FreeWRL/FreeX3D  3.0.0
partitionY.cc
1 /*
2 ** License Applicability. Except to the extent portions of this file are
3 ** made subject to an alternative license as permitted in the SGI Free
4 ** Software License B, Version 1.1 (the "License"), the contents of this
5 ** file are subject only to the provisions of the License. You may not use
6 ** this file except in compliance with the License. You may obtain a copy
7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9 **
10 ** http://oss.sgi.com/projects/FreeB
11 **
12 ** Note that, as provided in the License, the Software is distributed on an
13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17 **
18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21 ** Copyright in any portions created by third parties is as indicated
22 ** elsewhere herein. All Rights Reserved.
23 **
24 ** Additional Notice Provisions: The application programming interfaces
25 ** established by SGI in conjunction with the Original Code are The
26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31 ** published by SGI, but has not been independently verified as being
32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
33 **
34 */
35 /*
36 */
37 
38 #include <stdlib.h>
39 #include <stdio.h>
40 #include <time.h>
41 
42 #include "zlassert.h"
43 #include "partitionY.h"
44 #include "searchTree.h"
45 #include "quicksort.h"
46 #include "polyUtil.h"
47 
48 
49 #define max(a,b) ((a>b)? a:b)
50 #define min(a,b) ((a>b)? b:a)
51 
52 
53 /*retrurn
54  *-1: if A < B (Ya<Yb) || (Ya==Yb)
55  * 0: if A == B
56  * 1: if A>B
57  */
58 static Int compVertInY(Real A[2], Real B[2])
59 {
60  if( (A[1] < B[1]) || (A[1]==B[1] && A[0]<B[0]))
61  return -1;
62  else if
63  ( A[1] == B[1] && A[0] == B[0]) return 0;
64  else
65  return 1;
66 }
67 
68 /*v is a vertex: the head of en edge,
69  *e is an edge,
70  *return 1 if e is below v: assume v1 and v2 are the two endpoints of e:
71  * v1<= v, v2<=v.
72  */
73 Int isBelow(directedLine *v, directedLine *e)
74 {
75  Real* vert = v->head();
76  if( compVertInY(e->head(), vert) != 1
77  && compVertInY(e->tail(), vert) != 1
78  )
79  return 1;
80  else
81  return 0;
82 }
83 
84 /*v is a vertex: the head of en edge,
85  *e is an edge,
86  *return 1 if e is below v: assume v1 and v2 are the two endpoints of e:
87  * v1>= v, v2>=v.
88  */
89 Int isAbove(directedLine *v, directedLine *e)
90 {
91  Real* vert = v->head();
92  if( compVertInY(e->head(), vert) != -1
93  && compVertInY(e->tail(), vert) != -1
94  )
95  return 1;
96  else
97  return 0;
98 }
99 
100 Int isCusp(directedLine *v)
101 {
102  Real *A=v->getPrev()->head();
103  Real *B=v->head();
104  Real *C=v->tail();
105  if(A[1] < B[1] && B[1] < C[1])
106  return 0;
107  else if(A[1] > B[1] && B[1] > C[1])
108  return 0;
109  else if(A[1] < B[1] && C[1] < B[1])
110  return 1;
111  else if(A[1] > B[1] && C[1] > B[1])
112  return 1;
113 
114  if(isAbove(v, v) && isAbove(v, v->getPrev()) ||
115  isBelow(v, v) && isBelow(v, v->getPrev()))
116  return 1;
117  else
118  return 0;
119 }
120 
121 /*crossproduct is strictly less than 0*/
122 Int isReflex(directedLine *v)
123 {
