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My goal in research is to discover theoretical insights that can guide practitioners in the creation of useful
systems. To this end, I try to focus on relatively simple algorithms that are feasible to implement and have
small big-Oh constants; when finding lower bounds, I look for ones that give guidance in the creation of
efficient algorithms. To calibrate my understanding of the relation between theory and practice, I implement
about half my algorithms and analyze their empirical performance.

With this in mind, I have decided to focus my research on the interdisciplinary area of sparse recovery,
which includes aspects of compressive sensing and streaming algorithms. The goal of sparse recovery is
to acquire and process “sparse” data from a small number of samples. The topic offers the opportunity
to develop theoretical and mathematical techniques that apply to big data problems in diverse areas such
as data stream analysis and signal processing. On the theory side, sparse recovery involves fascinating
techniques from algorithms, statistics, probability theory, and information theory. On the application side,
sparse recovery lets me interact with researchers that understand the practical constraints involved in creating
real systems. It is a great area to develop theoretical results that can make an impact in practice.

My first paper in the area shows fundamental limitations on the “standard” compressive sensing frame-
work, by showing that the number of samples required by the seminal work of Candès, Romberg, and Tao
is in fact optimal. This led me to investigate two methods for circumventing these lower bounds: making
the sampling process adaptive and incorporating additional structural assumptions on the signals. I have
shown that adaptivity enables a significant—and in some cases exponential—reduction in the number of
samples required for sparse recovery. I have also shown the first linear time algorithm to exploit one of
the most common additional structural assumptions. My research on algorithms that are highly efficient in
both number of samples and processing time has culminated in algorithms to compute the Fourier transform
efficiently when its output is sparse. These algorithms are faster than the ubiquitous Fast Fourier Transform
for moderately sparse data, both in theory and in practice.

1 Sparse recovery

The amount of data we attempt to collect, store, and process grows exponentially over time, leading to
severe resource bottlenecks. Fortunately, many real world signals are “sparse,” meaning that most of the
information is concentrated in relatively few coordinates of the signal. Sparsity has long been used by
compression algorithms to decrease storage costs; the goal of sparse recovery is to use it to decrease data
collection and processing costs. Sparse recovery allows signal acquisition with fewer measurements than
naive observation, at the cost of requiring the ability to take linear measurements Ax of the signal vector
x. This observation model is powerful enough to significantly improve measurement efficiency, but simple
enough to be implemented in diverse settings. In particular, it yields space-efficient algorithms for process-
ing massive data streams and time-efficient algorithms for computing Fourier transforms.

Sparse recovery can be applied in almost any setting where linear measurements are feasible and the
vectors of interest are sparse. For example, in streaming algorithms the matrix product Ax can be main-
tained under increments and decrements to x, and sparse recovery solves the fundamental “heavy hitters”
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problem [CCF02, CM06, GI10]. In camera design, linear measurements correspond to (for example) plac-
ing a filter in front of the lens, and are implementable in prototype hardware like the single pixel cam-
era [DDT+08]. In medical imaging, the nuclear magnetic resonance used in MRI inherently gives Fourier
samples of the image [LDSP08]. In genetic testing, blood samples can be mixed together prior to testing to
observe linear combinations of the binary vector corresponding to genes [ECG+09].

Formally, sparse recovery considers the acquisition of signals that are approximately sparse in some
well-chosen basis (a vector x ∈ Rn is k-sparse if x has at most k non-zero coefficients, and approximately
k-sparse if it is close to a k-sparse vector). Measurements are allowed to be arbitrary linear combinations
of coefficients of x. The algorithm must recover an approximation x∗ to x with error proportional to the
error in a k-sparse approximation of x. The mathematical formulation of the problem is to choose a matrix
A ∈ Rm×n such that, for any vector x ∈ Rn, using the m � n observations Ax one can recover x∗

satisfying

‖x∗ − x‖ ≤ C min
k-sparse xk

‖xk − x‖ (1)

for some approximation factor C = Θ(1) and distance metric ‖·‖ that is usually `1 or `2; if x is exactly k-
sparse, this will recover it exactly, and if x is approximately k-sparse, this will recover it approximately. We
also allow randomized constructions, where A is chosen from some distribution and recovery must succeed
with “good” probability over the choice of A.

2 Results

Lower bounds. The main goal of sparse recovery is to minimize the number of measurements. The sem-
inal work of Candès, Romberg, and Tao [CRT06] presented a method with O(k log(n/k)) measurements.
Over the next few years, a number of results improved the generality of the matrices or the speed of recon-
struction, but none managed to decrease the number of measurements. My first work in the field showed
that this dependence is optimal [DIPW10] for the standard `1 and `2 metrics. Note that in the deterministic
setting, the lower bound was previously known [Kaš77, GG84, BDDW08]; we extended it to the general
case of randomized constructions of A. We later developed new upper and lower bounds to tighten the
dependence on the approximation factor C in this standard setting [PW11].

