CHAPTER 1

Combinatorial AnalySisw

1.1 INTRODUCTION

Here is a typical problem of interest involving probability. A communication
system is to consist of n seemingly identical antennas that are to be lined up in
a linear order. The resulting system will then be able to receive all incoming
signals—and will be called functional—as long as no two consecutive antennas
are defective. If it turns out that exactly m of the n antennas are defective, what
is the probability that the resulting system will be functional? For instance, in
the special case where n = 4 and m = 2 there are 6 possible system configura-
tions—namely,

0o 1 10
0 1 0 1
1 01 0
0 0 1 1
1 0 0 1
1 1 0 0

where 1 means that the antenna is working and O that it is defective. As the
resulting system will be functional in the first 3 arrangements and not functional
in the remaining 3, it seems reasonable to take 2 = 1 as the desired probability.
In the case of general n and m, we could compute the probability that the system
is functional in a similar fashion. That is, we could count the number of configura-
tions that result in the system being functional and then divide by the total number
of all possible configurations.

From the above we see that it would be useful to have an effective method
for counting the number of ways that things can occur. In fact, many problems
in probability theory can be solved simply by counting the number of different
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2 Chapter 1 Combinatorial Analysis

ways that a certain event can occur. The mathematical theory of counting is
formally known as combinatorial analysis.

1.2 THE BASIC PRINCIPLE OF COUNTING

The following principle of counting will be basic to all our work. Loosely put,
it states that if one experiment can result in any of m possible outcomes and if
another experiment can result in any of n possible outcomes, then there are mn
possible outcomes of the two experiments.

~ The basic prihéiple of counting

- Supp()se that two experirhents are to be kperformed.,‘ Then if exper{imeﬁty
1 can result in any one of m possible outcomes and if for each outcome

, ; ;
~ of experiment | there are n possible outcomes of experiment 2, then i
together there are mn possible outcomes of the two experiments. . '

|
Proof of the Basic Principle: The basic principle may be proved by \
enumerating all the possible outcomes of the two experiments as follows:

(LD, 1,2),....0,n)
2,0, 2,2,....2n)

(m,. 1, (m, 2), ..., (m,n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible
outcome and experiment 2 then results in the jth of its possible outcomes. Hence
the set of possible outcomes consists of m rows, each row containing n elements,
which proves the result.

Example 2a. A small community consists of 10 women, each of whom has 3
children. If one woman and one of her children are to be chosen as mother
and child of the year, how many different choices are possible?

Solution By regarding the choice of the woman as the outcome of the first
experiment and the subsequent choice of one of her children as the outcome
of the second experiment, we see from the basic principle that there are
10 x 3 = 30 possible choices. i

When there are more than two experiments to be performed, the basic
principle can be generalized as follows.

i,
]
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NEFRIRY YIRL]

The géneraIIZQd basic prihciple of Vcduming;f! . -

b r experiments that are to be performed are such that the first one .
~ may result in any of ny possible outcomes, and if for each of these
~ ny possible outcomes there are n, possible outcomes of the second

~ experiment, and if for each of the possible outcomes of the first two

. ‘experiments there are n3 possible outcomes of the third experiment,
~andif ..., then there is a total ofm ny--n, possible outcomes of

Example 2b. A college planning committee consists of 3 freshmen, 4 sophomores,
5 juniors, and 2 seniors. A subcommittee of 4, consisting of 1 person from
each class, is to be chosen. How many different subcommittees are possible?

Solution We may regard the choice of a subcommittee as the combined
outcome of the four separate experiments of choosing a single representative
from each of the classes. Hence it follows from the generalized version
of the basic principle that there are 3 X 4 X 5 X 2 = 120 possible
subcommittees. | :

Example 2c. How many different 7-place license plates are possible if the first
3 places are to be occupied by letters and the final 4 by numbers?

Solution By the generalized version of the basic principle the answer is
26-26-26-10-10- 1010 = 175,760,000. 1

Example 2d. How many functions defined on n points are possible if each
functional value is either O or 1?

Solution Let the points be 1, 2, ..., n. Since f(i) must be either 0 or 1
for eachi = 1,2, ..., n, it follows that there are 2" possible functions. B

|

|

s

Example 2e. In Example 2c, how many license plates would be possible if
repetition among letters or numbers were prohibited? ‘

Solution In this case there would be 26 - 25-24-10-9-8-7 =
78,624,000 possible license plates. 1

1.3 PERMUTATIONS

How many different ordered arrangements of the letters a, b, and ¢ are possible?
By direct enumeration we see that there are 6: namely, abc, ach, bac, bca, cab,
and cha. Each arrangement is known as a permutation. Thus there are 6 possible
permutations of a set of 3 objects. This result could also have been obtained from |
the basic principle, since the first object in the permutation can be any of the 3,
the second object in the permutation can then be chosen from any of the remaining
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2. and the third object in the permutation is then chosen from the remaining 1.
Thus there are 3 - 2+ 1 = 6 possible permutations.

Suppose now that we have n objects. Reasoning similar to that we have just
used for the 3 letters shows that there are

nn — Hn — 2)+--3:-2-1=n!
different permutations of the n objects.

Example 3a. How many different batting orders are possible for a baseball team
consisting of 9 players?