124  Real* A = v->getPrev()->head();
125  Real* B = v->head();
126  Real* C = v->tail();
127  Real Bx,By, Cx, Cy;
128  Bx = B[0] - A[0];
129  By = B[1] - A[1];
130  Cx = C[0] - A[0];
131  Cy = C[1] - A[1];
132 
133  if(Bx*Cy - Cx*By < 0) return 1;
134  else return 0;
135 }
136 
137  /*return
138  *0: not-cusp
139  *1: interior cusp
140  *2: exterior cusp
141  */
142 Int cuspType(directedLine *v)
143 {
144  if(! isCusp(v)) return 0;
145  else if(isReflex(v)) return 1;
146  else
147  return 2;
148 }
149 
150 sweepRange* sweepRangeMake(directedLine* left, Int leftType,
151  directedLine* right, Int rightType)
152 {
153  sweepRange* ret = (sweepRange*)malloc(sizeof(sweepRange));
154  assert(ret);
155  ret->left = left;
156  ret->leftType = leftType;
157  ret->right = right;
158  ret->rightType = rightType;
159  return ret;
160 }
161 
162 void sweepRangeDelete(sweepRange* range)
163 {
164  free(range);
165 }
166 
167 Int sweepRangeEqual(sweepRange* src1, sweepRange* src2)
168 {
169  Int leftEqual;
170  Int rightEqual;
171 
172 
173  /*The case when both are vertices should not happen*/
174  assert(! (src1->leftType == 0 && src2->leftType == 0));
175  if(src1->leftType == 0 && src2->leftType == 1){
176  if(src1->left == src2->left ||
177  src1->left->getPrev() == src2->left
178  )
179  leftEqual = 1;
180  else
181  leftEqual = 0;
182  }
183  else if(src1->leftType == 1 && src2->leftType == 1){
184  if(src1->left == src2->left)
185  leftEqual = 1;
186  else
187  leftEqual = 0;
188  }
189  else /*src1->leftType == 1 && src2->leftType == 0*/{
190  if(src1->left == src2->left ||
191  src1->left == src2->left->getPrev()
192  )
193  leftEqual = 1;
194  else
195  leftEqual = 0;
196  }
197 
198  /*the same thing for right*/
199  /*The case when both are vertices should not happen*/
200  assert(! (src1->rightType == 0 && src2->rightType == 0));
201  if(src1->rightType == 0 && src2->rightType == 1){
202  if(src1->right == src2->right ||
203  src1->right->getPrev() == src2->right
204  )
205  rightEqual = 1;
206  else
207  rightEqual = 0;
208  }
209  else if(src1->rightType == 1 && src2->rightType == 1){
210  if(src1->right == src2->right)
211  rightEqual = 1;
212  else
213  rightEqual = 0;
214  }
215  else /*src1->rightType == 1 && src2->rightType == 0*/{
216  if(src1->right == src2->right ||
217  src1->right == src2->right->getPrev()
218  )
219  rightEqual = 1;
220  else
221  rightEqual = 0;
222  }
223 
224  return (leftEqual == 1 || rightEqual == 1);
225 }
226 
227 /*given (x_1, y_1) and (x_2, y_2), and y
228  *return x such that (x,y) is on the line
229  */
230 inline/*static*/ Real intersectHoriz(Real x1, Real y1, Real x2, Real y2, Real y)
231 {
232  return ((y2==y1)? (x1+x2)*Real(0.5) : x1 + ((y-y1)/(y2-y1)) * (x2-x1));
233 /*
234  if(y2 == y1) return (x1+x2)*0.5;
235  else return x1 + ((y-y1)/(y2-y1)) * (x2-x1);
236 */
237 }
238 
239 /*compare two edges of a polygon.
240  *edge A < edge B if there is a horizontal line so that the intersection
241  *with A is to the left of the intersection with B.
242  *This function is used in sweepY for the dynamic search tree insertion to
243  *order the edges.
