Source coding

- **Source symbols**
 - Letters of alphabet, ASCII symbols, English dictionary, etc...
 - Quantized voice
- **Channel symbols**
 - In general can have an arbitrary number of channel symbols
 Typically \(\{0,1\} \) for a binary channel
- **Objectives of source coding**
 - Unique decodability
 - Compression
 Encode the alphabet using the smallest average number of channel symbols
Compression

- Lossless compression
 - Enables error free decoding
 - Unique decodability without ambiguity

- Lossy compression
 - Code may not be uniquely decodable, but with very high probability can be decoded correctly

Prefix (free) codes

- A prefix code is a code in which no codeword is a prefix of any other codeword
 - Prefix codes are uniquely decodable
 - Prefix codes are instantaneously decodable

- The following important inequality applies to prefix codes and in general to all uniquely decodable codes

Kraft Inequality

Let $n_1, ..., n_k$ be the lengths of codewords in a prefix (or any uniquely decodable) code. Then,

$$\sum_{i=1}^{k} 2^{-n_i} \leq 1$$
Proof of Kraft Inequality

- Proof only for prefix codes
 - Can be extended for all uniquely decodable codes

- Map codewords onto a binary tree
 - Codewords must be leaves on the tree
 - A codeword of length n_i is a leaf at depth n_i

- Let $n_k \geq n_{k-1} \geq \ldots \geq n_1 \Rightarrow$ depth of tree = n_k
 - In a binary tree of depth n_k, up to 2^{n_k} leaves are possible (if all leaves are at depth n_k)
 - Each leaf at depth $n_i < n_k$ eliminates a fraction $1/2^{n_i}$ of the leaves at depth n_k
 - Hence,

$$\sum_{i=1}^{k} 2^{n_i - n_k} \leq 2^{n_k} \Rightarrow \sum_{i=1}^{k} 2^{-n_i} \leq 1$$

Kraft Inequality - converse

- If a set of integers $\{n_1, n_2, \ldots, n_k\}$ satisfies the Kraft inequality the a prefix code can be found with codeword lengths $\{n_1, n_2, \ldots, n_k\}$
 - Hence the Kraft inequality is a necessary and sufficient condition for the existence of a uniquely decodable code

- Proof is by construction of a code
 - Given $\{n_1, n_2, \ldots, n_k\}$, starting with n_1 assign node at level n_i for codeword of length n_i. Kraft inequality guarantees that assignment can be made

Example: $n = \{2, 2, 2, 3, 3\}$, (verify that Kraft inequality holds!)

```
      •••
     • •
    • •
   • n_4
  n_3
  • •
  n_2
  • •
  n_1
```
Average codeword length

- Kraft inequality does not tell us anything about the average length of a codeword. The following theorem gives a tight lower bound.

Theorem: Given a source with alphabet \(\{a_1, \ldots, a_k\} \), probabilities \(\{p_1, \ldots, p_k\} \), and entropy \(H(X) \), the average length of a uniquely decodable binary code satisfies:

\[
\bar{n} \geq H(X)
\]

Proof:

\[
H(X) - \bar{n} = \sum_{i=1}^{k} p_i \log \frac{1}{p_i} - \sum_{i=1}^{k} p_i n_i = \sum_{i=1}^{k} p_i \log \frac{2^{-n}}{p_i}
\]

\[
\log inequality \Rightarrow \log(X) \leq X - 1 \Rightarrow \\
\frac{2^{-n_i}}{p_i} - 1 = \sum_{i=1}^{k} 2^{-n} - 1 \leq 0
\]

Average codeword length

- Can we construct codes that come close to \(H(X) \)?

Theorem: Given a source with alphabet \(\{a_1, \ldots, a_k\} \), probabilities \(\{p_1, \ldots, p_k\} \), and entropy \(H(X) \), it is possible to construct a prefix (hence uniquely decodable) code of average length satisfying:

\[
\bar{n} < H(X) + 1
\]

Proof (Shannon-fano codes):

Let \(n_i = \log \frac{1}{p_i} \Rightarrow n_i \geq \log \frac{1}{p_i} \Rightarrow 2^{-n_i} \leq p_i \)

\[
\sum_{i=1}^{k} 2^{-n_i} \leq \sum_{i=1}^{k} p_i \leq 1
\]

\(\Rightarrow \) Kraft inequality satisfied!