Solution There are 9! = 362,880 possible batting orders. i

Example 3b. A class in probability theory consists of 6 men and 4 women.
An examination is given, and the students are ranked according to their
performance. Assume that no two students obtain the same score.

(a) How many different rankings are possible?
(b) If the men are ranked just among themselves and the women among
themselves, how many different rankings are possible?

Solution (a) As each ranking corresponds to a particular ordered arrange-
ment of the 10 people, we see that the answer to this part is 10! = 3.628,800.

(b) As there are 6! possible rankings of the men among themselves
and 4! possible rankings of the women among themselves, it follows from
the basic principle that there are 64! = (720)24) = 17,280 possible
rankings in this case. i

Example 3c. Mr. Jones has 10 books that he is going to put on his bookshelf.
Of these, 4 are mathematics books, 3 are chemistry books, 2 are history
books, and 1 is a language book. Jones wants to arrange his books so that
all the books dealing with the same subject are together on the shelf. How
many_different arrangements are possible?

Solution There are 4!3!2! 1! arrangements such that the mathematics
books are first in line, then the chemistry books, then the history books, and
then the language book. Similarly, for cach possible ordering of the subjects,
there are 4! 3! 2! 1! possible arrangements. Hence, as there are 4! possible
orderings of the subjects, the desired answer is4r413120 1 =6912. 1

We shall now determine the number of permutations of a set of n objects
when certain of the objects are indistinguishable from each other. To set this
straight in our minds, consider the following example.

Example 3d. How many different letter arrangements can be formed using the
letters P EP P ER?

Solution We first note that there are 6! permutations of the letters Py E;
P, Py E; R when the 3 P’s and the 2 E’s are distinguished from each other.
However, consider any one of these permutations—for instance, P, P, E;
P E> R. If we now permute the P’s among themselves and the E’s among
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themselves, then the resultant arrangement would still be of the form
P PEPER. That is, all 3! 2! permutations

P, P, E, P E5R P, P, E, P E1 R
P, PsE P, ESR P, P3sE, P, E1 R
P, P, Ey P3E,R P, P, E;PsE R,
P, Ps Ey P{E, R P, PyE, P ER "
Py P, E\ P E5 R Py P, E, P EyR

are of the form P P E P E R. Hence there are 6!/3! 2! = 60 possible letter
arrangements of the letters P EP P E R. i

In general, the same reasoning as that used in Example 3d shows that there are
n!
n!ny! - oml

different permutations of n objects, of which n, are alike, n, are alike, ..., n,
are alike.

Example 3e. A chess tournament has 10 competitors of which 4 are Russian, 3
are from the United States, 2 from Great Britain, and 1 from Brazil. If the
tournament result lists just the nationalities of the players in the order in
which they placed, how many outcomes are possible?

Solution There are

10!
T

possible outcomes. i

Example 3f. How many different signals, each consisting of 9 flags hung in a
line, can be made from a set of 4 white flags, 3 red flags, and 2 blue flags
if all flags of the same color are identical?

Solution There are

different signals. i

1.4 COMBINATIONS

We are often interested in determining the number of different groups of r objects
that could be formed from a total of n objects."For instance, how many different
groups of 3 could be selected from the 5 items A, B, C, D, and E? To answer
this, reason as follows: Since there are 5 ways to select the initial item, 4 ways




6 Chapter 1 Combinatorial Analysis

to then select the next item, and 3 ways to select the final item, there are thus
5 -4 -3 ways of selecting the group of 3 when the order in which the items are
selected is relevant. However, since every group of 3, say, the group consisting
of items A, B, and C, will be counted 6 times (that is, all of the permutations :
ABC, ACB, BAC, BCA, CAB, and CBA will be counted when the order of selection c
is relevant), it follows that the total number of groups that can be formed is ;

5-4-3

3-2-1
In general, as n(n — 1) - -~ (n — r + 1) represents the number of different
ways that a group of r items could be selected from n items when the order of

selection is relevant, and as each group of r items will be counted r! times in
this count, it follows that the number of different groups of r items that could be

formed from a set of n items is

=10

n(n—l)-”(n—r-l—l)_ n!
r! (n—r)'r! |

" Notation and terminology
. ol
(, ) represents the number of possible combinations of

1 objects taken r at a time.f

 We define.

and say that

Thus <n> represents the number of different groups of size r that could be
r

selected from a set of n objects when the order of selection is not considered
relevant.

Example 4a. A committee of 3 is to be formed from a group of 20 people. How
many different committees are possible?

20 .19 -
Solution There are = 201918 _ 1140 possible committees.
3 3:-2-1 i

¥ By convention, 0! is defined to be 1. Thus (g) = <n> = 1. We also take (”) to be equal
n i

to 0 when either i < 0 or i > n.
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Example 4b. From a group of 5 women and 7 men, how many different commit-
tees consisting of 2 women and 3 men can be formed? What if 2 of the men
are feuding and refuse to serve on the committee together?

