1) True / False \(\bar{M}_i = \left(\frac{\partial (nM)}{\partial n_i} \right)_{T,P,n_{j\neq i}} \) can also be written \(\bar{M}_i = \left(\frac{\partial M}{\partial x_i} \right)_{T,P,x_{j\neq i}} \)

2) True / False For ideal gases: \(H = \sum y_i H_i \) where \(H_i \) is the enthalpy of pure species at some fixed reference temperature.

3) True / False Ideal gases always form ideal mixtures.

4) True / False In an ideal mixture, \(\bar{M}_i = M_i \) where \(M \) is any molar property.

5) A and B are ideal gases. \(n_A \) moles of A and \(n_B \) moles of B are mixed adiabatically at some constant \(T \) and constant \(P \). Let’s call the fraction of A in the final mixture \(x_A \). Find the expression for the change of entropy of the process in terms of \(n_A, n_B, x_A, T, P, \) and \(R \). Is this process reversible?

6) When we mix two unknown liquids X and Y in the amount of 100 mL of X and 50 mL of Y, we get 148 mL of solution. What can we say about the relative magnitudes of \(V_X, V_Y, V_X, \) and \(V_Y \)?
7) For a binary system of ideal gases 1 and 2, we are given \(H = y_1H_1 + y_2H_2 + k^2y_1y_2 \), where \(k \) is a constant. We mix some amount of gas 1 and some amount of gas 2 in a flow process, all at constant \(T = 298 \, \text{K} \) and \(P = 1 \, \text{atm} \). Consider the case where no shaft work is done. To keep the mixture at 298 K and 1 atm, does heat need to be added or removed to the system? What if the final pressure is not 1 atm but 10 atm?

8) True / False The Gibbs-Duhem equation in the form of \(\sum x_i dM_i \) only applies at constant \(T \) and \(P \).

9) True / False For an ideal gas mixture, \(\sum x_i \frac{dH_i}{dx_i} - C_p \frac{dT}{dx_i} = 0 \)

10) The enthalpy diagram for a mixture of A and W is given below. Consider two processes depicted next to the diagram. In each process, 1 mol of one substance is added to 1,000 mol of the other substance. Which process, I or II, will generate more heat?