The latter work featured a particularly simple lower bound technique based on the communication capac-
ity of the Gaussian channel. This technique has proven to be quite general, leading to lower bounds for mo-
ment estimation [PW12], adaptive measurements [PW13], and adaptive Fourier measurements [HIKP12a].

Adaptivity. By the above, any improvement on the number of measurements requires changing the model
to circumvent the lower bound. A natural modification is to allow adaptive measurements, where each
row of the matrix may be chosen based on the results of previous rows. Adaptivity is feasible in many
sparse recovery contexts (for example, it corresponds to multiple pass streaming algorithms), so previous
researchers had studied it and found empirical benefits [MSW08, AWZ08] and an improved dependence
on the approximation factor C [HBCN09]. Using intuition from our lower bound [PW11], we created an
algorithm featuring the first general asymptotic improvement using adaptivity, achieving O(k log log(n/k))
measurements [IPW11]. The improvement is not just asymptotic: in our experiments with k = 1, adaptivity
already gives a factor 2 improvement at n = 8192. Furthermore, we showed that our result is optimal in this
k = 1 case [PW13].

Model-based compressive sensing. Another way to improve on the number of measurements is to as-
sume the input vector x is not only sparse but also comes from a “nice” distribution. One important example
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is block sparsity, where the support of x lies in k/ log n contiguous “blocks” of length log n. This models
“bursty” signals, where the “activity” is localized in a small number of blocks. In this setting, O(k) mea-
surements suffice [BCDH10]. We created an algorithm for this task with running time O(n), improving on
the previous Õ(nk) [Pri11]1.

Another model of structure satisfied by many real signals is power law decay, a.k.a. Zipf’s law. In
this model, the ith largest coefficient has magnitude proportional to i−c for constant c > 1/2. In many
settings, sparsity is merely a proxy for power laws [BCDH10]. We showed that for such vectors, the classic
Count-Sketch [CCF02] algorithm used in practice (e.g. at Google [PDGQ05]) gives a stronger guarantee
than was previously known [MP12]. While the standard analysis of Count-Sketch uses a simple variance
bound to control the maximum error in the estimation of any coordinate, we used Fourier analysis to show
that the average error is asymptotically less than the maximum. This yields substantial improvements in the
overall estimation error when the signal has power law decay, improving our theoretical understanding of
the performance of an algorithm used in practice.

Earth-Mover’s distance. Beyond optimizing the number of measurements, another goal is to extend the
guarantee of sparse recovery. The usual distance metric for the sparse recovery guarantee is `1 or `2. When
the signal is an image, however, the `p metrics can be poor approximations of visual similarity. To ad-
dress this concern in image retrieval, some researchers use a different metric known as Earth Mover’s
Distance [RTG00]. We constructed an algorithm that efficiently performs sparse recovery with respect to
Earth Mover’s Distance using O(k log(n/k)) measurements [IP11].

While interesting in its own right, this work also has interesting connections to other areas. It turns out
that the problem of sparse recovery under Earth Mover’s Distance is nearly equivalent to that of finding a
“coreset” for the k-medians problem. This latter problem is a generalization of k-median clustering, which
has been well studied in the streaming model [FS05, Ind04]. Our result improves on the best known in this
area.

Sparse Fourier transform. The Fast Fourier Transform (FFT) is a ubiquitous computational tool that
computes the Discrete Fourier Transform of a given vector y ∈ Cn in O(n log n) time. It is widely used in
many applications, including signal processing and compression (e.g., in the JPEG and MPEG standards).
The reason for its use in compression is that for signals y of interest, the discrete Fourier transform ŷ is
concentrated among a small number k of coordinates. A natural question that arises is: can we speed up
image/video compression by estimating the k large coordinates of ŷ in time closer to k than to n? This
problem is essentially equivalent to sparse recovery with measurements restricted to be rows of the (inverse)
Fourier matrix.

A number of previous papers have studied sparse Fourier transforms, with the best achieving roughly
O(k log4 n) time [GMS05]. This is only faster than the O(n log n) fast Fourier transform when k/n <
O(1/ log3 n); such extreme sparsity is rarely the case in the applications motivating this research.

Using insights derived from streaming algorithms and compressive sensing, we gave an algorithm to
compute sparse Fourier transforms in O(k log(n/k) log n) time [HIKP12a]. This is faster than the FFT
for any sparsity ratio k/n less than some fixed constant. In the special case where the signal is exactly
k-sparse (i.e, has only k non-zero Fourier terms), we gave a variant with the essentially optimal running
time of O(k log n). Our implementation of the latter is faster than the fastest implementation of the FFT for
k/n < 3% [HIKP12b]; not quite the k/n ≈ 7% typical in image compression, but getting close.