5 7
Solution As there are <2> possible groups of 2 women, and (3) possible

groups of 3 men, it follows from the basic principle that there are
S\(7 5:4\7:6-5 . . .
<2> (3) = <2—i> 3—% = 350 possible committees consisting of 2
women and 3 men.
On the other hand, if 2 of the men refuse to serve on the committee

2\(5
together, then, as there are (0> <3) possible groups of 3 men not containing

2\(5
either of the 2 feuding men and <1><2> groups of 3 men containing exactly

1 of the feuding men, it follows that there are (é) <2> + <T> <;> = 30

groups of 3 men not containing both of the feuding men. Since there are

5 . . .
<2> ways to choose the 2 women, it follows that in this case there are

5
30 <2) = 300 possible committees. i

Example 4c. Consider a set of n antennas of which m are defective and n — m
are functional and assume that all of the defectives and all of the functionals
are considered indistinguishable. How many linear orderings are there in
which no two defectives are consecutive?

Solution Imagine that the n — m functional antennas are lined up among
themselves. Now, if no two defectives are to be consecutive, then the spaces
between the functional antennas must each contain at most one defective
antenna. That is, in the n — m + 1 possible positions—represented in
Figure 1.1 by carets—between the n — m functional antennas, we must
select m of these in which to put the defective antennas. Hence there are

Alalal...nlala
1 = functional

A = place for at most one defective

Figure 1.1
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n—m+1 . . . . . .
( ) possible orderings 1n which there is at least one functional
m

antenna between any two defective ones. i

A useful combinatorial identity is

(”>=<”_1>+<”—1> l=r=n (4.1)
r r—1 r ,

Equation (4.1) may be proved analytically or by the following combinatorial
argument. Consider a group of n objects and fix attention on some particular one

n—1 )
1) groups of size r that

of these objects—call it object 1. Now, there are <
contain object 1 (since each such group is formed by selecting r — 1 from

the remaining n — 1 objects). Also, there are <n > groups of size r that do

not contain object 1. As there is a total of <n> groups of size r, Equation 4.1
r
follows.
The values <n> are often referred to as binomial coefficients. This is so
r

because of their prominence in the binomial theorem.

- The 'binoh,iié,'l‘ theorem

k=0 \KJ

We shall present two proofs of the binomial theorem. The first is a proof
by mathematical induction, and the second is a proof based on combinatorial
considerations. -

Proof of the Binomial Theorem by Induction: When n = 1, Equation

(4.2) reduces to
1 1
x+y= <O>x0y1 + <1>x1y0 =y +x

Assume Equation (4.2) for n — 1. Now,
4y =+ )

n—1 l’l—l k i
=+ 2 yn e
K=o\ k
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n—1 n—1
. n—1 i n—1 _
L = E ( L )xk-i-lyn 1—k + E < L )xkyn k

k=0
Letting i = k + 1 in the first sum and i = k in the second sum, we find that

n -1 ) ) n—1 -1 sy
()C + )’)n 2 (I’l >xzyn41 + 2 <YL . >x1yl’l—.'l

i=1 i— 1 i=0 4

n—1
-1  — 1 . .
X+ 2 |:<I’l >_|_ (” . )]xzyn~l + yn
i=1 i— 1 l

n—1 n ] )
P 2 <.>xlynl +yn

i=1 \1

n
E (”) iy
iZo\i/

where the next-to-last equality follows by Equation (4.1). By induction the theorem
is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product
(xp + v + y2) (T )

Its expansion consists of the sum of 2" terms, each term being the product of n
factors. Furthermore, each of the 2" terms in the sum will contain as a factor
either x; or y; for each i = 1,2, ..., n. For example,

(x; + vy + y2) = xpx0 + xpyv Yy Vi

Now, how many of the 2 terms in the sum will have as factors k of the x;’s and
(n — k) of the y,’s? As each term consisting of k of the x;’s and (n — k) of the
y;’s corresponds to a choice of a group of k from the n values xy, Xo, - .., Xp,

n . .
there are <k> such terms. Thus, letting x; = x,y; = y,i = 1,...,n, we see that

n
(X + y)n, — 2 <”> xkyn*k

k

Example 4d. Expand (x + y)3.

Solution

3 3 3 3
(x +y)? = <0> 1Oy + <1> xy? + <2) xy + <3> xy0

=y + 3xy% + 3%y + x° |
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Example 4e. How many subsets are there of a set consisting of n elements?

Solution Since there are (k) subsets of size k, the desired answer 1s

> (Z) (14 1y =2"

k=0

This result could also have been obtained by assigning to each element in
the set either the number 0 or the number 1. To each assignment of numbers
there corresponds, in a one-to-one fashion, a subset, namely, that subset
consisting of all elements that were assigned the value 1. As there are 2"
possible assignments, the result follows.

Note that we have included as a subset the set consisting of 0 elements
(that is, the null set). Hence the number of subsets that contain at least one

element is 2" — 1. B

1.5 MULTINOMIAL COEFFICIENTS

In this section we consider the following problem: A set of n distinct items
s to be divided into r distinct groups of respective sizes 7y, 1, .- 1 where

.
2 n; = n. How many different divisions are possible? To answer this, we note
i=1

n : . :
that there are ( > possible choices for the first group; for each choice of the

ny
n— ng . .
first group there are possible choices for the second group; for each
: 1,

n—ny —

. n . .
choice of the first two groups there are < 2) possible choices for the

n3
third group; and so on. Hence it follows from the generalized version of the basic
counting principle that there are

n\(n—n I T
ny ny n,

_ n! (n — ny)! n—ny—ny— - —n. !
n — nptn!(n —np — m)lny! 0!'n,!

n!

n!ny!eeeon!

possible divisions.
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Notation
Iftn, + ny + -+ + n, = n, we define by
~ ~ niy, Ny, s 1, L
AN al
A\, N mlng!-:-nl
Thus ( , / ) represents the number of possible divisions of
ny,No, ..., 0N, ;

~ ndistinct objects into r distinct groups of respective sizes ny, 1, . . . , ;..

