16.36: Communication Systems Engineering

Lecture 2: Entropy

February 7, 2002

Eytan Modiano
Information content of a random variable

- Random variable X
 - Outcome of a random experiment
 - Discrete R.V. takes on values from a finite set of possible outcomes
 \[P(X = y) = P_x(y) \]

- How much information is contained in the event \(X = y \)?
 - Will the sun rise today?
 Revealing the outcome of this experiment provides no information
 - Will the Patriots win the Superbowl?
 Since this was unlikely, revealing yes provides more information than revealing no

- Events that are less likely contain more information than likely events
Measure of Information

• $I(x_i) = \text{Amount of information revealed by an outcome } X = x_i$

• Desirable properties of $I(x)$:
 1. If $P(x) = 1$ or $P(x) = 0$, then $I(x) = 0$
 2. If $0 < P(x) < 1$, then $I(x) > 0$
 3. If $P(x) < P(y)$, then $I(x) > I(y)$
 4. If x and y are independent events then $I(x,y) = I(x)+I(y)$

• Above is satisfied by: $I(x) = \log_2(1/P(x))$

• Base of Log is not critical
 – Base 2 => information measured in bits
Entropy

- A measure of the information content of a random variable
- \(X \in \{x_1, \ldots, x_M\} \)
- \(H(X) = E[I(X)] = \sum P(x_i) \log_2(1/P(x_i)) \)
- Example: Binary experiment
 - \(X = x_1 \) with probability \(p \)
 - \(X = x_2 \) with probability \(1-p \)
 - \(H(X) = p \log_2(1/p) + (1-p) \log_2(1/(1-p)) = H_b(p) \)
 - \(H(X) \) is maximized with \(p=1/2, H_b(1/2) = 1 \)

Not surprising that the result of a binary experiment can be conveyed using one bit.
• Theorem: Given a random variable with M possible values
 – $0 \leq H(X) \leq \log_2(M)$

 A) $H(X) = 0$ if and only if $P(x_i) = 1$ for some i

 B) $H(X) = \log_2(M)$ if and only if $P(x_i) = 1/M$ for all i

 – Proof of A is obvious

 – Proof of B requires
 – the Log Inequality:
 – if $x > 0$ then $\ln(x) \leq x - 1$
 – Equality if $x = 1$
Proof, continued

Consider the sum $\sum_{i=1}^{M} P_i \log \left(\frac{1}{M P_i} \right)$, by log inequality:

$$\leq \sum_{i=1}^{M} P_i \left(\frac{1}{M P_i} - 1 \right) = \sum_{i=1}^{M} \left(\frac{1}{M} - P_i \right) = 0, \text{ equality when } P_i = \frac{1}{M}$$

Writing this in another way:

$$\sum_{i=1}^{M} P_i \log \left(\frac{1}{M P_i} \right) = \sum_{i=1}^{M} P_i \log \left(\frac{1}{P_i} \right) + \sum_{i=1}^{M} P_i \log \left(\frac{1}{M} \right) \leq 0, \text{ equality when } P_i = \frac{1}{M}$$

That is, $\sum_{i=1}^{M} P_i \log \left(\frac{1}{P_i} \right) \leq \sum_{i=1}^{M} P_i \log(M) = \log(M)$
Joint Entropy

Joint entropy: \(H(X, Y) = \sum_{x,y} p(x, y) \log \left(\frac{1}{p(x, y)} \right) \)

Conditional entropy: \(H(X \mid Y) = \text{uncertainty in } X \text{ given } Y \)

\[
H(X \mid Y = y) = \sum_x p(x \mid Y = y) \log \left(\frac{1}{p(x \mid Y = y)} \right)
\]

\[
H(X \mid Y) = E[H(X \mid Y = y)] = \sum_y p(Y = y)H(X \mid Y = y)
\]

\[
H(X \mid Y) = \sum_{x,y} p(x, y) \log \left(\frac{1}{p(x \mid Y = y)} \right)
\]

In General: \(X_1, \ldots, X_n \) random variables

\[
H(X_n \mid X_1, \ldots, X_{n-1}) = \sum_{x_1, \ldots, x_n} p(x_1, \ldots, x_n) \log \left(\frac{1}{p(x_n \mid x_1, \ldots, x_{n-1})} \right)
\]
Rules for entropy

1. Chain rule:

 \[H(X_1, .., X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_2,X_1) + \ldots + H(X_n|X_{n-1}\ldots X_1) \]

2. \[H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) \]

3. If \(X_1, .., X_n \) are independent then:

 \[H(X_1, .., X_n) = H(X_1) + H(X_2) + \ldots + H(X_n) \]

 If they are also identically distributed (I.I.d) then:

 \[H(X_1, .., X_n) = nH(X_1) \]

4. \(H(X_1, .., X_n) \leq H(X_1) + H(X_2) + \ldots + H(X_n) \) (with equality if independent)

Proof: use chain rule and notice that \(H(X|Y) < H(X) \)

entropy is not increased by additional information
Mutual Information

- X, Y random variables
- Definition: $I(X;Y) = H(Y) - H(Y|X)$
- Notice that $H(Y|X) = H(X,Y) - H(X) \Rightarrow I(X;Y) = H(X) + H(Y) - H(X,Y)$
- $I(X;Y) = I(Y;X) = H(X) - H(X|Y)$
- Note: $I(X,Y) \geq 0$ (equality if independent)
 - Because $H(Y) \geq H(Y|X)$