1We use Õ(f) to denote O(f logc f) for some constant c.
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3 Research Agenda

Sparse recovery is a quickly developing area spanning computer science, statistics, and signal processing.
The cross-fertilization of ideas between these fields makes it rich with open problems having many applica-
tions. Here are some of the topics I am particularly interested in:

Fourier measurement complexity. In medical imaging applications such as MRI, minimizing the sam-
ple complexity of the sparse Fourier transform is more important than minimizing the time complexity.
During MRIs, the patient often needs to lie still for 30 minutes while Fourier samples of the image are
observed. Thus improving the measurement complexity of MRIs would directly improve patient comfort
and MRI cost. The sparse Fourier transform is an idealized version of the problem. My work has shown
that O(k log(n/k) log n) samples are sufficient [HIKP12a], and it is also known that with O(k log n) sam-
ples we can achieve an approximation factor C = Θ(log2 n) [CP11]. It remains open whether O(k log n)
samples are sufficient to get a constant factor approximation.

For the two dimensional Fourier transform—which is more applicable to imaging applications—the gap
is larger, because the natural extension of [HIKP12a] requires O(k log(n/k) log2 n) samples. To reduce
this gap, we have shown an algorithm for two dimensional Fourier transforms using the optimal O(k log n)
samples on random inputs at k = Θ(

√
n) [GHI+12]. I would like to get a similar result for worst case

inputs and general k.

Fast, generic algorithms. So far, my work has focused on very specific measurement matrix designs
tightly coupled with recovery algorithms. This is the norm in the computer science literature on sparse
recovery because streaming algorithms allow full control of the sensing matrix. However, the other appli-
cations of sparse recovery involve physical hardware, so diverse real world constraints arise on the sensing
matrix. For this reason, the statistics and signal processing communities have worked on generic recovery
algorithms that apply to general classes of matrices, most often the set of matrices satisfying the Restricted
Isometry Property or RIP. These general algorithms are slower than the matrix-specific designs and only
support deterministic matrices, not random distributions on matrices. Featuring deterministic matrices is in
some ways a benefit, but makes it impossible to achieve goals such as `2 error bounds or improvements via
adaptivity. I would like to combine the best features of both approaches.

One line of research in this direction is that of fast RIP matrices, which allow generic recovery algo-
rithms to finish more quickly. One can show that both subsampled Fourier [CT06, RV08, CGV13] and
subsampled circulant [KMR12] matrices satisfy the RIP and allow sparse recovery in only Õ(n) time rather
than the naive Õ(nk). The drawback of this approach is that the number of measurements increases from
the optimal O(k log(n/k)) to O(k log4 n) in both cases. My coauthors and I have narrowed the gap, giving
a construction of RIP matrices featuring Õ(n) multiplication time and only O(k log3 n) rows [NPW12];
by a black box reduction [KW11], our result also improves on the best known fast Johnson-Lindenstrauss
matrices [AC09, AL11, KW11] used in dimensionality reduction. I want to close the remaining log2 n gap,
which seems to come from the gap between Dudley’s entropy integral and Talagrand’s generic chaining in
probability theory.

Perceptual coding. Image compression standards such as JPEG or JPEG2000 are effective not just be-
cause they exploit the structure of images, but also because the errors they introduce are designed to be less
perceptible to the human eye. Our work on Earth Mover’s Distance gave hints at how sparse recovery could
incorporate the same idea, both by making the norm more perceptually relevant and by introducing errors in
a similar way to the JPEG2000 image format. Left open are both direct questions, such as developing tight
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upper and lower bounds for this metric, and general questions, such as developing a more comprehensive
theory of perceptual sparse recovery.

Tight constants. The theory I have described is asymptotic in nature and ignores constants. But constants
matter: for many signals, the improvement from the naive n measurements to sparse recovery’s k log(n/k)
measurements is only one order of magnitude and can be swallowed up by sloppy constants. A similar issue
is faced in coding theory, and just as we can compute channel capacities, we ought to be able to find the
exact constant in sparse recovery. Our information theory-based lower bound techniques, being similar to
coding theory ones, can likely get tight constants. Our analysis of algorithms, on the other hand, tends to use
techniques that require sloppy constants. One encouraging result is [BJ10], which gives a sparse recovery
algorithm with a tight constant that works on a restricted class of signals. This algorithm is used to create a
code for the Gaussian channel, strengthening the connection between sparse recovery and coding and giving
hope that tight constants might be achievable in general.
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