Example 5a. A police department in a small city consists of 10 officers. If the
department policy is to have 5 of the officers patrolling the streets, 2 of the
officers working full time at the station, and 3 of the officers on reserve at
the station, how many different divisions of the 10 officers into the 3 groups
are possible?

Solution There are = 2520 possible divisions. |

10!
512131
Example 5b. Ten children are to be divided into an A team and a B team of 5

each. The A team will play in one league and the B team in another. How
many different divisions are possible?

Solution There are 5—1'% = 252 possible divisions. |

Example 5¢. In order to play a game of basketball, 10 children at a playground
divide themselves into two teams of 5 each. How many different divisions
are possible?

Solution Note that this example is different from Example 5b because
now the order of the two teams is irrelevant. That is, there is no A and B
team but just a division consisting of 2 groups of 5 each. Hence the desired
answer is

101/51'5!
BT 126 i

The proof of the following theorem, which generalizes the binomial theorem,
is left as an exercise.
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The multinomial theorem

E o
n
= 2 ( ) 2. Xl
My, - es ) Ny, N5 - v 5 My
npt o tn=n

That is, the sum is over all nonnegative integer-valued vectors
(B no, -, 1) suCh thatny = np + o0 0 =00

n

The numbers ( > are known as multinomial coefficients.

Ny Ny oo s My

Example 5d

‘ 2
(x; +xp + x3)2 = (2 0 O) x%xgxg + <O 0> x?x%xg

= x7 + x3 + X3+ 2xx0 + 2x03 2x5X3

¥1.6 ON THE DISTRIBUTION OF BALLS IN URNS

There are " possible outcomes when n distinguishable balls are to be distributed
into r distinguishable urns. This follows because each ball may be distributed
into any of r possible urns. Let us now, however, suppose that the n balls are
indistinguishable from each other. In this case, how many different outcomes are
possible? As the balls are indistinguishable, it follows that the outcome of the
experiment of distributing the n balls into 7 urns can be described by a vector
(X1, Xa, . . . X)), Where x; denotes the number of balls that are distributed into the
ith urn. Hence the problem reduces to finding the number of distinct nonnegative
integer-valued vectors (xy, X2, . - - x,) such that

X, +xp X =0

To compute this, let us start by considering the number of positive integer-valued
solutions. Toward this end, imagine that we have n indistinguishable objects lined

% Note that asterisks denote material that is optional.
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up and that we want to divide them into  nonempty groups. To do so, we can
select r — 1 of the n — 1 spaces between adjacent objects as our dividing points
(see Figure 1.2). For instance, if we have n = 8 and r = 3 and choose the 2
divisors as shown

00000000

. . — 1
then the vector obtained is x; = 3, x, = 3, x3 = 2. As there are (n 1)
r—

possible selections, we obtain the following proposition.

Proposition 6.1

There are ( 1) distinct positive integer-valued vectors (xy, xo, . . .,
r—1 ; -
x,) satisfying
X+t X% + o x. =0 xi>0,i=1,..,.,r

To obtain the number of nonnegative (as opposed to positive) solutions,

note that the number of nonnegative solutions of x; + x, + - -+ + x, = nis the
saine as the number of positive solutions of y; + - -+ + y. = n + r (seen by
letting y; = x; + 1,7 = 1, ..., r). Hence, from Proposition 6.1, we obtain the

following proposition.

Proposition 6.2

ntr—1y . -
There are distinct nonnegative integer-valued vectors
o - o
(xq, Xp, . .., x,) satisfying

Sl e e e 61

OAO0AOA...A0A0
n objects 0

Choose r - 1 of the spaces .

Figure 1.2
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Example 6a. How many distinct nonnegative integer-valued solutions of
Xy Xy = Jare possible?

3+2-1
Solution There are ( 1 > — 4 such solutions: (0, 3), (1, 2),

2, 1), (3, 0). 1

Example 6b. An investor has 20 thousand dollars to invest among 4 possible
investments. Each investment must be in units of a thousand dollars. If the
total 20 thousand is to be invested, how many different investment strategies
are possible? What if not all the money need be invested?

