2004 IAP Course

Engineering Design and Rapid Prototyping

A Rewarding CAD/CAE/CAM Experience for Undergraduates

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Needs – from students

A 2001 survey of undergraduate students (Aero/Astro)

- There is a perceived lack of understanding and training in modern design methods using state-of-the-art CAD/CAE/CAM technology and design optimization.

- Individual students have suggested the addition of a short and intense course of rapid prototyping, combined with design optimization.
Needs – from industry

Industry wants/needs

People who are trained in integrated design methods and tools

People who have personally carried out the design chain from conception to implementation at least once.

People who have an initial understanding of:

- importance of requirements
- complementary roles of humans and computers in design
- difficulties at the CAD/CAE/CAM domain interfaces
- value of optimization
- importance of trading off competing objectives
- difference between predicted and actual behavior of the artifacts they design
Learning objectives

Develop a holistic view and initial competency in engineering design by applying a combination of human creativity and modern computational tools to the synthesis of a single structural component.
Outline of the course

The goal of the class is to provide the students with an opportunity to conceive, design and implement products quickly as a single component, using the latest rapid prototyping methods and the CAD/CAE/CAM technology.
Overview of the course

<table>
<thead>
<tr>
<th>Week</th>
<th>Lectures</th>
<th>Hands-on Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to the course Requirements</td>
<td>Hand-Sketching</td>
</tr>
<tr>
<td></td>
<td>CAD/CAM/CAE Introduction</td>
<td>CAD Modeling</td>
</tr>
<tr>
<td>2</td>
<td>Review of Math & Solid Mechanics Analysis - FEM/CAE Manufacturing Introduction</td>
<td>FEM Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Workshop Initialization</td>
</tr>
<tr>
<td>3</td>
<td>Structural Testing</td>
<td>Master CAM introduction</td>
</tr>
<tr>
<td></td>
<td>Design Optimization</td>
<td>Produce Parts v1</td>
</tr>
<tr>
<td></td>
<td>Integration of Analysis & Design Optimization</td>
<td>Test Parts v1</td>
</tr>
<tr>
<td>4</td>
<td>Industrial Examples & Issues</td>
<td>Optimize Parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Produce Parts v2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Competition</td>
</tr>
</tbody>
</table>
Schematic of the course activities

Learning/Review

- CAD/CAM/CAE Intro
- FEM/Solid Mechanics Overview
- Manufacturing Training
- Structural Test Training
- Design Optimization

Problem statement

- Hand sketching
- CAD design
- FEM analysis
- Produce Part 1
- Test
- Optimization
- Produce Part 2
- Test

Deliverables

- Design v1
- Analysis output v1
- Product v1
- Experiment output v1
- Design/Analysis output v2
- Product v2
- Experiment output v2

Design Competition
Educational Aspects

This class will help students gain several educational insights:

(1) Understand the systematic design process from conception to design/implementation/verification with an example of a single structural component.

(2) Understand predictive accuracy of CAE versus actual test results.

(3) Understand relative improvement that computer optimization can yield relative to an initial, manual solution.

(4) Illustrate the capabilities and limitations of the human mind and the digital computer.
Facilities

* Design Studio (33-218)
- 14 networked CAD/CAE workstations that are used for complex systems design and optimization.

* Software and Manufacturing Equipment
- MATLAB
- Solidworks
- Cosmos

* Machine Shop
- Water Jet cutter
- 2-axis milling machine
- 3-axis milling machine
- Lathe
Staff

Instructors: de Weck, Kim, Wallace, Young

TA: Nadir

Lectures
- Design and optimization – de Weck, Kim
- Hand sketching – Wallace

Hands-on Activities
- CAE/FEM/Optimization – de Weck, Kim
- Software/Design studio – Kim, Donovan
- Design Competition – de Weck, Kim, Young
- Manufacturing – Kim, Weiner
- Structural Testing – Kim, Kane