244  * Implementation: (x_1,y_1) and (x_2, y_2)
245  */
246 static Int compEdges(directedLine *e1, directedLine *e2)
247 {
248  Real* head1 = e1->head();
249  Real* tail1 = e1->tail();
250  Real* head2 = e2->head();
251  Real* tail2 = e2->tail();
252 /*
253  Real h10 = head1[0];
254  Real h11 = head1[1];
255  Real t10 = tail1[0];
256  Real t11 = tail1[1];
257  Real h20 = head2[0];
258  Real h21 = head2[1];
259  Real t20 = tail2[0];
260  Real t21 = tail2[1];
261 */
262  Real e1_Ymax, e1_Ymin, e2_Ymax, e2_Ymin;
263 /*
264  if(h11>t11) {
265  e1_Ymax= h11;
266  e1_Ymin= t11;
267  }
268  else{
269  e1_Ymax = t11;
270  e1_Ymin = h11;
271  }
272 
273  if(h21>t21) {
274  e2_Ymax= h21;
275  e2_Ymin= t21;
276  }
277  else{
278  e2_Ymax = t21;
279  e2_Ymin = h21;
280  }
281 */
282 
283  if(head1[1]>tail1[1]) {
284  e1_Ymax= head1[1];
285  e1_Ymin= tail1[1];
286  }
287  else{
288  e1_Ymax = tail1[1];
289  e1_Ymin = head1[1];
290  }
291 
292  if(head2[1]>tail2[1]) {
293  e2_Ymax= head2[1];
294  e2_Ymin= tail2[1];
295  }
296  else{
297  e2_Ymax = tail2[1];
298  e2_Ymin = head2[1];
299  }
300 
301 
302  /*Real e1_Ymax = max(head1[1], tail1[1]);*/ /*max(e1->head()[1], e1->tail()[1]);*/
303  /*Real e1_Ymin = min(head1[1], tail1[1]);*/ /*min(e1->head()[1], e1->tail()[1]);*/
304  /*Real e2_Ymax = max(head2[1], tail2[1]);*/ /*max(e2->head()[1], e2->tail()[1]);*/
305  /*Real e2_Ymin = min(head2[1], tail2[1]);*/ /*min(e2->head()[1], e2->tail()[1]);*/
306 
307  Real Ymax = min(e1_Ymax, e2_Ymax);
308  Real Ymin = max(e1_Ymin, e2_Ymin);
309 
310  Real y = Real(0.5)*(Ymax + Ymin);
311 
312 /* Real x1 = intersectHoriz(e1->head()[0], e1->head()[1], e1->tail()[0], e1->tail()[1], y);
313  Real x2 = intersectHoriz(e2->head()[0], e2->head()[1], e2->tail()[0], e2->tail()[1], y);
314 */
315 /*
316  Real x1 = intersectHoriz(h10, h11, t10, t11, y);
317  Real x2 = intersectHoriz(h20, h21, t20, t21, y);
318 */
319  Real x1 = intersectHoriz(head1[0], head1[1], tail1[0], tail1[1], y);
320  Real x2 = intersectHoriz(head2[0], head2[1], tail2[0], tail2[1], y);
321 
322  if(x1<= x2) return -1;
323  else return 1;
324 }
325 
326 /*used by sort precedures
327  */
328 static Int compInY(directedLine* v1, directedLine* v2)
329 {
330  return v1->compInY(v2);
331 }
332 
333 void findDiagonals(Int total_num_edges, directedLine** sortedVertices, sweepRange** ranges, Int& num_diagonals, directedLine** diagonal_vertices)
334 {
335  Int i,j,k;
336 
337  k=0;
338 
339  for(i=0; i<total_num_edges; i++)
340  {
341  directedLine* vert =sortedVertices[i];
342  directedLine* thisEdge = vert;
343  directedLine* prevEdge = vert->getPrev();
344 /*
345 printf("find i=%i\n", i);
346 printf("the vertex is\n");
347 vert->printSingle();
348 */
349  if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge) && compEdges(prevEdge, thisEdge)<0)
350  {
351  /*this is an upward interior cusp*/
352  diagonal_vertices[k++] = vert;
353 
354  for(j=i+1; j<total_num_edges; j++)
355  if(sweepRangeEqual(ranges[i], ranges[j]))
356  {
357  diagonal_vertices[k++] = sortedVertices[j];
358  break;
359  }
360  assert(j<total_num_edges);
361 
362 
363  }
364  else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge) && compEdges(prevEdge, thisEdge)>0)
365  {
366  /*this is an downward interior cusp*/
367  diagonal_vertices[k++] = vert;
368  for(j=i-1; j>=0; j--)
369  if(sweepRangeEqual(ranges[i], ranges[j]))
370  {
371  diagonal_vertices[k++] = sortedVertices[j];
372  break;
373  }
374 /* printf("j=%i\n", j);*/
375  assert(j>=0);
376 