Solution If we let x; i = 1,2, 3,4, denote the number of thousands
invested in investment number i, then, when all is to be invested, Xy, X2, X3,
x4 are integers satisfying

x1+x2+x3+x4:20 x =0

23
Hence, by Proposition 6.2, there are <3> = 1771 possible investment

strategies. If not all of the money need be invested, then if we let xs denote
the amount kept in reserve, a strategy is a nonnegative integer-valued vector
(xy, X2, X3, X45 x5) satisfying

X1+X2+X3+X4+.Xf5:20

24
Hence, by Proposition 6.2, there are now < A > = 10,626 possible strategies.
|

Example 6¢. How many terms are there in the multinomial expansion of

(Xl +~X2 + + .Xr)”?
Solution
n n n n
(x1+x2+-~-+x,,)22 X
iy o 1y
where the sum is over all nonnegative integer-valued (1, . - - n,) such that
» n+r—1
ng + ot =0 Hence, by Proposition 6.2, there are i
such terms. |

Example 6d. Let us reconsider Example 4¢, in which we have a set of 1 items,
of which m are (indistinguishable and) defective and the remaining n. — M
are (also indistinguishable and) functional. Our objective is to determine the
number of linear orderings in which no two defectives are next to each other.
To determine this quantity, let us imagine that the defective items are lined
up among themselves and the functional ones are now to be put in position.
Let us denote x; as the number of functional items to the left of the first

o
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defective, x, as the number of functional items between the first two defec-
tives, and so on. That is, schematically we have

XIOX2O"'XmO.Xm_,_1

Now there will be at least one functional item between any pair of defectives
aslong as x; > 0,1 = 2, ..., m. Hence the number of outcomes satisfying
the condition is the number of vectors x;, * - - , x,,, that satisfy

x1+"'+xm+1=n—m xIZO,xm+120,xi>O,i=2,...,m

Butonlettingy; = x; + Ly, = x, 0 = 2, ..., m, Vg = Xpeq + 1,
we see that this is equal to the number of positive vectors (yq, . .., Y4 1)
that satisfy

ity t oty =n—m+ 2

n—m+1

m
is in agreement with the results of Example 4c.

Suppose now that we are interested in the number of outcomes in
which each pair of defective items is separated by at least 2 functional ones.
By the same reasoning as that applied above, this would equal the number
of vectors satisfying ’

Hence, by Proposition 6.1, there are ( ) such outcomes, which

X+t X, =n—m x1=0,x,,1=0,5,=2,i=2,...,m
Upon letting y; = x; + 1L, y; = x;, — L, i =2, ...,m y,.q1 =
X1 1+ 1, we see that this is the same as the number of positive solutions
of

VIR R e == 2m 3

n—2m-+2

) such outcomes.
m

Hence, from Proposition 6.1, there are <

SUMMARY

The basic principle of counting states that if an experiment consisting of two
phases is such that there are n possible outcomes of phase 1, and for each of
these n outcomes there are m possible outcomes of phase 2, there are nm possible
outcomes of the experiment.

There are n! = n(n — 1) - -+ 3 - 2 - 1 possible linear orderings of n items.
The quantity 0! is defined to equal 1.

Let
(n) B n!
i/ =0
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when 0 = i = n, and let it equal O otherwise. This quantity represents the number
of different subgroups of size i that can be chosen from a set of size n. It is often
called a binomial coefficient because of its prominence in the binomial theorem,
which states that

=2 (".) dy !

i=0 \!

For nonnegative integers my, - - n, summing to 7,

n n!
-
Nys Nos v oos Ny nln! e -n,!

is the number of ways of dividing up n items into r distinct nonoverlapping
subgroups of sizes ny, Ny « - M

PROBLEMS

1. (a) How many different 7-place license plates are possible if the first 2 places
are for letters and the other 5 for numbers?
(b) Repeat part (a) under the assumption that no Jetter or number can be
repeated in a single license plate.

9. How many outcome sequences are possible when a die is rolled four times,
where we say, for instance, that the outcome is 3,4, 3,1 if the first roll
landed on 3, the second on 4, the third on 3, and the fourth on 17

3. Twenty workers are to be assigned to 20 different jobs, one to each job. How
many different assignments are possible?

4. John; Jim, Jay, and Jack have formed a band consisting of 4 instruments. If
each of the boys can play all 4 instruments, how many different arrangements
are possible? What if John and Jim can play all 4 instruments, but Jay and
Jack can each play only piano and drums?

5. For years, telephone area codes in the United States and Canada consisted
of a sequence of three digits. The first digit was an integer between 2 and 9;
the second digit was either 0 or 1; the third digit was any integer between 1
and 9. How many arca codes were possible? How many area codes starting
with a 4 were possible?

6. A well-known nursery rhyme starts as follows:

As I was going to St. Ives
I met a man with 7 wives.
Each wife had 7 sacks.
Each sack had 7 cats.
Each cat had 7 kittens.

How many kittens did the traveler meet?



7.

10.

11.

-12.

13.

14.
15.

16.

17.

18.

Problems 17

(a) In how many ways can 3 boys and 3 girls sit in a row?

(b) In how many ways can 3 boys and 3 girls sit in a row if the boys and
the girls are each to sit together?

(¢) In how many ways if only the boys must sit together?

(d) In how many ways if no two people of the same sex are allowed to
sit together? n

How many different letter arrangements can be made from the letters

(a) FLUKE;

(b) PROPOSE;

(€) MISSISSIPPI;

(d) ARRANGE?

A child has 12 blocks, of which 6 are black, 4 are red, 1 is white, and 1 is

blue. If the child puts the blocks in a line, how many arrangements are possible?

In how many ways can 8 people be seated in a row if

(a) there are no restrictions on the seating arrangement;

(b) persons A and B must sit next to each other;

(c) there are 4 men and 4 women and no 2 men or 2 women can sit next to
each other;

(d) there are 5 men and they must sit next to each other;

(e) there are 4 married couples and each couple must sit together?