\(\Rightarrow \) Can find a prefix code with lengths,

\[
n_i = \left\lfloor \log \frac{1}{p_i} \right\rfloor < \log \frac{1}{p_i} + 1
\]

\[
\bar{n} = \sum_{i=1}^{k} p_i \left\lfloor \log \frac{1}{p_i} \right\rfloor < \sum_{i=1}^{k} p_i \left(\log \frac{1}{p_i} + 1 \right) = H(X) + 1
\]

Hence,

\[
H(X) \leq \bar{n} < H(X) + 1
\]
Getting Closer to $H(X)$

- Consider blocks of N source letters
 - There are K^N possible N letter blocks (N-tuples)
 - Let Y be the “new” source alphabet of N letter blocks
 - If each of the letters is independently generated,
 \[H(Y) = H(x_1, x_N) = N \cdot H(X) \]

- Encode Y using the same procedure as before to obtain,
 \[H(Y) \leq \frac{N}{N+1} H(Y) + \frac{1}{N+1} \]

Where the last inequality is obtained because each letter of Y corresponds to N letters of the original source

- We can now take the block length (N) to be arbitrarily large and get arbitrarily close to $H(X)$

Huffman codes

- Huffman codes are special prefix codes that can be shown to be optimal (minimize average codeword length)

Huffman Algorithm:
1) Arrange source letters in decreasing order of probability ($p_1 \geq p_2 \geq \cdots \geq p_k$)
2) Assign '0' to the last digit of X_k and '1' to the last digit of X_{k-1}
3) Combine p_k and p_{k-1} to form a new set of probabilities
 \[\{p_1, p_2, \ldots, p_{k-2}, (p_{k-1} + p_k)\} \]
4) If left with just one letter then done, otherwise go to step 1 and repeat
Huffman code example

\[A = \{a_1, a_2, a_3, a_4, a_5\} \text{ and } p = \{0.3, 0.25, 0.25, 0.1, 0.1\} \]

\[
\begin{array}{ccc}
\text{Letter} & \text{Codeword} & \text{Probability} \\
\hline
a_1 & 11 & 0.3 \\
a_2 & 10 & 0.25 \\
a_3 & 01 & 0.25 \\
a_4 & 001 & 0.1 \\
a_5 & 000 & 0.1 \\
\end{array}
\]

\[\bar{n} = 2 \times 0.8 + 3 \times 0.2 = 2.2 \text{ bits/symbol} \]

\[H(X) = \sum p_i \log \left(\frac{1}{p_i} \right) = 2.1855 \]

Shannon–Fanocodes \(n_i = \left\lfloor \log \left(\frac{1}{p_i} \right) \right\rfloor \)

\[n_1 + n_2 + n_3 = 2, n_4 + n_5 = 4 \]

\[\Rightarrow \bar{n} = 2.4 \text{ bits/symbol} < H(X) + 1 \]

Lempel-Ziv Source coding

- Source statistics are often not known
- Most sources are not independent
 - Letters of alphabet are highly correlated
 E.g., E often follows I, H often follows G, etc.
- One can code “blocks” of letters, but that would require a very large and complex code
- Lempel-Ziv Algorithm
 - “Universal code” - works without knowledge of source statistics
 - Parse input file into unique phrases
 - Encode phrases using fixed length codewords
 Variable to fixed length encoding
Lempel-Ziv Algorithm

- Parse input file into phrases that have not yet appeared
 - Input phrases into a dictionary
 - Number their location

- Notice that each new phrase must be an older phrase followed by a ‘0’ or a ‘1’
 - Can encode the new phrase using the dictionary location of the previous phrase followed by the ‘0’ or ‘1’

Lempel-Ziv Example

Input: 0010110111000101011110

Parsed phrases: 0, 01, 011, 0111, 00, 010, 1, 01111

<table>
<thead>
<tr>
<th>Loc</th>
<th>binary rep</th>
<th>phrase</th>
<th>Codeword</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>null</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0</td>
<td>0000 0</td>
<td>loc-0 + ‘0’</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>01</td>
<td>0001 1</td>
<td>loc-1 + ‘1’</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>011</td>
<td>0010 1</td>
<td>loc-2 + ‘1’</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0111</td>
<td>0011 1</td>
<td>loc-3 + ‘1’</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>00</td>
<td>0001 0</td>
<td>loc-1 + ‘0’</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>010</td>
<td>0010 0</td>
<td>loc-2 + ‘0’</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1</td>
<td>0000 1</td>
<td>loc-0 + ‘1’</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>01111</td>
<td>0100 1</td>
<td>loc-4 + ‘1’</td>
</tr>
</tbody>
</table>

Sent sequence: 00000 00011 00101 00111 00010 00100 00001 01001
Notes about Lempel-Ziv

- Decoder can uniquely decode the sent sequence
- Algorithm clearly inefficient for short sequences (input data)
- Code rate approaches the source entropy for large sequences
- Dictionary size must be chosen in advance so that the length of the codeword can be established
- Lempel-Ziv is widely used for encoding binary/text files
 - Compress/uncompress under unix
 - Similar compression software for PCs and MACs