377 
378 
379  }
380  }
381  num_diagonals = k/2;
382 }
383 
384 /*get rid of repeated diagonlas so that each diagonal appears only once in the array
385  */
386 Int deleteRepeatDiagonals(Int num_diagonals, directedLine** diagonal_vertices, directedLine** new_vertices)
387 {
388  Int i,k;
389  Int j,l;
390  Int index;
391  index=0;
392  for(i=0,k=0; i<num_diagonals; i++, k+=2)
393  {
394  Int isRepeated=0;
395  /*check the diagonla (diagonal_vertice[k], diagonal_vertices[k+1])
396  *is repeated or not
397  */
398  for(j=0,l=0; j<index; j++, l+=2)
399  {
400  if(
401  (diagonal_vertices[k] == new_vertices[l] &&
402  diagonal_vertices[k+1] == new_vertices[l+1]
403  )
404  ||
405  (
406  diagonal_vertices[k] == new_vertices[l+1] &&
407  diagonal_vertices[k+1] == new_vertices[l]
408  )
409  )
410  {
411  isRepeated=1;
412  break;
413  }
414  }
415  if(! isRepeated)
416  {
417  new_vertices[index+index] = diagonal_vertices[k];
418  new_vertices[index+index+1] = diagonal_vertices[k+1];
419  index++;
420  }
421  }
422  return index;
423 }
424 
425 /*for debug only*/
426 directedLine** DBGfindDiagonals(directedLine *polygons, Int& num_diagonals)
427 {
428  Int total_num_edges = 0;
429  directedLine** array = polygons->toArrayAllPolygons(total_num_edges);
430  quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void*, void*)) compInY);
431  sweepRange** ranges = (sweepRange**) malloc(sizeof(sweepRange*) * total_num_edges);
432  assert(ranges);
433 
434  sweepY(total_num_edges, array, ranges);
435 
436  directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges);
437  assert(diagonal_vertices);
438  findDiagonals(total_num_edges, array, ranges, num_diagonals, diagonal_vertices);
439 
440  num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);
441  return diagonal_vertices;
442 
443 }
444 
445 
446 /*partition into Y-monotone polygons*/
447 directedLine* partitionY(directedLine *polygons, sampledLine **retSampledLines)
448 {
449  Int total_num_edges = 0;
450  directedLine** array = polygons->toArrayAllPolygons(total_num_edges);
451 
452  quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void*, void*)) compInY);
453 
454  sweepRange** ranges = (sweepRange**) malloc(sizeof(sweepRange*) * (total_num_edges));
455  assert(ranges);
456 
457 
458 
459  sweepY(total_num_edges, array, ranges);
460 
461 
462 
463  /*the diagonal vertices are stored as:
464  *v0-v1: 1st diagonal
465  *v2-v3: 2nd diagonal
466  *v5-v5: 3rd diagonal
467  *...
468  */
469 
470 
471  Int num_diagonals;
472  /*number diagonals is < total_num_edges*total_num_edges*/
473  directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges*2/*total_num_edges*/);
474  assert(diagonal_vertices);
475 
476 
477 
478  findDiagonals(total_num_edges, array, ranges, num_diagonals, diagonal_vertices);
479 
480 
481 
482  directedLine* ret_polygons = polygons;
483  sampledLine* newSampledLines = NULL;
484  Int i,k;
485 
486 num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);
487 
488 
489 
490  Int *removedDiagonals=(Int*)malloc(sizeof(Int) * num_diagonals);
491  for(i=0; i<num_diagonals; i++)
492  removedDiagonals[i] = 0;
493 
494 
495 
496 
497 
498  for(i=0,k=0; i<num_diagonals; i++,k+=2)
499  {
500 
501 
502  directedLine* v1=diagonal_vertices[k];
503  directedLine* v2=diagonal_vertices[k+1];
504  directedLine* ret_p1;
505  directedLine* ret_p2;
506 
507  /*we ahve to determine whether v1 and v2 belong to the same polygon before
508  *their structure are modified by connectDiagonal().