In how many ways can 3 novels, 2 mathematics books, and 1 chemistry book

be arranged on a bookshelf if

(a) the books can be arranged in any order;

(b) the mathematics books must be together and the novels must be together;

(¢) the novels must be together but the other books can be arranged in:
any order?

Five separate awards (best scholarship, best leadership qualities, and so on)

are to be presented to selected students from a class of 30. How many different

outcomes are possible if

(a) a student can receive any number of awards;

(b) each student can receive at most 1 award?

Consider a group of 20 people. If everyone shakes hands with everyone else,

how many handshakes take place?

How many 5-card poker hands are there?

A dance class consists of 22 students, 10 women and 12 men. If 5 men and

5 women are to be chosen and then paired off, how many results are possible?

A student has to sell 2 books from a collection of 6 math, 7 science, and 4

economics books. How many choices are possible if

(a) both books are to be on the same subject;

(b) the books are to be on different subjects?

A total of 7 different gifts are to be distributed among 10 children. How

many distinct results are possible if no child is to receive more than one gift?

A committee of 7, consisting of 2 Republicans, 2 Democrats, and 3 Indepen-

dents, is to be chosen from a group of 5 Republicans, 6 Democrats, and 4

Independents. How many committees are possible?
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19. From a group of 8 women and 6 men a committee consisting of 3 men and
3 women is to be formed. How many different committees are possible if
(a) 2 of the men refuse to serve together;

(b) 2 of the women refuse to serve together;
(¢) 1 man and 1 woman refuse to serve together?

" 20. A person has 8 friends, of whom 35 will be invited to a party.

() How many choices are there if 2 of the friends are feuding and will not
attend together?
(b) How many choices if 2 of the friends will only attend together?

21. Consider the grid of points shown below. Suppose that starting at the point
labeled A you can go one step up or one step to the right at each move. This
is continued until the point labeled B is reached. How many different paths
from A to B are possible?.

mint: Note that to reach B from A you must take 4 steps to the right and
3 steps upward.

22. In Problem 21, how many different paths are there from A to B that go through
the point circled below?

23. A psychology laboratory conducting dream research contains 3 rooms, with
2 beds in each room. If 3 sets of identical twins are to be assigned to these
6 beds so that each set of twins sleeps in different beds in the same room,
how many assignments are possible?

-
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Expand (3x2 + y)s.
The game of bridge is played by 4 players, each of whom is dealt 13 cards.
How many bridge deals are possible?

. Expand (x; + 2x, + 3x3)".

If 12 people are to be divided into 3 committees of respective sizes 3, 4, and
5, how many divisions are possible? w

If 8 new teachers are to be divided among 4 schools, how many divisions
are possible? What if each school must receive 2 teachers?

Ten weight lifters are competing in a team weight-lifting contest. Of the
lifters, 3 are from the United States, 4 are from Russia, 2 are from China,
and 1 is from Canada. If the scoring takes account of the countries that the
lifters represent but not their individual identities, how many different out-
comes are possible from the point of view of scores? How many different
outcomes correspond to results in which the United States has 1 competitor
in the top three and 2 in the bottom three?

Delegates from 10 countries, including Russia, France, England, and the
United States, are to be seated in a row. How many different seating arrange-
ments are possible if the French and English delegates are to be seated next
to each other, and the Russian and U.S. delegates are not to be next to
each other?

If 8 identical blackboards are to be divided among 4 schools, how many
divisions are possible? How many, if each school must receive at least 1 black-
board?

An elevator starts at the basement with 8 people (not including the elevator
operator) and discharges them all by the time it reaches the top floor,
number 6. In how many ways could the operator have perceived the people
leaving the elevator if all people look alike to him? What if the 8 people
consisted of 5 men and 3 women and the operator could tell a man from
a woman?

We have 20 thousand dollars that must be invested among 4 possible opportu-
nities. Bach investment must be integral in units of 1 thousand dollars, and
there are minimal investments that need to be made if one is to invest in
these opportunities. The minimal investments are 2, 2, 3, and 4 thousand
dollars. How many different investment strategies are available if

(a) an investment must be made in each opportunity;

(b) investments must be made in at least 3 of the 4 opportunities?

THEORETICAL EXERCISES

1.
2.

Prove the generalized version of the basic counting principle.

Two experiments are to be performed. The first can result in any one of m
possible outcomes. If the first experiment results in outcome number i, then
the second experiment can result in any of n; possible outcomes, i = 1,
2,...,m. What is the number of possible outcomes of the two experiments?
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16.

Chaptér 1~ Combinatorial Analysis

. In how many ways can r objects be selected from a set of n if the order of

selection is considered relevant?

There are <n> different linear arrangements of n balls of which r are black
r

and n — r are white. Give a combinatorial explanation of this fact.

Determine the number of vectors (xj, ..., X,), such that each x; is either 0
or 1 and

How many vectors xi, . . ., x; are there for which each x; is a positive integer
suchthat 1 = x; = nand x; < xp < -+ < x?

Give an analytic proof of Equation (4.1).

