10.213 Problem #2

Solution:

\[V_1^t = 0.624 \text{ m}^3 \]
\[T_1 = 300K \]
\[P_1 = 1 \text{ bar} \]
\[V_2^t = 1.041 \text{ m}^3 \]
\[T_2 = 500K \]
\[P_2 = 1 \text{ bar} \]

\[+Q = 104.2 \text{ kJ} \]

Closed System

Isochoric Expansion

Now, in general:

\[W = -\int_{V_i}^{V_f} P_{op} dV^t \]

\[W_{rev} = -\int_{V_i}^{V_f} P dV^t \]

for a reversible process

For constant \(P \),

\[W_{rev} = -P \int_{V_i}^{V_f} dV^t \]

(a) From (i):

\[W_{rev} = -P \int_{V_i}^{V_f} dV^t \]

\[= -P \Delta V^t \]

\[= (-1 \text{ bar})(1.041 - 0.624) \text{ m}^3 \left(\frac{10^5 \text{ Pa}}{1 \text{ bar}} \right) \]

\[= -41.7 \text{ kJ} \]

\[W_{rev} = -41.7 \text{ kJ} \]
(b) Work = -41.7 kJ < 0
Because work is done by system on surrounding during expansion.

(c) First Law:
\[\Delta U^t = Q + W \] \hspace{1cm} (S+VN 2.3)
\[\Delta U^t = (104.2 \text{ kJ}) + (-41.7 \text{ kJ}) \]
\[= +62.5 \text{ kJ} \]

(d) From definition of \(H_t \),
\[H_t = U^t + PV^t \] \hspace{1cm} (S+VN 2.5)
\[\Delta H^t = \Delta U^t + \Delta (PV^t) \] \hspace{1cm} (S+VN 2.7)
\[= \Delta U^t + P \Delta V^t + V^t \Delta P \]
\[= \Delta U^t + (\Delta W) \]
\[= (+62.5 \text{ kJ}) - (-41.7 \text{ kJ}) \]
\[= +104.2 \text{ kJ} \]
\[\therefore \Delta H^t = +104.2 \text{ kJ} \]

(note: \(\Delta H^t = Q \) for isobaric process + reversible)
\[\Delta H = \Delta H^t / n \]

\[W = - \int PdV \]

(a) Work = \(-41.7 \text{ kJ} < 0\)

Because work is done by system on surrounding during expansion.

(c) First Law:

\[\Delta U^t = Q + W \]

\[\Delta U^t = (104.2 \text{ kJ}) + (-41.7 \text{ kJ}) = +62.5 \text{ kJ} \]

(d) From definition of \(H^t \):

\[H^t = U^t + PV^t \]

\[\Delta H^t = \Delta U^t + \Delta(PV^t) \] \[= \Delta U^t + PA \Delta V^t + V^t \Delta P \]

\[= \Delta U^t + (-W) \]

\[= (+62.5 \text{ kJ}) - (-41.7 \text{ kJ}) = 0 \text{ for const. P} \]