The proof of Lemma 4.3 in our paper [AKS04] is incorrect (we thank the anonymous referees together with CS05, RS05, R18 for pointing it out). In the proof, it is claimed that if there is an \(s \leq B = \max\{3, [\log^5 n]\} \) such that \(s \not\in \{r_1, \ldots, r_t\} \) (the set of all numbers \(r_i \leq B \) that divide the product \(n \cdot \prod_{i=1}^{[\log^5 n]} (n^i - 1) \)) then for \(r = \frac{s}{(s,n)} \), \(o_r(n) > \log^2 n \). The claim is wrong because it does not handle the case when \(s \) is a multiple of a power of a number dividing \(n \). In those cases \(\frac{s}{(s,n)} \) may not be coprime to \(n \) and so \(o_r(n) \) is undefined.

It is easy to fix the proof. We give a corrected proof below, by changing the definition of \(r \).

Lemma 4.3 There exists an \(r \leq \max\{3, [\log^5 n]\} \) such that \(o_r(n) > \log^2 n \).

Proof. This is trivially true when \(n = 2 \): \(r = 3 \) satisfies all conditions. So assume that \(n > 2 \). Then \([\log^5 n] > 10 \) and Lemma 3.1 applies. Observe that the largest value of \(k \) for any number of the form \(m^k \leq B = [\log^5 n] \), \(m \geq 2 \), is \(\lfloor \log B \rfloor \). Now consider the smallest number \(s \) that does not divide the product \(n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{[\log^5 n]} (n^i - 1) \).

How small is \(s \)? Note that,

\[
n^{\lfloor \log B \rfloor} \cdot \prod_{i=1}^{[\log^5 n]} (n^i - 1) < n^{\lfloor \log B \rfloor + \frac{1}{2} \log^2 n \cdot (\log^2 n - 1)} \leq n^{\log^4 n} \leq 2^{\log^5 n} \leq 2^B.
\]

(The second inequality holds for all \(n \geq 2 \)). By Lemma 3.1, the lcm of first \(B \) numbers is at least \(2^B \). Therefore, \(s \leq B \). As a result, the part of \(s \) coprime to \(n \) is \(r := \frac{s}{(s,n)} \). Furthermore, by the choice of \(s \) we have that \(r \) does not divide the product \(\prod_{i=1}^{[\log^5 n]} (n^i - 1) \).

Thus, \(r \) (which is coprime to \(n \)) does not divide any of \(n^i - 1 \) for \(1 \leq i \leq [\log^2 n] \), implying that \(o_r(n) > \log^2 n \). \(\square \)

References