Prove that '

= ()= ) = 0

wint:  Consider a group of n men and m women. How many groups of size
r are possible?
Use Theoretical Exercise 8 to prove that

F)-50)

From a group of n people suppose that we want to choose a committee of
k, k = n, one of whom is to be designated as chairperson.
(a) By focusing first on the choice of the committee and then on the choice

of the chair, argue that there are <k> k possible choices.

(b) By focusing first on the choice of the nonchair committee members
and then on the choice of the chair, argue that there are

(k " 1)(,1 — k + 1) possible choices.
(¢) By focusing first on the choice of the chair and then on the choice of
-1
the other committee members, argue that there are n (Z 1) possible

choices.
(d) Conclude from parts (a), (b), and (c) that

k =n—-k+1) =n
k k—1 k—1

(e) Use the factorial definition of " to verify the identity in part (d).
r y y
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11. The following identity is known as Fermat’s combinatorial identity.

(=267 »=

Give a combinatorial argument (no computations are needed) to establish this
identity. )

HinT: - Consider the set of numbers 1 through n. How many subsets of size
k have i as their highest-numbered member?

12. Consider the following combinatorial identity:

n
2 k<n> =n-2""1
=1 \k

(a) Present a combinatorial argument for the above by considering a set of
n people and determining, in two ways, the number of possible selections
of a committee of any size and a chairperson for the committee.

HINT: (i) How many possible selections are there of a committee of
size k and its chairperson?
(ii) How many possible selections are there of a chairperson and
the other committee members?

(b) Verify the following identity for n = 1, 2, 3, 4, 5:

n
> (”) K2 =2""2n(n + 1)
K=1 \k

For a combinatorial proof of the above, consider a set of n people, and
argue that both sides of the identity above represent the number of different
selections of a committee, its chairperson, and its secretary (possibly the
same as the chairperson).

HiNT: (1) How many different selections result in the committee con-
taining exactly k people?
(i1) How many different selections are there in which the chair-
person and the secretary are the same?
(ANSWER: n2"~ 1)
(iii) How many different selections result in the chairperson and
the secretary being different?

(¢) Now argue that
n
2 <n> Bo=2""n + 3)
13. Show that for n > 0,
n n
(=0 ]=0
i=0 !

HINT: Use the binomial theorem.
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14.

15.

16.
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From a set of n people a committee of size j is to be chosen, and from this

committee a subcommittee of size i, i = J, is also to be chosen.

(a) Derive a combinatorial identity by computing, in two ways, the number
of possible choices of the committee and subcommittee—first by suppos-
ing that the committee is chosen first and then the subcommittee, and
second by supposing that the subcommittee is chosen first and then the
remaining members of the committee are chosen.

(b) Use part (a) to prove the following combinatorial identity:

000 =

(¢) Use part (a) and Theoretical Exercise 13 to show that

S0 e o=
Jj=1i

Let H,(n) be the number of vectors xy, . . ., x; for which each x; is a positive
integer satisfying | = x; = nand x; =x =+ =X
(a) Without any computations, argue that

Hi(n) =n

Hyn) = > He () k=1
ji=1
m~T:  How many vectors are there in which x, = j?
(b) Use the preceding recursion to compute H5(5).

mint:  First compute Ho(n) for n = 1,2, 3,4, 5.

Consider a tournament of 7 contestants in which the outcome is an ordering
of these contestants, with ties allowed. That is, the outcome partitions the
players into groups, with the first group consisting of the players that tied
for first place, the next group being those that tied for the next best position,
and so on. Let N(n) denote the number of different possible outcomes. For
instance, N(2) = 3 since in a tournament with 2 contestants, player 1 could
be uniquely first, player 2 could be uniquely first, or they could tie for first.
(a) List all the possible outcomes when n = 3.

(b) With N(0) defined to equal 1, argue, without any computations, that

Ny = D (';) N(n — i)
i=1

mnt:  How many outcomes are there in which i players tie for last place?
(¢) Show that the formula of part (b) is equivalent to the following:

n—1
Ny = >, ('?) NG)
i=0 \1

(d) Use the recursion to find N(3) and N(4).
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Present a combinatorial explanation of why <n> = ( " >
r

Argue that

n n—1 n—1
= + i
Nys Moy o v oy Ay ny — Lins,o.oo,n, ny,n, — 1,...9n,

nl,n2,...,n,<—l

wint:  Use an argument similar to the one used to establish Equation (4.1).
Prove the multinomial theorem.

In how many ways can n identical balls be distributed into r urns so that the
ith urn contains at least m; balls, for each i = 1, ..., r? Assume that n =

-
2 m;.

i=1

r n—1 )
Argue that there are exactly < solutions of
k)\n —r +
XL +tx,+ - +x,=n

for which exactly k of the x; are equal to 0.

Consider a function f(xy, . . ., x,,) of n variables. How many different partial
derivatives of order r does it possess?
Determine the number of vectors (x,, . . . , x,,), such that each x;is a nonnegative

integer and

SELF-TEST PROBLEMS AND EXERCISES

1.

How many different linear arrangements are there of the letters A, B, C, D,
E, F for which

(a) A and B are next to each other;

(b) A is before B;

(¢) A is before B and B is before C;

(d) A is before B and C is before D;

(e) A and B are next to each other and C and D are also next to each other;
(f) E is not last in line?

