Entropy Calculation

\[\Delta S = \int \frac{\delta Q_{\text{rev}}}{T} \]

Statement of 2nd law: \[\Delta S_{\text{sys}} + \Delta S_{\text{surrounding}} \geq 0 \]

Calculating \(\Delta S_{\text{sys}} \):
If process is reversible \[\rightarrow \]

If process is irreversible \[\rightarrow \]

But in any case, since \(\Delta S \) is a state function: \[\Delta S = \]

If “surrounding” is at constant temperature (a heat reservoir), then \(\Delta S_{\text{surrounding}} \) is calculated as:

\[\Delta S_{\text{surrounding}} = \]

(see page 165 of textbook).

Maxwell’s Equations

EOS gives us \(f(P,V,T) = 0 \) and \(Cp = f(T) \) \(\rightarrow \) we need only 2 variables to figure out the rest.

Main use: Getting rid of \(\left(\frac{\partial S}{\partial ...} \right)_{...} \) and \(\left(\frac{\partial ...}{\partial S} \right)_{...} \)

Example Problem:
Gas A goes from state 1 \((T_1, V_1)\) to \((T_2, V_2)\). Give the expression for the change in enthalpy \(H \).
The Use of 2nd Law

2nd Law is often used to answer questions of this nature:
1) Is this possible?
2) What is the (maximum/minimum) (heat / work) possible?

Example Problem:

There is no net heat or work interaction with the surrounding.
Assume air is an ideal gas with $C_p = 3.5R$ (constant). Is the process drawn above feasible?

To think about: If we were to change the pressure of the air coming in (keeping everything else the same), what is the lowest pressure possible?