Taxing externalities with measurable pollution

Atmosphere:

\[A = \sum_i a_i x_i^0 \]

(1)

The only route for externalities is through \(A \). Note \(A \) is the same for all consumers. Note linearity is not important. This could be done with a vector of different atmospheres, e.g., for different locations.

Pareto optimality assuming linear technology with fixed producer prices \(p \):

\[
\begin{align*}
\text{Max} & \quad \sum_h \alpha_h u^h [x_0^h, x^h, A] \\
\text{s.t.} & \quad \sum_h (p_0 x_0^h + p x^h) = R
\end{align*}
\]

(2)

First order conditions with respect to \(x_i^h, x_0^h \):

\[
\alpha_h \frac{\partial u^h}{\partial x_i} = \lambda p_i \quad h = 1, 2, ..., H; \ i = 1, 2, ..., N
\]

(3)

\[
\alpha_h \frac{\partial u^h}{\partial x_0} + a_h \sum_k \alpha^k \frac{\partial u^k}{\partial A} = \lambda p_0
\]

(4)

Substituting from (3) in (4)

\[
\frac{\partial u^h / \partial x_0^h}{\partial u^h / \partial x_i^h} = \frac{p_0}{p_i} - a_h \sum_k \frac{\partial u^k / \partial A}{\partial u^k / \partial x_i^k}
\]

(5)
I. If we can measure the pollution contribution, \(a^h x_0^h \), we can decentralize the PO by pricing pollution, although prices might need to vary by person.

The consumer problem becomes:

\[
\begin{align*}
\text{Max} & \quad u^h [x_0^h, x^h, A] \\
\text{s.t.} & \quad p_0 x_0 + p_x x^h + t^h a^h x_0 = I^h
\end{align*}
\]

First order conditions

\[
\frac{\partial u^h / \partial x_0^h + a^h \partial u^h / \partial A}{\partial u^h / \partial x_1^h} = \frac{p_0 + t^h a^h}{p_1}
\]

This will support the PO provided

\[
\frac{t^h}{p_1} = \frac{\partial u^h / \partial A}{\partial u^h / \partial x_1^h} - \sum_k \frac{\partial u^k / \partial A}{\partial u^k / \partial x_1^k}
\]

If individuals ignore their own feedback to the atmosphere, individual choice now has FOC:

\[
\frac{\partial u^h / \partial x_0^h}{\partial u^h / \partial x_1^h} = \frac{p_0 + t^h a^h}{p_1}
\]

This allows support for the PO with uniform taxes

\[
\frac{t}{p_1} = -\sum_k \frac{\partial u^k / \partial A}{\partial u^k / \partial x_1^k}
\]

Note this extends to a vector of (local) atmospheres and more than one externality generating good, provided pricing distinguishes each atmosphere.
II. Alternatively, assuming consumers ignore the feedback on self through A, decentralization can be approached by taxing good zero.

$$\text{Max } u^h \left[x^h_0, x^h, A \right]$$

$$\text{s.t. } \left(p_0 + t^h \right) x^h_0 + p x^h = I^h$$

First order condition:

$$\frac{\partial u^h}{\partial x^h_0} = \frac{p_0 + t^h}{p_1}$$

$$t^h = d^h p_1 \sum_k \frac{\partial u^k}{\partial A} \frac{\partial \tilde{x}^k}{\partial x^k_1}$$

This relies on the lack of choice in how the good is consumed, with different choices resulting in different levels of pollution.