If 4 Americans, 3 Frenchmen, and 3 Englishmen are to be seated in a row,
how many seating arrangements are possible when people of the same national-
ity must sit next to each other?
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3.

*10.

*11.
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A president, treasurer, and secretary, all different, are to be chosen from a
club consisting of 10 people. How many different choices of officers are
possible if

(a) there are no restrictions;

(b) A and B will not serve together;

(¢) C and D will serve together or not at all;

(d) E must be an officer;

(e) F will serve only if he is president?

A student is to answer 7 out of 10 questions in an examination. How many
choices has she? How many if she must answer at least 3 of the first 5 ques-
tions?

In how many ways can a man divide 7 gifts among his 3 children if the eldest
is to receive 3 gifts and the others 2 each?

How many different 7-place license plates are possible when 3 of the entries
are letters and 4 are digits? Assume that repetition of letters and numbers is
allowed and that there is no restriction on where the letters or numbers can
be placed.

Give a combinatorial explanation of the identity

0=

Consider n-digit numbers where each digit is one of the 10 integers O,

1, ..., 9. How many such numbers are there for which
(a) no two consecutive digits are equal;
(b) O appears as a digit a total of i times, i = 0, ..., n?

Consider three classes, each consisting of n students. From this group of 3n

students, a group of 3 students is to be chosen.

(a) How many choices are possible?

(b) How many choices are there in which all 3 students are in the same class?

(¢) How many choices are there in which 2 of the 3 students are in the same
class and the other student is in a different class?

(d) How many choices are there in which all 3 students are in different classes?

(e) Using the results of parts (a) through (d), write a combinatorial identity.

An art collection on auction consisted of 4 Dalis, 5 van Goghs, and 6 Picassos.

At the auction were 5 art collectors. If a reporter noted only the number of

Dalis, van Goghs, and Picassos acquired by each collector, how many different

results could have been recorded if all works were sold?

Determine the number of vectors (xj, . . ., x,) such that each x; is a positive

integer and

where kK = n.
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APPENDIX B

Solutions to Self-Test
Problems and Exercises

CHAPTER 1

1. (a)

(b)
(c)

(d)

(e)

There are 4! different orderings of the letters C, D, E, F. For each of
these orderings, we can obtain an ordering with A and B next to each
other by inserting A and B, either in the order A, B or in the order B,
A, in any of 5 places. Namely, either before the first letter of the permuta-
tion of C, D, E, F, or between the first and second, and so on. Hence,
there are 2 - 5 - 4! = 240 arrangements. Another way of solving this is
to imagine that B is glued to the back of A. This yields that there are 5!
orderings in which A is immediately before B. As there are also 5!
orderings in which B is immediately before A, we again obtain a total
of 2 - 5! = 240 different arrangements.

There are a total of 6! = 720 possible arrangements, and as there are
as many with A before B as with B before A, there are 360 arrangements.
Of the 720 possible arrangements, there are as many that have A before
B before C, as have any of the 3! possible orderings of A, B, and C.
Hence, there are 720/6 = 120 possible orderings.

Of the 360 arrangements that have A before B, half will have C before
D and half D before C. Hence, there are 180 arrangements having A
before B and C before D.

Gluing B to the back of A, and D to the back of C, yields 4! = 24
different orderings in which B immediately follows A and D immediately
follows C. Since the order of A and B and of C and D can be reversed,
there are thus 4 - 24 = 96 different arrangements.
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Appendix B Solutions to Self-Test Problems and Exercises

(f) There are 5! orderings in which E is last. Hence, there are 6! — 5! =
600 orderings in which E is not last.

3141313! since there are 3! possible orderings of countries and then the

countrymen must be ordered.

(a) 10-9-8 =720

b)8-7-6+2-3-8-7 =072
The preceding follows since there are 8 - 7 - 6 choices not including A
or B, and there are 3 - 8 - 7 choices in which a specified one of A and
B, but not the other, serves. The latter following since the serving member
of the pair can be assigned to any of the 3 offices, the next position can
then be filled by any of the other 8 people, and the final position by any
of the remaining 7.

() 876 +3-2-8 =384

(d) 3-9-8 = 2l6.

(€ 9-8-7+9-8 =576

[¥%]

There are (;) — 35 choices of the three places for the letters. For each

choice, there are (26)°( 10)* different license plates. Hence, altogether there
are a total of 35 - 26)> - (10)* different plates.

Any choice of r of the n items is equivalent to a choice of n — r, namely,
those items not selected.

. (a) 10-9-9---9=10-9"""

~(b) (") 9"~ since there are (”) choices of the i places to put the zeroes,
l 1

10.

11.

and then each of the other n — i positions can be any of the digits
1L....9

. (a) <33n) (b) 3<§> (¢) (?)(?)(’;)(0 = 3n’(n —' 1) (d) n

() (2”) = %@ ¥ 322 = D) +

“(number of solutions of x; + -+ + X5 = 4)(number of solutions of x; +

4+ x5 = 5)(number of solutions of x; + -+ + x5 = 0) =

(8 (9 (10

4)\4)\ 4

Since there are (j - ]] positive vectors whose sum is j, it follows that there
n — 1

k -1
are Ej:” (J 1> such vectors.
n —
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2. Let.
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