509  */
510 /*
511  directedLine *root1 = v1->findRoot();
512  directedLine *root2 = v2->findRoot();
513  assert(root1);
514  assert(root2);
515 */
516 
517 directedLine* root1 = v1->rootLinkFindRoot();
518 directedLine* root2 = v2->rootLinkFindRoot();
519 
520  if(root1 != root2)
521  {
522 
523  removedDiagonals[i] = 1;
524  sampledLine* generatedLine;
525 
526 
527 
528  v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);
529 
530 
531 
532  newSampledLines = generatedLine->insert(newSampledLines);
533 /*
534  ret_polygons = ret_polygons->cutoffPolygon(root1);
535 
536  ret_polygons = ret_polygons->cutoffPolygon(root2);
537  ret_polygons = ret_p1->insertPolygon(ret_polygons);
538 root1->rootLinkSet(ret_p1);
539 root2->rootLinkSet(ret_p1);
540 ret_p1->rootLinkSet(NULL);
541 ret_p2->rootLinkSet(ret_p1);
542 */
543  ret_polygons = ret_polygons->cutoffPolygon(root2);
544 
545 
546 
547 root2->rootLinkSet(root1);
548 ret_p1->rootLinkSet(root1);
549 ret_p2->rootLinkSet(root1);
550 
551  /*now that we have connected the diagonal v1 and v2,
552  *we have to check those unprocessed diagonals which
553  *have v1 or v2 as an end point. Notice that the head of v1
554  *has the same coodinates as the head of v2->prev, and the head of
555  *v2 has the same coordinate as the head of v1->prev.
556  *Suppose these is a diagonal (v1, x). If (v1,x) is still a valid
557  *diagonal, then x should be on the left hand side of the directed line: *v1->prev->head -- v1->head -- v1->tail. Otherwise, (v1,x) should be
558  *replaced by (v2->prev, x), that is, x is on the left of
559  * v2->prev->prev->head, v2->prev->head, v2->prev->tail.
560  */
561  Int ii, kk;
562  for(ii=0, kk=0; ii<num_diagonals; ii++, kk+=2)
563  if( removedDiagonals[ii]==0)
564  {
565  directedLine* d1=diagonal_vertices[kk];
566  directedLine* d2=diagonal_vertices[kk+1];
567  /*check d1, and replace diagonal_vertices[kk] if necessary*/
568  if(d1 == v1) {
569  /*check if d2 is to left of v1->prev->head:v1->head:v1->tail*/
570  if(! pointLeft2Lines(v1->getPrev()->head(),
571  v1->head(), v1->tail(), d2->head()))
572  {
573 /*
574  assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),
575  v2->getPrev()->head(),
576  v2->getPrev()->tail(), d2->head()));
577 */
578  diagonal_vertices[kk] = v2->getPrev();
579  }
580  }
581  if(d1 == v2) {
582  /*check if d2 is to left of v2->prev->head:v2->head:v2->tail*/
583  if(! pointLeft2Lines(v2->getPrev()->head(),
584  v2->head(), v2->tail(), d2->head()))
585  {
586 /*
587  assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),
588  v1->getPrev()->head(),
589  v1->getPrev()->tail(), d2->head()));
590 */
591  diagonal_vertices[kk] = v1->getPrev();
592  }
593  }
594  /*check d2 and replace diagonal_vertices[k+1] if necessary*/
595  if(d2 == v1) {
596  /*check if d1 is to left of v1->prev->head:v1->head:v1->tail*/
597  if(! pointLeft2Lines(v1->getPrev()->head(),
598  v1->head(), v1->tail(), d1->head()))
599  {
600 /* assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),
601  v2->getPrev()->head(),
602  v2->getPrev()->tail(), d1->head()));
603 */
604  diagonal_vertices[kk+1] = v2->getPrev();
605  }
606  }
607  if(d2 == v2) {
608  /*check if d1 is to left of v2->prev->head:v2->head:v2->tail*/
609  if(! pointLeft2Lines(v2->getPrev()->head(),
610  v2->head(), v2->tail(), d1->head()))
611  {
612 /* assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),
613  v1->getPrev()->head(),
614  v1->getPrev()->tail(), d1->head()));
615 */
616  diagonal_vertices[kk+1] = v1->getPrev();
617  }
618  }
619  }
620 }/*end if (root1 not equal to root 2)*/
621 }
622 
623  /*second pass, now all diagoals should belong to the same polygon*/
624 
625 
626 
627  for(i=0,k=0; i<num_diagonals; i++, k += 2)
628  if(removedDiagonals[i] == 0)
629  {
630 
631 
632  directedLine* v1=diagonal_vertices[k];
633  directedLine* v2=diagonal_vertices[k+1];
634 
635 
636 
637  directedLine* ret_p1;
638  directedLine* ret_p2;
639 
640  /*we ahve to determine whether v1 and v2 belong to the same polygon before
641  *their structure are modified by connectDiagonal().
