  if( computedNormal ) {
251  CheckOrientation( tess );
252  }
253 }
Definition: mesh.h:126