642  */
643  directedLine *root1 = v1->findRoot();
644 /*
645  directedLine *root2 = v2->findRoot();
646 
647 
648 
649  assert(root1);
650  assert(root2);
651  assert(root1 == root2);
652  */
653  sampledLine* generatedLine;
654 
655 
656 
657  v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);
658  newSampledLines = generatedLine->insert(newSampledLines);
659 
660  ret_polygons = ret_polygons->cutoffPolygon(root1);
661 
662  ret_polygons = ret_p1->insertPolygon(ret_polygons);
663 
664  ret_polygons = ret_p2->insertPolygon(ret_polygons);
665 
666 
667 
668  for(Int j=i+1; j<num_diagonals; j++)
669  {
670  if(removedDiagonals[j] ==0)
671  {
672 
673  directedLine* temp1=diagonal_vertices[2*j];
674  directedLine* temp2=diagonal_vertices[2*j+1];
675  if(temp1==v1 || temp1==v2 || temp2==v1 || temp2==v2)
676  if(! temp1->samePolygon(temp1, temp2))
677  {
678  /*if temp1 and temp2 are in different polygons,
679  *then one of them must be v1 or v2.
680  */
681 
682 
683 
684  assert(temp1==v1 || temp1 == v2 || temp2==v1 || temp2 ==v2);
685  if(temp1==v1)
686  {
687  diagonal_vertices[2*j] = v2->getPrev();
688  }
689  if(temp2==v1)
690  {
691  diagonal_vertices[2*j+1] = v2->getPrev();
692  }
693  if(temp1==v2)
694  {
695  diagonal_vertices[2*j] = v1->getPrev();
696  }
697  if(temp2==v2)
698  {
699  diagonal_vertices[2*j+1] = v1->getPrev();
700  }
701  }
702  }
703  }
704 
705  }
706 
707  /*clean up spaces*/
708  free(array);
709  free(ranges);
710  free(diagonal_vertices);
711  free(removedDiagonals);
712 
713  *retSampledLines = newSampledLines;
714  return ret_polygons;
715 }
716 
717 /*given a set of simple polygons where the interior
718  *is decided by left-hand principle,
719  *return a range (sight) for each vertex. This is called
720  *Trapezoidalization.
721  */
722 void sweepY(Int nVertices, directedLine** sortedVertices, sweepRange** ret_ranges)
723 {
724  Int i;
725  /*for each vertex in the sorted list, update the binary search tree.
726  *and store the range information for each vertex.
727  */
728  treeNode* searchTree = NULL;
729  for(i=0; i<nVertices;i++)
730  {
731 
732  directedLine* vert = sortedVertices[i];
733 
734  directedLine* thisEdge = vert;
735  directedLine* prevEdge = vert->getPrev();
736 
737  if(isBelow(vert, thisEdge) && isAbove(vert, prevEdge))
738  {
739 
740  /*case 1: this < v < prev
741  *the polygon is going down at v, the interior is to
742  *the right hand side.
743  * find the edge to the right of thisEdge for right range.
744  * delete thisEdge
745  * insert prevEdge
746  */
747  treeNode* thisNode = TreeNodeFind(searchTree, thisEdge, ( Int (*) (void *, void *))compEdges);
748  assert(thisNode);
749 
750  treeNode* succ = TreeNodeSuccessor(thisNode);
751  assert(succ);
752  searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode);
753  searchTree = TreeNodeInsert(searchTree, TreeNodeMake(prevEdge), ( Int (*) (void *, void *))compEdges);
754 
755 
756  ret_ranges[i] = sweepRangeMake(vert, 0, (directedLine*) (succ->key), 1);
757 
758  }
759  else if(isAbove(vert, thisEdge) && isBelow(vert, prevEdge))
760  {
761 
762  /*case 2: this > v > prev
763  *the polygon is going up at v, the interior is to
764  *the left hand side.
765  * find the edge to the left of thisEdge for left range.
766  * delete prevEdge
767  * insert thisEdge
768  */
769  treeNode* prevNode = TreeNodeFind(searchTree, prevEdge, ( Int (*) (void *, void *))compEdges);
770  assert(prevNode);
771  treeNode* pred = TreeNodePredecessor(prevNode);
772  searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode);
773  searchTree = TreeNodeInsert(searchTree, TreeNodeMake(thisEdge), ( Int (*) (void *, void *))compEdges);
774  ret_ranges[i] = sweepRangeMake((directedLine*)(pred->key), 1, vert, 0);
775  }
776  else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge))
777  {
778 
779  /*case 3: insert both edges*/
780  treeNode* thisNode = TreeNodeMake(thisEdge);
781  treeNode* prevNode = TreeNodeMake(prevEdge);
782  searchTree = TreeNodeInsert(searchTree, thisNode, ( Int (*) (void *, void *))compEdges);
783  searchTree = TreeNodeInsert(searchTree, prevNode, ( Int (*) (void *, void *))compEdges);
784  if(compEdges(thisEdge, prevEdge)<0) /*interior cusp*/
785  {
786 
787  treeNode* leftEdge = TreeNodePredecessor(thisNode);
788  treeNode* rightEdge = TreeNodeSuccessor(prevNode);
789  ret_ranges[i] = sweepRangeMake( (directedLine*) leftEdge->key, 1,
790  (directedLine*) rightEdge->key, 1
791  );
792  }
793  else /*exterior cusp*/
794  {
795 
796  ret_ranges[i] = sweepRangeMake( prevEdge, 1, thisEdge, 1);
797  }
798  }
799  else if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge))
800  {
801 
802  /*case 4: delete both edges*/
803  treeNode* thisNode = TreeNodeFind(searchTree, thisEdge, ( Int (*) (void *, void *))compEdges);
804  treeNode* prevNode = TreeNodeFind(searchTree, prevEdge, ( Int (*) (void *, void *))compEdges);
805  if(compEdges(thisEdge, prevEdge)>0) /*interior cusp*/
806  {
807  treeNode* leftEdge = TreeNodePredecessor(prevNode);
808  treeNode* rightEdge = TreeNodeSuccessor(thisNode);
809  ret_ranges[i] = sweepRangeMake( (directedLine*) leftEdge->key, 1,
810  (directedLine*) rightEdge->key, 1
811  );
812  }
813  else /*exterior cusp*/
814  {
815  ret_ranges[i] = sweepRangeMake( thisEdge, 1, prevEdge, 1);
816  }
817  searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode);
818  searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode);
819  }
820  else
821  {
822  fprintf(stderr,"error in partitionY.C, invalid case\n");
823  printf("vert is\n");
824  vert->printSingle();
825  printf("thisEdge is\n");
826  thisEdge->printSingle();
827  printf("prevEdge is\n");
828  prevEdge->printSingle();
829 
830  exit(1);
831  }
832  }
833 
834  /*finaly clean up space: delete the search tree*/
835  TreeNodeDeleteWholeTree(searchTree);
836 }